1
|
Abstract
Due to the cluster reducibility of multiquark operators, a strong interplay exists in tetraquarks between the compact structures, resulting from the direct confining forces acting on quarks and gluons, and the molecular structure, dominated by the mesonic clusters. This issue is studied within an effective field theory approach, where the compact tetraquark is treated as an elementary particle. The key ingredient of the analysis is provided by the primary coupling constant of the compact tetraquark to the two mesonic clusters, considered here in the framework of a scalar interaction. Under the influence of this coupling, an initially formed compact tetraquark bound state evolves towards a new structure, where a molecular configuration is also present. In the strong-coupling limit, the evolution may end with a shallow bound state of the molecular type. The strong-coupling regime is also favored by the large Nc properties of QCD. The interplay between compact and molecular structures may provide a natural explanation of the existence of many shallow bound states.
Collapse
|
2
|
|
3
|
Sazdjian H. Impact of clustering inside compact tetraquarks. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Due to the reducibility of tetraquark operators into mesonic clusters, a strong interplay exists in tetraquarks between compact and molecular structures. This issue is studied within an effective field theory approach, where the compact tetraquark is treated as an elementary particle. Under the influence of the coupling to the mesonic clusters, an initially formed compact tetraquark bound state is deformed towards a new structure of the molecular type, having the attributes of a shallow bound state.
Collapse
|
4
|
Local Correlation among the Chiral Condensate, Monopoles, and Color Magnetic Fields in Abelian Projected QCD. UNIVERSE 2021. [DOI: 10.3390/universe7090318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using the lattice gauge field theory, we study the relation among the local chiral condensate, monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate idealized Abelian gauge systems of (1) a static monopole–antimonopole pair and (2) a magnetic flux without monopoles, on a four-dimensional Euclidean lattice. In these systems, we calculate the local chiral condensate on quasi-massless fermions coupled to the Abelian gauge field, and find that the chiral condensate is localized in the vicinity of the magnetic field. Second, using SU(3) lattice QCD Monte Carlo calculations, we investigate Abelian projected QCD in the maximally Abelian gauge, and find clear correlation of distribution similarity among the local chiral condensate, monopoles, and color magnetic fields in the Abelianized gauge configuration. As a statistical indicator, we measure the correlation coefficient r, and find a strong positive correlation of r≃0.8 between the local chiral condensate and an Euclidean color-magnetic quantity F in Abelian projected QCD. The correlation is also investigated for the deconfined phase in thermal QCD. As an interesting conjecture, like magnetic catalysis, the chiral condensate is locally enhanced by the strong color-magnetic field around the monopoles in QCD.
Collapse
|
5
|
Abstract
With the development of high energy physics experiments, a large amount of exotic states in the hadronic sector have been observed. In order to shed some light on the nature of the tetraquark and pentaquark candidates, a constituent quark model, along with the Gaussian expansion method, has been employed systematically in real- and complex-range investigations. We review herein the double- and fully-heavy tetraquarks, but also the hidden-charm, hidden-bottom and doubly charmed pentaquarks. Several exotic hadrons observed experimentally were well reproduced within our approach; moreover, their possible compositeness and other properties, such as their decay widths and general patterns in the spectrum, are analyzed. Besides, we report also some theoretical predictions of tetra- and penta-quark states which have not seen by experiment yet.
Collapse
|
6
|
|
7
|
|
8
|
Bicudo P, Cardoso M, Oliveira O. Study of the gluon-quark-antiquark static potential in SU(3) lattice QCD. Int J Clin Exp Med 2008. [DOI: 10.1103/physrevd.77.091504] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|