1
|
Wörner HJ, Wolf JP. Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses. Nat Rev Chem 2025; 9:185-199. [PMID: 40011715 DOI: 10.1038/s41570-025-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field.
Collapse
Affiliation(s)
- Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zurich, Zürich, Switzerland.
| | | |
Collapse
|
2
|
Heldt T, Oelmann JH, Guth L, Lackmann N, Pfeifer T, Crespo López-Urrutia JR. Velocity-map imaging with counter-propagating laser pulses. OPTICS LETTERS 2024; 49:6825-6828. [PMID: 39602760 DOI: 10.1364/ol.540612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
Velocity-map imaging (VMI) is a key tool for studying outgoing electrons or ions following optical strong-field interactions of atoms and molecules and provides good momentum resolution even if the source volume of the fragments extends along a laser beam path. Here, we demonstrate within an enhancement cavity how, independently of the focal Rayleigh length, counter-propagating pulses longitudinally compress the ionization volume down to few tens of micrometers. We observe nonlinear above-threshold ionization (ATI) processes confined to the spatial overlap of femtosecond pulses, whereas the shortened ionization volume makes an electrostatic lens unnecessary for VMI.
Collapse
|
3
|
Hu SQ, Zhao H, Liu XB, Chen Q, Chen DQ, Zhang XY, Meng S. Phonon-Coupled High-Harmonic Generation for Exploring Nonadiabatic Electron-Phonon Interactions. PHYSICAL REVIEW LETTERS 2024; 133:156901. [PMID: 39454146 DOI: 10.1103/physrevlett.133.156901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 01/01/2024] [Accepted: 08/26/2024] [Indexed: 10/27/2024]
Abstract
High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.
Collapse
|
4
|
He L, Yuen CH, He Y, Sun S, Goetz E, Le AT, Deng Y, Xu C, Lan P, Lu P, Lin CD. Ultrafast Picometer-Resolved Molecular Structure Imaging by Laser-Induced High-Order Harmonics. PHYSICAL REVIEW LETTERS 2024; 133:023201. [PMID: 39073922 DOI: 10.1103/physrevlett.133.023201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
Real-time visualization of molecular transformations is a captivating yet challenging frontier of ultrafast optical science and physical chemistry. While ultrafast x-ray and electron diffraction methods can achieve the needed subangstrom spatial resolution, their temporal resolution is still limited to hundreds of femtoseconds, much longer than the few femtoseconds required to probe real-time molecular dynamics. Here, we show that high-order harmonics generated by intense femtosecond lasers can be used to image molecules with few-ten-attosecond temporal resolution and few-picometer spatial resolution. This is achieved by exploiting the sensitive dependence of molecular recombination dipole moment to the geometry of the molecule at the time of harmonic emission. In a proof-of-principle experiment, we have applied this high-harmonic structure imaging (HHSI) method to monitor the structural rearrangement in NH_{3}, ND_{3}, and N_{2} from one to a few femtoseconds after the molecule is ionized by an intense laser. Our findings establish HHSI as an effective approach to resolve molecular dynamics with unprecedented spatiotemporal resolution, which can be extended to trace photochemical reactions in the future.
Collapse
|
5
|
Li Y, Song S, Han Y, Yue S, Du H. Coulomb-induced emission time shifts in high-order harmonic generation from H2. OPTICS EXPRESS 2024; 32:18984-18996. [PMID: 38859043 DOI: 10.1364/oe.522826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Accurate emission times of high-order harmonic generation (HHG) are vital for high-precision ultrafast detection in attosecond science, but a quantitative analysis of Coulomb effects on this time is absent in the molecular HHG. Here, we investigate the Coulomb-induced emission-time shift in HHG of H2+ with two different internuclear distances R, where the times obtained via the Gabor transform of numerical data from solving the time-dependent Schrödinger equation are used as simulation experiment results. Based on the molecular strong-field approximation, we develop a trajectory-resolved classical model that takes into account the molecular two-center structure. By selecting appropriate electron trajectories and including Coulomb interactions, the classical trajectory method can reproduce Gabor emission times well. This consistence reveals that Coulomb tails cause an emission-time shift of ∼35 as at the R = 2.0 a.u. case and of ∼40-60 as at the R = 2.6 a.u. case under the present laser parameters when compared to the Coulomb-free quantum-orbit model. Our results are of significance to probe the attosecond dynamics via two-center interference.
Collapse
|
6
|
Labeye M, Lévêque C, Risoud F, Maquet A, Caillat J, Taïeb R. Vibronic Correlations in Molecular Strong-Field Dynamics. J Phys Chem A 2024. [PMID: 38588387 DOI: 10.1021/acs.jpca.3c07833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We investigate the ultrafast vibronic dynamics triggered by intense femtosecond infrared pulses in small molecules. Our study is based on numerical simulations performed with 2D model molecules and analyzed in the perspective of the renowned Lochfrass and bond-softening models. We give a new interpretation of the observed nuclear wave packet dynamics with a focus on the phase of the bond oscillations. Our simulations also reveal intricate features in the field-induced nuclear motion that are not accounted for by existing models. Our analyses assign these features to strong dynamical correlations between the active electron and the nuclei, which significantly depend on the carrier envelope phase of the pulse, even for relatively "long" pulses, which should make them experimentally observable.
Collapse
Affiliation(s)
- Marie Labeye
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Camille Lévêque
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - François Risoud
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - Alfred Maquet
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - Jérémie Caillat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - Richard Taïeb
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| |
Collapse
|
7
|
Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schröter CD, Pfeifer T, Moshammer R, Mašín Z, Patchkovskii S, Sansone G. Influence of nuclear dynamics on molecular attosecond photoelectron interferometry. SCIENCE ADVANCES 2023; 9:eadh7747. [PMID: 37647394 PMCID: PMC10468127 DOI: 10.1126/sciadv.adh7747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/19/2023] [Indexed: 09/01/2023]
Abstract
In extreme ultraviolet spectroscopy, the photoionization process occurring in a molecule due to the absorption of a single photon can trigger an ultrafast nuclear motion in the cation. Taking advantage of attosecond photoelectron interferometry, where the absorption of the extreme ultraviolet photon is accompanied by the exchange of an additional infrared quantum of light, one can investigate the influence of nuclear dynamics by monitoring the characteristics of the photoelectron spectra generated by the two-color field. Here, we show that attosecond photoelectron interferometry is sensitive to the nuclear response by measuring the two-color photoionization spectra in a mixture of methane (CH4) and deuteromethane (CD4). The effect of the different nuclear evolution in the two isotopologues manifests itself in the modification of the amplitude and contrast of the oscillations of the photoelectron peaks. Our work indicates that nuclear dynamics can affect the coherence properties of the electronic wave packet emitted by photoionization on a time scale as short as a few femtoseconds.
Collapse
Affiliation(s)
- Dominik Ertel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - David Busto
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Department of Physics, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ioannis Makos
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Marvin Schmoll
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jakub Benda
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | - Hamed Ahmadi
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Matteo Moioli
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Fabio Frassetto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | - Luca Poletto
- Istituto di Fotonica e Nanotecnologie, CNR, 35131 Padova, Italy
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - Zdeněk Mašín
- Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovǐkách 2, 180 00, Prague 8, Czech Republic
| | | | - Giuseppe Sansone
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Heldt T, Dubois J, Birk P, Borisova GD, Lando GM, Ott C, Pfeifer T. Attosecond Real-Time Observation of Recolliding Electron Trajectories in Helium at Low Laser Intensities. PHYSICAL REVIEW LETTERS 2023; 130:183201. [PMID: 37204888 DOI: 10.1103/physrevlett.130.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 05/21/2023]
Abstract
Laser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment. Comparing recollision dynamics with linear vs circular NIR polarization, we find a parameter space, where the latter favors recollisions, providing evidence for the so far only theoretically predicted recolliding periodic orbits.
Collapse
Affiliation(s)
- Tobias Heldt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Jonathan Dubois
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Paul Birk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Gergana D Borisova
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Gabriel M Lando
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Camper A, Ferré A, Blanchet V, Descamps D, Lin N, Petit S, Lucchese R, Salières P, Ruchon T, Mairesse Y. Quantum-Path-Resolved Attosecond High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 130:083201. [PMID: 36898107 DOI: 10.1103/physrevlett.130.083201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Strong-field ionization of molecules releases electrons which can be accelerated and driven back to recombine with their parent ion, emitting high-order harmonics. This ionization also initiates attosecond electronic and vibrational dynamics in the ion, evolving during the electron travel in the continuum. Revealing this subcycle dynamics from the emitted radiation usually requires advanced theoretical modeling. We show that this can be avoided by resolving the emission from two families of electronic quantum paths in the generation process. The corresponding electrons have the same kinetic energy, and thus the same structural sensitivity, but differ by the travel time between ionization and recombination-the pump-probe delay in this attosecond self-probing scheme. We measure the harmonic amplitude and phase in aligned CO_{2} and N_{2} molecules and observe a strong influence of laser-induced dynamics on two characteristic spectroscopic features: a shape resonance and multichannel interference. This quantum-path-resolved spectroscopy thus opens wide prospects for the investigation of ultrafast ionic dynamics, such as charge migration.
Collapse
Affiliation(s)
- Antoine Camper
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- Department of Physics, University of Oslo, Sem Sælandsvei 24, 0371 Oslo, Norway
| | - Amélie Ferré
- Aix Marseille Université, CNRS, LP3, 13288, Marseille, France
| | | | | | - Nan Lin
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - Stéphane Petit
- Université de Bordeaux-CNRS-CEA, CELIA, UMR5107 Talence, France
| | - Robert Lucchese
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Pascal Salières
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Thierry Ruchon
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Yann Mairesse
- Université de Bordeaux-CNRS-CEA, CELIA, UMR5107 Talence, France
| |
Collapse
|
10
|
Ruberti M, Patchkovskii S, Averbukh V. Quantum coherence in molecular photoionization. Phys Chem Chem Phys 2022; 24:19673-19686. [PMID: 35946491 DOI: 10.1039/d2cp01562e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of onset and decay, as well as control of ultrafast quantum coherence in many-electron systems is in the focus of interest of attosecond physics. Interpretation of attosecond experiments detecting the ultrafast quantum coherence requires application of advanced theoretical and computational tools combining many-electron theory, description of the electronic continuum, including in the strong laser field scenario, as well as nuclear dynamics theory. This perspective reviews the recent theoretical advances in understanding the attosecond dynamics of quantum coherence in photoionized molecular systems and outlines possible future directions of theoretical and experimental study of coherence and entanglement in the attosecond regime.
Collapse
Affiliation(s)
- Marco Ruberti
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| | | | - Vitali Averbukh
- Imperial College London, Department of Physics, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
11
|
Filming movies of attosecond charge migration in single molecules with high harmonic spectroscopy. Nat Commun 2022; 13:4595. [PMID: 35933558 PMCID: PMC9357086 DOI: 10.1038/s41467-022-32313-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Electron migration in molecules is the progenitor of chemical reactions and biological functions after light-matter interaction. Following this ultrafast dynamics, however, has been an enduring endeavor. Here we demonstrate that, by using machine learning algorithm to analyze high-order harmonics generated by two-color laser pulses, we are able to retrieve the complex amplitudes and phases of harmonics of single fixed-in-space molecules. These complex dipoles enable us to construct movies of laser-driven electron migration after tunnel ionization of N2 and CO2 molecules at time steps of 50 attoseconds. Moreover, the angular dependence of the migration dynamics is fully resolved. By examining the movies, we observe that electron holes do not just migrate along the laser polarization direction, but may swirl around the atom centers. Our result establishes a general scheme for studying ultrafast electron dynamics in molecules, paving a way for further advance in tracing and controlling photochemical reactions by femtosecond lasers.
Collapse
|
12
|
Blavier M, Levine RD, Remacle F. Time evolution of entanglement of electrons and nuclei and partial traces in ultrafast photochemistry. Phys Chem Chem Phys 2022; 24:17516-17525. [PMID: 35838986 DOI: 10.1039/d2cp01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broad in energy optical pulses induce ultrafast molecular dynamics where nuclear degrees of freedom are entangled with electronic ones. We discuss a matrix representation of wave functions of such entangled systems. Singular Value Decomposition (SVD) of this matrix provides a representation as a sum of separable terms. Their weights can be arranged in decreasing order. The representation provided by the SVD is equivalent to a Schmidt decomposition. If there is only one term or if one term is already a good approximation, the system is not entangled. The SVD also provides either an exact or a few term approximation for the partial traces. A simple example, the dynamics of LiH upon ultrafast excitation to several non-adiabatically coupled electronic states, is provided. The major contribution to the entanglement is created during the exit from the Franck Condon region. An additional contribution is the entanglement due to the nuclear motion induced non-adiabatic transitions.
Collapse
Affiliation(s)
- Martin Blavier
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. .,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. .,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
13
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Blavier M, Komarova K, Gonçalves CEM, Levine RD, Remacle F. Electronic Coherences Steer the Strong Isotope Effect in the Ultrafast Jahn-Teller Structural Rearrangement of Methane Cation upon Tunnel Ionization. J Phys Chem A 2021; 125:9495-9507. [PMID: 34677060 DOI: 10.1021/acs.jpca.1c06431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on fully quantum electronic-nuclear dynamics following sudden ionization from the neutral in the three lowest electronic states of the CH4+ and CD4+ cations. There is a strong Jahn-Teller effect in the Franck-Condon region, and we employ two nuclear degrees of freedom that span the internal coordinates involved in the Jahn-Teller coupling. The initial state results from tunneling ionization by a strong IR field which coherently pumps the three lowest states of the cation, D0, D1, and D2. The quantum dynamical simulations show that a strong isotope effect occurs when the ionization significantly accesses the D2 state of the cation in the Franck-Condon region. The computed isotope effect is larger than expected on the basis of the effective mass ratio. The strong effect is due to fast oscillations of the electronic coherences between the D2 and the D1 and D0 electronic states and their modulation by the nonadiabatic couplings before a significant onset of nuclear motion. The magnitude of the effect is similar to the one that we previously reported for a sudden photoionization process. A strong isotope effect has been observed in high harmonic spectroscopy studies of the very short time dynamics Jahn-Teller structural rearrangement of the methane cation upon sudden ionization.
Collapse
Affiliation(s)
- Martin Blavier
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - Ksenia Komarova
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.,Department of Chemistry and Biochemistry and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.,The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
15
|
Bag S, Chandra S, Ghosh J, Bera A, Bernstein ER, Bhattacharya A. The attochemistry of chemical bonding. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1976499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sampad Bag
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Sankhabrata Chandra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Jayanta Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Anupam Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | - Atanu Bhattacharya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Ivanov M. Concluding remarks: The age of molecular movies. Faraday Discuss 2021; 228:622-629. [PMID: 33960352 DOI: 10.1039/d1fd90033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Faraday Discussion has demonstrated enormous progress towards using advanced light sources, together with a variety of experimental and theoretical tools and techniques, to film the motion of both electrons and nuclei in molecules undergoing photo-induced reactions. The new tools are beginning to offer reliable opportunities for achieving the required spatio-temporal resolution, all the way to sub-femtosecond and sub-angstrom scales. The age of quantum molecular movies has arrived.
Collapse
Affiliation(s)
- Misha Ivanov
- Max Born Institute, Max Born Str. 2A, Berlin, Germany
| |
Collapse
|
17
|
Extracting sub-cycle electronic and nuclear dynamics from high harmonic spectra. Sci Rep 2021; 11:2485. [PMID: 33510363 PMCID: PMC7844012 DOI: 10.1038/s41598-021-82232-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
Abstract
We present a new methodology for measuring few-femtosecond electronic and nuclear dynamics in both atoms and polyatomic molecules using multidimensional high harmonic generation (HHG) spectroscopy measurements, in which the spectra are recorded as a function of the laser intensity to form a two-dimensional data set. The method is applied to xenon atoms and to benzene molecules, the latter exhibiting significant fast nuclear dynamics following ionization. We uncover the signature of the sub-cycle evolution of the returning electron flux in strong-field ionized xenon atoms, implicit in the strong field approximation but not previously observed directly. We furthermore extract the nuclear autocorrelation function in strong field ionized benzene cations, which is determined to have a decay of [Formula: see text] fs, in good agreement with the [Formula: see text] fs obtained from direct dynamics variational multi-configuration Gaussian calculations. Our method requires minimal assumptions about the system, and is applicable even to un-aligned polyatomic molecules.
Collapse
|
18
|
Gonçalves CEM, Levine RD, Remacle F. Ultrafast geometrical reorganization of a methane cation upon sudden ionization: an isotope effect on electronic non-equilibrium quantum dynamics. Phys Chem Chem Phys 2021; 23:12051-12059. [PMID: 34008662 DOI: 10.1039/d1cp01029h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast structural, Jahn-Teller (JT) driven, electronic coherence mediated quantum dynamics in the CH4+ and CD4+ cations that follows sudden ionization using an XUV attopulse exhibits a strong isotope effect. The JT effect makes the methane cation unstable in the Td geometry of the neutral molecule. Upon the sudden ionization the cation is produced in a coherent superposition of three electronic states that are strongly coupled and neither is in equilibrium with the nuclei. In the ground state of the cation the few femtosecond structural rearrangement leads first to a geometrically less distorted D2d minimum followed by a geometrical reorganization to a shallow C2v minimum. The dynamics is computed for an ensemble of 8000 ions randomly oriented with respect to the polarization of the XUV pulse. The ratio, about 3, of the CD4+ to CH4+ autocorrelation functions, is in agreement with experimental measurements of high harmonic spectra. The high value of the ratio is attributed to the faster electronic coherence dynamics in CH4+.
Collapse
Affiliation(s)
- Cayo E M Gonçalves
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium.
| | - R D Levine
- The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - F Remacle
- Theoretical Physical Chemistry, University of Liège, 4000 Liège, Belgium. and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
19
|
Mondal T, Varandas AJC. Effect of initial vibrational excitation on the methane cation sub-femtosecond photodynamics. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1752403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- T. Mondal
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Hyderabad, India
- Department of Chemistry, Birla Institute of Technology & Science, Zuarinagar, Goa, India
| | - A. J. C. Varandas
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, People's Republic of China
- Department of Chemistry, and Chemistry Center, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Feng L, Liu H, Mccain J. Comparison of wavelength dependence of harmonic yield in isotopic H2+ and T2+ diatomic systems. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Liu H, Li Y, Feng L. The isotopic dependence and influence of driving laser intensity on the harmonic yields of diatomic molecule ions X2+. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Phan NL, Le CT, Hoang VH, Le VH. Odd-even harmonic generation from oriented CO molecules in linearly polarized laser fields and the influence of the dynamic core-electron polarization. Phys Chem Chem Phys 2019; 21:24177-24186. [PMID: 31657822 DOI: 10.1039/c9cp04064a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a detailed theoretical study of the odd-even harmonics generated from the polar molecule CO by the method based on numerically solving the time-dependent Schrödinger equation within the single-active-electron approximation. First, we reproduce the pure even harmonic generation of CO predicted theoretically by Hu et al. using the time-dependent density functional theory [H. Hu et al., Phys. Rev. Lett., 2017, 119, 173201]. Then, based on the Floquet approach, we are able to attribute this behavior to the half-cycle mirror symmetry of the molecule-field system when the polar molecule is perpendicular to the laser polarization. By numerical simulations, we show that this symmetry is broken at orientation angles other than 90° resulting in the odd-even harmonic generation and a non-trivial even-to-odd harmonics ratio strongly dependent on the molecular orientation. Furthermore, we investigate the influence of the dynamic core-electron polarization (DCeP) on the odd-even behavior near the cutoff of the high-order harmonic spectra. We emphasize that the DCeP effect is noticeable for the odd harmonics only.
Collapse
Affiliation(s)
- Ngoc-Loan Phan
- Department of Physics, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District 5, Ho Chi Minh City, Vietnam.
| | | | | | | |
Collapse
|
23
|
Amini K, Biegert J, Calegari F, Chacón A, Ciappina MF, Dauphin A, Efimov DK, Figueira de Morisson Faria C, Giergiel K, Gniewek P, Landsman AS, Lesiuk M, Mandrysz M, Maxwell AS, Moszyński R, Ortmann L, Antonio Pérez-Hernández J, Picón A, Pisanty E, Prauzner-Bechcicki J, Sacha K, Suárez N, Zaïr A, Zakrzewski J, Lewenstein M. Symphony on strong field approximation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116001. [PMID: 31226696 DOI: 10.1088/1361-6633/ab2bb1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagielloński, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the 'simple man's models' which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include high-harmonic generation (HHG), above-threshold ionization (ATI), and non-sequential multielectron ionization (NSMI). 'Simple man's models' provide both an intuitive basis for understanding the numerical solutions of the time-dependent Schrödinger equation and the motivation for the powerful analytic approximations generally known as the strong field approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach the SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of the SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of the SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between electron impact ionization and resonant excitation with subsequent ionization; (ii) time-dependent treatment in the single active electron approximation of 'large' molecules and targets which are themselves undergoing dynamics during the HHG or ATI processes. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields. We dedicate this work to the memory of Bertrand Carré, who passed away in March 2018 at the age of 60.
Collapse
Affiliation(s)
- Kasra Amini
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mauger F, Abanador PM, Scarborough TD, Gorman TT, Agostini P, DiMauro LF, Lopata K, Schafer KJ, Gaarde MB. High-harmonic spectroscopy of transient two-center interference calculated with time-dependent density-functional theory. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044101. [PMID: 31341934 PMCID: PMC6635122 DOI: 10.1063/1.5111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate high-harmonic spectroscopy in many-electron molecules using time-dependent density-functional theory. We show that a weak attosecond-pulse-train ionization seed that is properly synchronized with the strong driving mid-infrared laser field can produce experimentally relevant high-harmonic generation (HHG) signals, from which we extract both the spectral amplitude and the target-specific phase (group delay). We also show that further processing of the HHG signal can be used to achieve molecular-frame resolution, i.e., to resolve the contributions from rescattering on different sides of an oriented molecule. In this framework, we investigate transient two-center interference in CO2 and OCS, and how subcycle polarization effects shape the oriented/aligned angle-resolved spectra.
Collapse
Affiliation(s)
- François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Paul M Abanador
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - Timothy T Gorman
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Pierre Agostini
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
25
|
Wang B, He L, Yuan H, Zhang Q, Lan P, Lu P. Carrier-envelope phase-dependent molecular high-order harmonic generation from H2+ in a multi-cycle regime. OPTICS EXPRESS 2018; 26:33440-33452. [PMID: 30645496 DOI: 10.1364/oe.26.033440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Carrier-envelope phase (CEP) dependence of high-order harmonic generation (HHG) from H2+ in a multi-cycle laser pulse is investigated by solving the non-Born-Oppenheimer time-dependent Schrödinger equation (TDSE). It is found that high harmonics in the plateau exhibit counterintuitive frequency modulation (FM) as the CEP of the multi-cycle laser varies. Based on the classical electron trajectories and time-frequency analysis, this multi-cycle CEP-dependent FM is demonstrated to result from the interference of half-cycle HHG radiations, which is modulated by laser-driven nuclear motion. The mechanism of the CEP-dependent FM is further confirmed by simulations based on a simple algorithm in the time domain, which satisfactorily reproduces the TDSE results. The CEP-dependent FM encodes rich information on the correlated electron and nuclear dynamics, which paves the way for probing nuclear motion with attosecond resolution.
Collapse
|
26
|
Jayachander Rao B, Cho M. Effect of vibrational pre-excitation on sub-femtosecond structural evolution of water cation in 2A1 state. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Yue S, Fu S, Li J, Zhang X, Feng Y, Hu B, Du H. A redshift mechanism of high-order harmonics: Change of ionization energy. J Chem Phys 2018; 148:234304. [PMID: 29935501 DOI: 10.1063/1.5031210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically study the high-order harmonic generation of H2+ and its isotopes beyond the Born-Oppenheimer dynamics. It is surprising that the spectral redshift can still be observed in high harmonic spectra of H2+ driven by a sinusoidal laser pulse in which the trailing (leading) edge of the laser pulse is nonexistent. The results confirm that this spectral redshift originates from the reduction in ionization energy between recombination time and ionization time, which is obviously different from the nonadiabatic spectral redshift induced by the falling edge of the laser pulse. Additionally, the improved instantaneous frequency of harmonics by considering the changeable ionization energy can deeply verify our results. Therefore, this new mechanism must be taken into account when one uses the nonadiabatic spectral redshift to retrieve the nuclear motion.
Collapse
Affiliation(s)
- Shengjun Yue
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Silin Fu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Jinbin Li
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao Zhang
- Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000, China
| | - Yongkang Feng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Bitao Hu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Hongchuan Du
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
28
|
Kraus PM, Zürch M, Cushing SK, Neumark DM, Leone SR. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0008-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Kraus PM, Wörner HJ. Perspektiven für das Verständnis fundamentaler Elektronenkorrelationen durch Attosekundenspektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201702759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
30
|
Koushki AM, Sadighi-Bonabi R, Mohsen-Nia M, Irani E. The control of electron quantum trajectories on the high-order harmonic generation of CO and N2 molecules in the presence of a low frequency field. J Chem Phys 2018; 148:144306. [DOI: 10.1063/1.5018819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. M. Koushki
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, P. O. Box 87317-51167, Kashan, Iran
- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - R. Sadighi-Bonabi
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - M. Mohsen-Nia
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, P. O. Box 87317-51167, Kashan, Iran
| | - E. Irani
- Department of Physics, Faculty of Basic Science, Tarbiat Modaress University, Tehran, Iran
| |
Collapse
|
31
|
Kraus PM, Wörner HJ. Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations. Angew Chem Int Ed Engl 2018; 57:5228-5247. [DOI: 10.1002/anie.201702759] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/29/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter M. Kraus
- Department of Chemistry; University of California; Berkeley California 94720 USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie; ETH Zürich; Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
32
|
He L, Zhang Q, Lan P, Cao W, Zhu X, Zhai C, Wang F, Shi W, Li M, Bian XB, Lu P, Bandrauk AD. Monitoring ultrafast vibrational dynamics of isotopic molecules with frequency modulation of high-order harmonics. Nat Commun 2018; 9:1108. [PMID: 29549255 PMCID: PMC5856770 DOI: 10.1038/s41467-018-03568-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/23/2018] [Indexed: 11/30/2022] Open
Abstract
Molecules constituted by different isotopes are different in vibrational modes, making it possible to elucidate the mechanism of a chemical reaction via the kinetic isotope effect. However, the real-time observation of the vibrational motion of isotopic nuclei in molecules is still challenging due to its ultrashort time scale. Here we demonstrate a method to monitor the nuclear vibration of isotopic molecules with the frequency modulation of high-order harmonic generation (HHG) during the laser-molecule interaction. In the proof-of-principle experiment, we report a red shift in HHG from H2 and D2. The red shift is ascribed to dominant HHG from the stretched isotopic molecules at the trailing edge of the laser pulse. By utilizing the observed frequency shift, the laser-driven nuclear vibrations of H2 and D2 are retrieved. These findings pave an accessible route toward monitoring the ultrafast nuclear dynamics and even tracing a chemical reaction in real time. Previous studies on high harmonic generation from molecules have been used to identify the spectral properties and orbital contributions. Here the authors measure the isotopic effects in the energy shift of the HHG spectra caused by the nuclear motion of the molecules.
Collapse
Affiliation(s)
- Lixin He
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qingbin Zhang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Wei Cao
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Chunyang Zhai
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Feng Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wenjing Shi
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Muzi Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071, Wuhan, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xue-Bin Bian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, 430071, Wuhan, China.
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China. .,Laboratory of Optical Information Technology, Wuhan Institute of Technology, 430205, Wuhan, China.
| | - André D Bandrauk
- Laboratoire de chimie théorique, Département de Chimie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Quebéc, Canada
| |
Collapse
|
33
|
Crassee I, Gallmann L, Gäumann G, Matthews M, Yanagisawa H, Feurer T, Hengsberger M, Keller U, Osterwalder J, Wörner HJ, Wolf JP. Strong field transient manipulation of electronic states and bands. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061505. [PMID: 29308417 PMCID: PMC5739908 DOI: 10.1063/1.4996424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
In the present review, laser fields are so strong that they become part of the electronic potential, and sometimes even dominate the Coulomb contribution. This manipulation of atomic potentials and of the associated states and bands finds fascinating applications in gases and solids, both in the bulk and at the surface. We present some recent spectacular examples obtained within the NCCR MUST in Switzerland.
Collapse
Affiliation(s)
- I Crassee
- Applied Physics, GAP, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | | | - G Gäumann
- Institute of Applied Physics, University of Bern, Sidlerstr 5, 3012 Bern, Switzerland
| | - M Matthews
- Applied Physics, GAP, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - H Yanagisawa
- Department of Physics, University of Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
| | - T Feurer
- Institute of Applied Physics, University of Bern, Sidlerstr 5, 3012 Bern, Switzerland
| | - M Hengsberger
- Department of Physics, University of Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
| | - U Keller
- Department of Physics, Institute for Quantum Electronics, ETH-Zurich, 8093 Zurich, Switzerland
| | - J Osterwalder
- Department of Physics, University of Zurich, Winterthurerstr 190, 8057 Zurich, Switzerland
| | - H J Wörner
- Physical Chemistry Laboratory, ETHZ, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - J P Wolf
- Applied Physics, GAP, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Wörner HJ, Arrell CA, Banerji N, Cannizzo A, Chergui M, Das AK, Hamm P, Keller U, Kraus PM, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser JE, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven JA, Wenger O. Charge migration and charge transfer in molecular systems. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061508. [PMID: 29333473 PMCID: PMC5745195 DOI: 10.1063/1.4996505] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/25/2017] [Indexed: 05/12/2023]
Abstract
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.
Collapse
Affiliation(s)
| | - Christopher A Arrell
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Natalie Banerji
- Department of Chemistry, University of Fribourg, Fribourg, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Majed Chergui
- Laboratory of Ultrafast Spectroscopy and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akshaya K Das
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Ursula Keller
- Department of Physics, ETH Zürich, Zürich, Switzerland
| | | | - Elisa Liberatore
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pablo Lopez-Tarifa
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| | - Chris Milne
- SwissFEL, Paul-Scherrer Institute, Villigen, Switzerland
| | - Jacques-E Moser
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Joël Teuscher
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Wenger
- Department of Chemistry, University of Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Feng L, Li Y, Liu H. Controlling harmonic distributions from H 2 + driven by linearly and circularly polarized laser fields. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Wang B, He L, Wang F, Yuan H, Zhu X, Lan P, Lu P. Resonance enhanced high-order harmonic generation in H2+ by two sequential laser pulses. OPTICS EXPRESS 2017; 25:17777-17787. [PMID: 28789269 DOI: 10.1364/oe.25.017777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
We investigate high-order harmonic generation in H2+ by using two sequential laser pulses, which consist of a 800-nm pump pulse and a time-delayed 1600-nm probe pulse. Based on the solution of the time-dependent Schrödinger equation, we demonstrate that the harmonic cutoff in our two-pulse scheme is significantly extended compared to that in the 1600-nm probe pulse alone. Meanwhile, the harmonic efficiency is enhanced by 2-3 orders of magnitude due to charge-resonance-enhanced ionization steered by the 800-nm pump pulse. By using a probe pulse with longer wavelength, our scheme can be used for efficient high harmonic generation in the water window region. In addition, the influence of the intensity of the pump pulse and the relative time delay of the two laser pulses on the harmonic generation are also investigated.
Collapse
|
37
|
Lan P, Ruhmann M, He L, Zhai C, Wang F, Zhu X, Zhang Q, Zhou Y, Li M, Lein M, Lu P. Attosecond Probing of Nuclear Dynamics with Trajectory-Resolved High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2017; 119:033201. [PMID: 28777593 DOI: 10.1103/physrevlett.119.033201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 06/07/2023]
Abstract
We report attosecond-scale probing of the laser-induced dynamics in molecules. We apply the method of high-harmonic spectroscopy, where laser-driven recolliding electrons on various trajectories record the motion of their parent ion. Based on the transient phase-matching mechanism of high-order harmonic generation, short and long trajectories contributing to the same harmonic order are distinguishable in both the spatial and frequency domains, giving rise to a one-to-one map between time and photon energy for each trajectory. The short and long trajectories in H_{2} and D_{2} are used simultaneously to retrieve the nuclear dynamics on the attosecond and ångström scale. Compared to using only short trajectories, this extends the temporal range of the measurement to one optical cycle. The experiment is also applied to methane and ammonia molecules.
Collapse
Affiliation(s)
- Pengfei Lan
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Marc Ruhmann
- Institute for Theoretical Physics and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Lixin He
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunyang Zhai
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaosong Zhu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingbin Zhang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Li
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Manfred Lein
- Institute for Theoretical Physics and Centre for Quantum Engineering and Space-Time Research (QUEST), Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
38
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
39
|
Li MZ, Jia GR, Bian XB. Alignment dependent ultrafast electron-nuclear dynamics in molecular high-order harmonic generation. J Chem Phys 2017; 146:084305. [PMID: 28249424 DOI: 10.1063/1.4976973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigated the high-order harmonic generation (HHG) process of diatomic molecular ion H2+ in non-Born-Oppenheimer approximations (NBOA). The corresponding three-dimensional time-dependent Schrödinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG in both the tunneling and multiphoton ionization regimes. The universal redshifts of the whole spectrum are unique in molecular HHG. The spectral width of HHG increases in NBOA. We calculated possible influences on redshifts of HHG in real experimental conditions and found that redshifts decrease with the increase of alignment angles of the molecules and are sensitive to the initial vibrational states. It can be used to extract the ultrafast electron-nuclear dynamics and image molecular structure. It will be instructive to related experiments.
Collapse
Affiliation(s)
- Mu-Zi Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Guang-Rui Jia
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xue-Bin Bian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
40
|
Even harmonic generation in isotropic media of dissociating homonuclear molecules. Sci Rep 2016; 6:32653. [PMID: 27596609 PMCID: PMC5011695 DOI: 10.1038/srep32653] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/11/2016] [Indexed: 11/24/2022] Open
Abstract
Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schrödinger equation for and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are produced is controlled by pulse duration. Our results (i) show how the interplay of femtosecond nuclear and attosecond electronic dynamics, which affects the charge flow inside the dissociating molecule, is reflected in the nonlinear response, and (ii) force one to augment standard selection rules found in nonlinear optics textbooks by considering light-induced modifications of the medium during the generation process.
Collapse
|
41
|
Lara-Astiaso M, Silva REF, Gubaydullin A, Rivière P, Meier C, Martín F. Enhancing High-Order Harmonic Generation in Light Molecules by Using Chirped Pulses. PHYSICAL REVIEW LETTERS 2016; 117:093003. [PMID: 27610851 DOI: 10.1103/physrevlett.117.093003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 06/06/2023]
Abstract
One of the current challenges in high-harmonic generation is to extend the harmonic cutoff to increasingly high energies while maintaining or even increasing the efficiency of the high-harmonic emission. Here we show that the combined effect of down-chirped pulses and nuclear dynamics in light molecules allows one to achieve this goal, provided that long enough IR pulses are used to allow the nuclei to move well outside the Franck-Condon region. We also show that, by varying the duration of the chirped pulse or by performing isotopic substitution while keeping the pulse duration constant, one can control the extension of the harmonic plateau.
Collapse
Affiliation(s)
- M Lara-Astiaso
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - R E F Silva
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - A Gubaydullin
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P Rivière
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - C Meier
- Laboratoire de Collisions Agrégats Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - F Martín
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
42
|
Yu C, Jiang S, Cao X, Yuan G, Wu T, Bai L, Lu R. Interference effects on harmonic generation from H 2 + in nonhomogeneous laser field. OPTICS EXPRESS 2016; 24:19736-19745. [PMID: 27557250 DOI: 10.1364/oe.24.019736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By solving the time-dependent Schrödinger equation both in simplified one-dimensional coordinate and three-dimensional cylindrical coordinate systems, the high-order harmonic generation from H2 + in spatially symmetric and asymmetric nonhomogeneous laser fields was studied. At large internuclear distances, minima were clearly observed in high energy part of harmonic spectra, which can be attributed to two-center interference in diatomic molecule. Compared with previous studies, the minima in nonhomogeneous laser field are more distinct. Remarkably, the positions of the minima are different in these two types of fields, which demonstrate that interference effects are greatly influenced by laser parameters. Besides, the asymmetric nonhomogeneous field leads to an asymmetric recollision of the ionized electron, and both odd and even order harmonics could be emitted, which is explained in detail based on quantum dynamics calculations.
Collapse
|
43
|
Feng L. Theoretical exploration of asymmetric molecular harmonic emission and attosecond pulse generation in the presence of spatially inhomogeneous plasmon-enhanced field. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1192233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Liqiang Feng
- College of Science, Liaoning University of Technology, Jinzhou, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics Chinese Academy of Sciences, Dalian, China
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, China
| |
Collapse
|
44
|
Jayachander Rao B, Varandas A. Sub-femtosecond nuclear dynamics and high-harmonic generation: Can muonated species be used as a probe of isotope effects? Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Yuan X, Wei P, Liu C, Ge X, Zheng Y, Zeng Z, Li R. Effect of nuclear motion on spectral broadening of high-order harmonic generation. OPTICS EXPRESS 2016; 24:8194-8201. [PMID: 27137258 DOI: 10.1364/oe.24.008194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-order harmonic generation (HHG) in molecular targets is experimentally investigated in order to reveal the role of the nuclear motion played in the harmonic generation process. An obvious broadening in the harmonic spectrum from the H2 molecule is observed in comparison with the harmonic spectrum generated from other molecules with relatively heavy nuclei. We also find that the harmonic yield from the H2 molecule is much weaker than the yield from those gas targets with the similar ionization potentials, such as Ar atom and N2 molecule. The yield suppression and the spectrum broadening of HHG can be attributed to the vibrational motion of nuclear induced by the driving laser pulse. Moreover, the one-dimensional (1D) time-dependent Schrödinger equation (TDSE) with the non-Born-Oppenheimer (NBO) treatment is numerically solved to provide a theoretical support to our explanation.
Collapse
|
46
|
Baykusheva D, Ahsan MS, Lin N, Wörner HJ. Bicircular High-Harmonic Spectroscopy Reveals Dynamical Symmetries of Atoms and Molecules. PHYSICAL REVIEW LETTERS 2016; 116:123001. [PMID: 27058077 DOI: 10.1103/physrevlett.116.123001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 05/10/2023]
Abstract
We introduce bicircular high-harmonic spectroscopy as a new method to probe dynamical symmetries of atoms and molecules and their evolution in time. Our approach is based on combining a circularly polarized femtosecond fundamental field of frequency ω with its counterrotating second harmonic 2ω. We demonstrate the ability of bicircular high-harmonic spectroscopy to characterize the orbital angular momentum symmetry of atomic orbitals. We further show that breaking the threefold rotational symmetry of the generating medium-at the level of either the ensemble or that of a single molecule-results in the emission of the otherwise parity-forbidden frequencies 3qω (q∈N), which provide a background-free probe of dynamical molecular symmetries.
Collapse
Affiliation(s)
- Denitsa Baykusheva
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Md Sabbir Ahsan
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Nan Lin
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Coulomb-corrected molecular orbital tomography of nitrogen. Sci Rep 2016; 6:23236. [PMID: 27000666 PMCID: PMC4802381 DOI: 10.1038/srep23236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/01/2016] [Indexed: 02/01/2023] Open
Abstract
High-order harmonic generation (HHG) from aligned molecules has provided a promising way to probe the molecular orbital with an Ångström resolution. This method, usually called molecular orbital tomography (MOT) replies on a simple assumption of the plane-wave approximation (PW), which has long been questioned due to that PW approximation is known to be valid in the keV energy region. However, the photon energy is usually no more than 100 eV in HHG. In this work, we experimentally reconstruct the highest occupied molecular orbital (HOMO) of nitrogen (N2) by using a Coulomb-corrected MOT (CCMOT) method. In our scheme, the molecular continuum states are described by a Coulomb wave function instead of the PW approximation. With CCMOT, the reconstructed orbital is demonstrated to agree well with the theoretical prediction and retain the main features of the HOMO of N2. Compared to the PW approximation method, the CCMOT shows a significant improvement in eliminating the artificial structures caused by PW approximation.
Collapse
|
48
|
Du H, Yue S, Wang H, Wu H, Hu B. Reexamining the high-order harmonic generation of HD molecule in non-Born-Oppenheimer approximation. J Chem Phys 2016; 144:114308. [DOI: 10.1063/1.4943371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hongchuan Du
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Shengjun Yue
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Huiqiao Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongmei Wu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Bitao Hu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Schönborn JB, Saalfrank P, Klamroth T. Controlling the high frequency response of H2 by ultra-short tailored laser pulses: A time-dependent configuration interaction study. J Chem Phys 2016; 144:044301. [DOI: 10.1063/1.4940316] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jan Boyke Schönborn
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Tillmann Klamroth
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
50
|
Mondal T, Varandas AJC. On Extracting Subfemtosecond Data from Femtosecond Quantum Dynamics Calculations: The Methane Cation. J Chem Theory Comput 2015; 10:3606-16. [PMID: 26588505 DOI: 10.1021/ct500388k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- T Mondal
- Departamento de Química, and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal.,Department of Chemistry, Birla Institute of Technology & Science , Pilani - K.K. Birla Goa Campus, Goa 403 726, India
| | - A J C Varandas
- Departamento de Química, and Centro de Química, Universidade de Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|