Yang K, Nagase K, Hirayama Y, Mishima TD, Santos MB, Liu H. Role of chiral quantum Hall edge states in nuclear spin polarization.
Nat Commun 2017;
8:15084. [PMID:
28425462 PMCID:
PMC5411482 DOI:
10.1038/ncomms15084]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/22/2017] [Indexed: 11/09/2022] Open
Abstract
Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.
Quantum Hall phases in two-dimensional systems have chiral edges, along which electrons propagate in one direction without backscattering. Here, the authors use nuclear magnetic resonance to demonstrate how chiral modes establish dynamical nuclear polarization in a quantum Hall ferromagnet.
Collapse