Torija MA, Gai Z, Myoung N, Plummer EW, Shen J. Frozen low-spin interface in ultrathin Fe films on Cu(111).
PHYSICAL REVIEW LETTERS 2005;
95:027201. [PMID:
16090711 DOI:
10.1103/physrevlett.95.027201]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Indexed: 05/03/2023]
Abstract
In ultrathin film systems, it is a major challenge to understand how a thickness-driven phase transition proceeds along the cross-sectional direction of the films. We use ultrathin Fe films on Cu(111) as a prototype system to demonstrate how to obtain such information using an in situ scanning tunneling microscope and the surface magneto-optical Kerr effect. The magnetization depth profile of a thickness-driven low-spin to high-spin magnetic phase transition is deduced from the experimental data, which leads us to conclude that a low-spin Fe layer at the Fe/Cu interface stays live upon the phase transition. The magnetically live low-spin phase is believed to be induced by a frozen fcc Fe layer that survives a thickness-driven fcc-->bcc structural transition.
Collapse