1
|
Wit HP, Bell A. Something in Our Ears Is Oscillating, but What? A Modeller's View of Efforts to Model Spontaneous Emissions. J Assoc Res Otolaryngol 2024; 25:313-328. [PMID: 38710871 PMCID: PMC11349976 DOI: 10.1007/s10162-024-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/26/2024] [Indexed: 05/08/2024] Open
Abstract
When David Kemp discovered "spontaneous ear noise" in 1978, it opened up a whole new perspective on how the cochlea works. The continuous tonal sound emerging from most healthy human ears, now called spontaneous otoacoustic emissions or SOAEs, was an unmistakable sign that our hearing organ must be considered an active detector, not just a passive microphone, just as Thomas Gold had speculated some 30 years earlier. Clearly, something is oscillating as a byproduct of that sensitive inbuilt detector, but what exactly is it? Here, we give a chronological account of efforts to model SOAEs as some form of oscillator, and at intervals, we illustrate key concepts with numerical simulations. We find that after many decades there is still no consensus, and the debate extends to whether the oscillator is local, confined to discrete local sources on the basilar membrane, or global, in which an assembly of micro-mechanical elements and basilar membrane sections, coupled by inner ear fluid, interact over a wide region. It is also undecided whether the cochlear oscillator is best described in terms of the well-known Van der Pol oscillator or the less familiar Duffing or Hopf oscillators. We find that irregularities play a key role in generating the emissions. This paper is not a systematic review of SOAEs and their properties but more a historical survey of the way in which various oscillator configurations have been applied to modelling human ears. The conclusion is that the difference between the local and global approaches is not clear-cut, and they are probably not mutually exclusive concepts. Nevertheless, when one sees how closely human SOAEs can be matched to certain arrangements of oscillators, Gold would no doubt say we are on the right track.
Collapse
Affiliation(s)
- Hero P Wit
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Graduate School of Medical Sciences, Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands.
| | - Andrew Bell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Pons A. The self-oscillation paradox in the flight motor of Drosophila melanogaster. J R Soc Interface 2023; 20:20230421. [PMID: 37963559 PMCID: PMC10645510 DOI: 10.1098/rsif.2023.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Tiny flying insects, such as Drosophila melanogaster, fly by flapping their wings at frequencies faster than their brains are able to process. To do so, they rely on self-oscillation: dynamic instability, leading to emergent oscillation, arising from muscle stretch-activation. Many questions concerning this vital natural instability remain open. Does flight motor self-oscillation necessarily lead to resonance-a state optimal in efficiency and/or performance? If so, what state? And is self-oscillation even guaranteed in a motor driven by stretch-activated muscle, or are there limiting conditions? In this work, we use data-driven models of wingbeat and muscle behaviour to answer these questions. Developing and leveraging novel analysis techniques, including symbolic computation, we establish a fundamental condition for motor self-oscillation common to a wide range of motor models. Remarkably, D. melanogaster flight apparently defies this condition: a paradox of motor operation. We explore potential resolutions to this paradox, and, within its confines, establish that the D. melanogaster flight motor is probably not resonant with respect to exoskeletal elasticity: instead, the muscular elasticity plays a dominant role. Contrary to common supposition, the stiffness of stretch-activated muscle is an obstacle to, rather than an enabler of, the operation of the D. melanogaster flight motor.
Collapse
Affiliation(s)
- Arion Pons
- Division of Fluid Dynamics, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Zhao Y, Li Q, Liu Z, Alsaid Y, Shi P, Khalid Jawed M, He X. Sunlight-powered self-excited oscillators for sustainable autonomous soft robotics. Sci Robot 2023; 8:eadf4753. [PMID: 37075101 DOI: 10.1126/scirobotics.adf4753] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
As the field of soft robotics advances, full autonomy becomes highly sought after, especially if robot motion can be powered by environmental energy. This would present a self-sustained approach in terms of both energy supply and motion control. Now, autonomous movement can be realized by leveraging out-of-equilibrium oscillatory motion of stimuli-responsive polymers under a constant light source. It would be more advantageous if environmental energy could be scavenged to power robots. However, generating oscillation becomes challenging under the limited power density of available environmental energy sources. Here, we developed fully autonomous soft robots with self-sustainability based on self-excited oscillation. Aided by modeling, we have successfully reduced the required input power density to around one-Sun level through a liquid crystal elastomer (LCE)-based bilayer structure. The autonomous motion of the low-intensity LCE/elastomer bilayer oscillator "LiLBot" under low energy supply was achieved by high photothermal conversion, low modulus, and high material responsiveness simultaneously. The LiLBot features tunable peak-to-peak amplitudes from 4 to 72 degrees and frequencies from 0.3 to 11 hertz. The oscillation approach offers a strategy for designing autonomous, untethered, and sustainable small-scale soft robots, such as a sailboat, walker, roller, and synchronized flapping wings.
Collapse
Affiliation(s)
- Yusen Zhao
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Qiaofeng Li
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Zixiao Liu
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Yousif Alsaid
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Pengju Shi
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Mohammad Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Ximin He
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 USA
- California Nanosystems Institute, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Nakagome K, Sato K, Shintani SA, Ishiwata S. Model simulation of the SPOC wave in a bundle of striated myofibrils. Biophys Physicobiol 2016; 13:217-226. [PMID: 27924277 PMCID: PMC5060095 DOI: 10.2142/biophysico.13.0_217] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 12/01/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a phenomenon observed in striated muscle under intermediate activation conditions. Recently, we constructed a theoretical model of SPOC for a sarcomere, a unit sarcomere model, which explains the behavior of SPOC at each sarcomere level. We also constructed a single myofibril model, which visco-elastically connects the unit model in series, and explains the behaviors of SPOC at the myofibril level. In the present study, to understand the SPOC properties in a bundle of myofibrils, we extended the single myofibril model to a two-dimensional (2D) model and a three-dimensional (3D) model, in which myofibrils were elastically connected side-by-side through cross-linkers between the Z-lines and M-lines. These 2D and 3D myofibril models could reproduce various patterns of SPOC waves experimentally observed in a 2D sheet and a 3D bundle of myofibrils only by choosing different values of elastic constants of the cross-linkers and the external spring. The results of these 2D and 3D myofibril models provide insight into the SPOC properties of the higher-ordered assembly of myofibrils.
Collapse
Affiliation(s)
- Koutaro Nakagome
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Katsuhiko Sato
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Seine A Shintani
- Department of Physics, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Cohen O, Safran SA. Elastic interactions synchronize beating in cardiomyocytes. SOFT MATTER 2016; 12:6088-6095. [PMID: 27352146 DOI: 10.1039/c6sm00351f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Motivated by recent experimental results, we study theoretically the synchronization of the beating phase and frequency of two nearby cardiomyocyte cells. Each cell is represented as an oscillating force dipole in an infinite, viscoelastic medium and the propagation of the elastic signal within the medium is predicted. We examine the steady-state beating of two nearby cells, and show that elastic interactions result in forces that synchronize the phase and frequency of beating in a manner that depends on their mutual orientation. The theory predicts both in-phase and anti-phase steady-state beating depending on the relative cell orientations, as well as how synchronized beating varies with substrate elasticity and the inter-cell distance. These results suggest how mechanics plays a role in cardiac efficiency, and may be relevant for the design of cardiomyocyte based micro devices and other biomedical applications.
Collapse
Affiliation(s)
- Ohad Cohen
- Dept. Materials and Interfaces, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| | - Samuel A Safran
- Dept. Materials and Interfaces, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| |
Collapse
|
6
|
Pazó D, Montbrió E. From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay. PHYSICAL REVIEW LETTERS 2016; 116:238101. [PMID: 27341262 DOI: 10.1103/physrevlett.116.238101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Indexed: 06/06/2023]
Abstract
Collective chaos is shown to emerge, via a period-doubling cascade, from quasiperiodic partial synchronization in a population of identical inhibitory neurons with delayed global coupling. This system is thoroughly investigated by means of an exact model of the macroscopic dynamics, valid in the thermodynamic limit. The collective chaotic state is reproduced numerically with a finite population, and persists in the presence of weak heterogeneities. Finally, the relationship of the model's dynamics with fast neuronal oscillations is discussed.
Collapse
Affiliation(s)
- Diego Pazó
- Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain
| | - Ernest Montbrió
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|
7
|
Kagemoto T, Li A, Dos Remedios C, Ishiwata S. Spontaneous oscillatory contraction (SPOC) in cardiomyocytes. Biophys Rev 2015; 7:15-24. [PMID: 28509984 PMCID: PMC5425754 DOI: 10.1007/s12551-015-0165-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
SPOC (spontaneous oscillatory contraction) is a characteristic state of the contractile system of striated (skeletal and cardiac) muscle that exists between the states of relaxation and contraction. For example, Ca-SPOCs occur at physiological Ca2+ levels (pCa ∼6.0), whereas ADP-SPOC occurs in the virtual absence of Ca2+ (pCa ≥ 8; relaxing conditions in the presence of MgATP), but in the presence of inorganic phosphate (Pi) and a high concentration of MgADP. The concentration of Mg-ADP necessary for SPOC is nearly equal to or greater than the MgATP concentration for cardiac muscle and is several times higher for skeletal muscle. Thus, the cellular conditions for SPOC are broader in cardiac muscle than in skeletal muscle. During these SPOCs, each sarcomere in a myofibril undergoes length oscillation that has a saw-tooth waveform consisting of a rapid lengthening and a slow shortening phase. The lengthening phase of one half of a sarcomere is transmitted to the adjacent half of the sarcomere successively, forming a propagating wave (termed a SPOC wave). The SPOC waves are synchronized across the cardiomyocytes resulting in a visible wave of successive contractions and relaxations termed the SPOC wave. Experimentally, the SPOC period (and therefore the velocity of SPOC wave) is observed in demembranated cardiomyocytes and can be prepared from a wide range of animal hearts. These periods correlate well with the resting heartbeats of a wide range of mammals (rat, rabbit, dog, pig and cow). Preliminary experiments showed that the SPOC properties of human cardiomyocytes are similar to the heartbeat of a large dog or a pig. This correlation suggests that SPOCs may play a fundamental role in the heart. Here, we briefly summarize a range of SPOC parameters obtained experimentally, and relate them to a theoretical model to explain those characteristics. Finally, we discuss the possible significance of these SPOC properties in each and every heartbeat.
Collapse
Affiliation(s)
- Tatsuya Kagemoto
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Amy Li
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Waseda Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-01/02 Helios, Singapore, 138667, Singapore.
| |
Collapse
|
8
|
Dierkes K, Sumi A, Solon J, Salbreux G. Spontaneous oscillations of elastic contractile materials with turnover. PHYSICAL REVIEW LETTERS 2014; 113:148102. [PMID: 25325664 DOI: 10.1103/physrevlett.113.148102] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 06/04/2023]
Abstract
Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic oscillator model of a material turning over and contracting against an elastic element. As an example, we show that during dorsal closure of the Drosophila embryo, experimentally observed changes in actomyosin concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that the relative contribution of viscous and friction losses yields different regimes of collective oscillations. Taking into account the diffusion of force-producing molecules between contractile elements, our theoretical framework predicts the appearance of traveling waves, resembling the propagation of actomyosin waves observed during morphogenesis.
Collapse
Affiliation(s)
- Kai Dierkes
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Angughali Sumi
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Jérôme Solon
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
9
|
Burioni R, di Santo S, di Volo M, Vezzani A. Microscopic mechanism for self-organized quasiperiodicity in random networks of nonlinear oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042918. [PMID: 25375578 DOI: 10.1103/physreve.90.042918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Indexed: 06/04/2023]
Abstract
Self-organized quasiperiodicity is one of the most puzzling dynamical phases observed in systems of nonlinear coupled oscillators. The single dynamical units are not locked to the periodic mean field they produce, but they still feature a coherent behavior, through an unexplained complex form of correlation. We consider a class of leaky integrate-and-fire oscillators on random sparse and massive networks with dynamical synapses, featuring self-organized quasiperiodicity, and we show how complex collective oscillations arise from constructive interference of microscopic dynamics. In particular, we find a simple quantitative relationship between two relevant microscopic dynamical time scales and the macroscopic time scale of the global signal. We show that the proposed relation is a general property of collective oscillations, common to all the partially synchronous dynamical phases analyzed. We argue that an analogous mechanism could be at the origin of similar network dynamics.
Collapse
Affiliation(s)
- Raffaella Burioni
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy and INFN, Gruppo Collegato di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy
| | - Serena di Santo
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy
| | - Matteo di Volo
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy and INFN, Gruppo Collegato di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy and Centro Interdipartimentale per lo Studio delle Dinamiche Complesse, via Sansone, 1 50019 Sesto Fiorentino, Italy
| | - Alessandro Vezzani
- Dipartimento di Fisica e Scienza della Terra, Università di Parma, via G. P. Usberti, 7/A 43124, Parma, Italy and S3, CNR Istituto di Nanoscienze, Via Campi, 213A 41125 Modena, Italy
| |
Collapse
|
10
|
Sheshka R, Truskinovsky L. Power-stroke-driven actomyosin contractility. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012708. [PMID: 24580258 DOI: 10.1103/physreve.89.012708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 06/03/2023]
Abstract
In ratchet-based models describing actomyosin contraction the activity is usually associated with actin binding potential while the power-stroke mechanism, residing inside myosin heads, is viewed as passive. To show that contraction can be propelled directly through a conformational change, we propose an alternative model where the power stroke is the only active mechanism. The asymmetry, ensuring directional motion, resides in steric interaction between the externally driven power-stroke element and the passive nonpolar actin filament. The proposed model can reproduce all four discrete states of the minimal actomyosin catalytic cycle even though it is formulated in terms of continuous Langevin dynamics. We build a conceptual bridge between processive and nonprocessive molecular motors by demonstrating that not only the former but also the latter can use structural transformation as the main driving force.
Collapse
Affiliation(s)
- R Sheshka
- LMS, CNRS-UMR 7649, École Polytechnique, Route de Saclay, 91128 Palaiseau, France and LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, École Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
11
|
Sato K, Kuramoto Y, Ohtaki M, Shimamoto Y, Ishiwata S. Locally and globally coupled oscillators in muscle. PHYSICAL REVIEW LETTERS 2013; 111:108104. [PMID: 25166714 DOI: 10.1103/physrevlett.111.108104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Indexed: 06/03/2023]
Abstract
At an intermediate activation level, striated muscle exhibits autonomous oscillations called SPOC, in which the basic contractile units, sarcomeres, oscillate in length, and various oscillatory patterns such as traveling waves and their disrupted forms appear in a myofibril. Here we show that these patterns are reproduced by mechanically connecting in series the unit model that explains characteristics of SPOC at the single-sarcomere level. We further reduce the connected model to phase equations, revealing that the combination of local and global couplings is crucial to the emergence of these patterns.
Collapse
Affiliation(s)
- Katsuhiko Sato
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yoshiki Kuramoto
- International Institute for Advanced Studies, Kyoto 619-0225, Japan
| | - Masako Ohtaki
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan and Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore
| |
Collapse
|
12
|
Temirbayev AA, Nalibayev YD, Zhanabaev ZZ, Ponomarenko VI, Rosenblum M. Autonomous and forced dynamics of oscillator ensembles with global nonlinear coupling: an experimental study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062917. [PMID: 23848758 DOI: 10.1103/physreve.87.062917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/14/2013] [Indexed: 06/02/2023]
Abstract
We perform experiments with 72 electronic limit-cycle oscillators, globally coupled via a linear or nonlinear feedback loop. While in the linear case we observe a standard Kuramoto-like synchronization transition, in the nonlinear case, with increase of the coupling strength, we first observe a transition to full synchrony and then a desynchronization transition to a quasiperiodic state. However, in this state the ensemble remains coherent so that the amplitude of the mean field is nonzero, but the frequency of the mean field is larger than frequencies of all oscillators. Next, we analyze effects of common periodic forcing of the linearly or nonlinearly coupled ensemble and demonstrate regimes when the mean field is entrained by the force whereas the oscillators are not.
Collapse
Affiliation(s)
- Amirkhan A Temirbayev
- Physical-Technical Department, al-Farabi Kazakh National University, al-Farabi Avenue 71, 050040 Almaty, Kazakhstan
| | | | | | | | | |
Collapse
|
13
|
Temirbayev AA, Zhanabaev ZZ, Tarasov SB, Ponomarenko VI, Rosenblum M. Experiments on oscillator ensembles with global nonlinear coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:015204. [PMID: 22400613 DOI: 10.1103/physreve.85.015204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 05/31/2023]
Abstract
We experimentally analyze collective dynamics of a population of 20 electronic Wien-bridge limit-cycle oscillators with a nonlinear phase-shifting unit in the global feedback loop. With an increase in the coupling strength we first observe formation and then destruction of a synchronous cluster, so that the dependence of the order parameter on the coupling strength is not monotonic. After destruction of the cluster the ensemble remains nevertheless coherent, i.e., it exhibits an oscillatory collective mode (mean field). We show that the system is now in a self-organized quasiperiodic state, predicted in Rosenblum and Pikovsky [Phys. Rev. Lett. 98, 064101 (2007)]. In this state, frequencies of all oscillators are smaller than the frequency of the mean field, so that the oscillators are not locked to the mean field they create and their dynamics is quasiperiodic. Without a nonlinear phase-shifting unit, the system exhibits a standard Kuramoto-like transition to a fully synchronous state. We demonstrate a good correspondence between the experiment and previously developed theory. We also propose a simple measure which characterizes the macroscopic incoherence-coherence transition in a finite-size ensemble.
Collapse
Affiliation(s)
- Amirkhan A Temirbayev
- Physical-Technical Department, al-Farabi Kazakh National University, al-Farabi avenue 71, 050040, Almaty, Kazakhstan
| | | | | | | | | |
Collapse
|
14
|
Wolfe JE, Ishiwata S, Braet F, Whan R, Su Y, Lal S, Dos Remedios CG. SPontaneous Oscillatory Contraction (SPOC): auto-oscillations observed in striated muscle at partial activation. Biophys Rev 2011; 3:53-62. [PMID: 28510003 PMCID: PMC5418397 DOI: 10.1007/s12551-011-0046-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/30/2011] [Indexed: 12/14/2022] Open
Abstract
Striated muscle is well known to exist in either of two states-contraction or relaxation-under the regulation of Ca2+ concentration. Described here is a less well-known third, intermediate state induced under conditions of partial activation, known as SPOC (SPontaneous Oscillatory Contraction). This state is characterised by auto-oscillation between rapid-lengthening and slow-shortening phases. Notably, SPOC occurs in skinned muscle fibres and is therefore not the result of fluctuating Ca2+ levels, but is rather an intrinsic and fundamental phenomenon of the actomyosin motor. Summarised in this review are the experimental data on SPOC and its fundamental mechanism. SPOC presents a novel technique for studying independent communication and coordination between sarcomeres. In cardiac muscle, this auto-oscillatory property may work in concert with electro-chemical signalling to coordinate the heartbeat. Further, SPOC may represent a new way of demonstrating functional defects of sarcomeres in human heart failure.
Collapse
Affiliation(s)
- James Erle Wolfe
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Filip Braet
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Renee Whan
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Yingying Su
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, 2006, Australia
| | - Sean Lal
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia
| | - Cristobal G Dos Remedios
- Muscle Research Unit, Department of Anatomy & Histology, Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, 2006, Australia.
| |
Collapse
|
15
|
Ishiwata S, Shimamoto Y, Fukuda N. Contractile system of muscle as an auto-oscillator. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:187-98. [DOI: 10.1016/j.pbiomolbio.2010.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/22/2010] [Indexed: 11/16/2022]
|
16
|
Shchekinova EY. Effect of periodic parametric excitation on an ensemble of force-coupled self-oscillators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:066203. [PMID: 20866497 DOI: 10.1103/physreve.81.066203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Indexed: 05/29/2023]
Abstract
We report the synchronization behavior in an ensemble of identical limit cycle oscillators coupled to a mass-spring load via a force relation. We consider the effect of periodic parametric modulation on the final states of the system. Two types of external parametric excitations are investigated numerically: periodic modulation of the stiffness of the inertial oscillator and periodic excitation of the frequency of the self-oscillatory element. We show that the synchronization scenarios are not only ruled by the choice of parameters of the excitation force but also depend on the initial collective state in the ensemble. We give detailed analysis of entrainment behavior for initially synchronous or antiphase synchronous states as well as for disorganized states.
Collapse
Affiliation(s)
- E Y Shchekinova
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.
| |
Collapse
|
17
|
Guérin T, Prost J, Martin P, Joanny JF. Coordination and collective properties of molecular motors: theory. Curr Opin Cell Biol 2010; 22:14-20. [PMID: 20074926 DOI: 10.1016/j.ceb.2009.12.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/25/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Many cellular processes require molecular motors to produce motion and forces. Single molecule experiments have led to a precise description of how a motor works. Under most physiological conditions, however, molecular motors operate in groups. Interactions between motors yield collective behaviors that cannot be explained only from single molecule properties. The aim of this paper is to review the various theoretical descriptions that explain the emergence of collective effects in molecular motor assemblies. These include bidirectional motion, hysteretic behavior, spontaneous oscillations, and self-organization into dynamical structures. We discuss motors acting on the cytoskeleton both in a prescribed geometry such as in muscles or flagella and in the cytoplasm.
Collapse
Affiliation(s)
- Thomas Guérin
- Laboratoire Physico-Chimie Curie, CNRS, Institut Curie, UPMC, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
18
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
19
|
Rosenblum M, Pikovsky A. Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling. PHYSICAL REVIEW LETTERS 2007; 98:064101. [PMID: 17358943 DOI: 10.1103/physrevlett.98.064101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Indexed: 05/14/2023]
Abstract
We describe a transition from fully synchronous periodic oscillations to partially synchronous quasiperiodic dynamics in ensembles of identical oscillators with all-to-all coupling that nonlinearly depends on the generalized order parameters. We present an analytically solvable model that predicts a regime where the mean field does not entrain individual oscillators, but has a frequency incommensurate to theirs. The self-organized onset of quasiperiodicity is illustrated with Landau-Stuart oscillators and a Josephson junction array with a nonlinear coupling.
Collapse
Affiliation(s)
- Michael Rosenblum
- Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany
| | | |
Collapse
|
20
|
Vilfan A, Frey E. Oscillations in molecular motor assemblies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2005; 17:S3901-S3911. [PMID: 21690731 DOI: 10.1088/0953-8984/17/47/018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Autonomous oscillations in biological systems may have a biochemical origin or result from an interplay between force-generating and visco-elastic elements. In molecular motor assemblies the force-generating elements are molecular engines and the visco-elastic elements are stiff cytoskeletal polymers. The physical mechanism leading to oscillations depends on the particular architecture of the assembly. Existing models can be grouped into two distinct categories: systems with a delayed force activation and anomalous force-velocity relations. We discuss these systems within phase plane analysis known from the theory of dynamic systems and by adopting methods from control theory, the Nyquist stability criterion.
Collapse
Affiliation(s)
- Andrej Vilfan
- J Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
21
|
Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 2004; 305:1147-50. [PMID: 15326353 DOI: 10.1126/science.1097640] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of approximately 3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed ( approximately 10 nN) suggests concerted nanomechanical activity is operative in the cell.
Collapse
Affiliation(s)
- Andrew E Pelling
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|