1
|
Pollak E. A personal perspective of the present status and future challenges facing thermal reaction rate theory. J Chem Phys 2024; 160:150902. [PMID: 38639316 DOI: 10.1063/5.0199557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Reaction rate theory has been at the center of physical chemistry for well over one hundred years. The evolution of the theory is not only of historical interest. Reliable and accurate computation of reaction rates remains a challenge to this very day, especially in view of the development of quantum chemistry methods, which predict the relevant force fields. It is still not possible to compute the numerically exact rate on the fly when the system has more than at most a few dozen anharmonic degrees of freedom, so one must consider various approximate methods, not only from the practical point of view of constructing numerical algorithms but also on conceptual and formal levels. In this Perspective, I present some of the recent analytical results concerning leading order terms in an ℏ2m series expansion of the exact rate and their implications on various approximate theories. A second aspect has to do with the crossover temperature between tunneling and thermal activation. Using a uniform semiclassical transmission probability rather than the "primitive" semiclassical theory leads to the conclusion that there is no divergence problem associated with a "crossover temperature." If one defines a semiclassical crossover temperature as the point at which the tunneling energy of the instanton equals the barrier height, then it is a factor of two higher than its previous estimate based on the "primitive" semiclassical approximation. In the low temperature tunneling regime, the uniform semiclassical theory as well as the "primitive" semiclassical theory were based on the classical Euclidean action of a periodic orbit on the inverted potential. The uniform semiclassical theory wrongly predicts that the "half-point," which is the energy at which the transmission probability equals 1/2, for any barrier potential, is always the barrier energy. We describe here how augmenting the Euclidean action with constant terms of order ℏ2 can significantly improve the accuracy of the semiclassical theory and correct this deficiency. This also leads to a deep connection with and improvement of vibrational perturbation theory. The uniform semiclassical theory also enables an extension of the quantum version of Kramers' turnover theory to temperatures below the "crossover temperature." The implications of these recent advances on various approximate methods used to date are discussed at length, leading to the conclusion that reaction rate theory will continue to challenge us both on conceptual and practical levels for years to come.
Collapse
Affiliation(s)
- Eli Pollak
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovoth, Israel
| |
Collapse
|
2
|
Yamashita T, Miyamura N, Kawai S. Classification of the HCN isomerization reaction dynamics in Ar buffer gas via machine learning. J Chem Phys 2023; 159:124116. [PMID: 38127399 DOI: 10.1063/5.0156313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/07/2023] [Indexed: 12/23/2023] Open
Abstract
The effect of the presence of Ar on the isomerization reaction HCN ⇄ CNH is investigated via machine learning. After the potential energy surface function is developed based on the CCSD(T)/aug-cc-pVQZ level ab initio calculations, classical trajectory simulations are performed. Subsequently, with the aim of extracting insights into the reaction dynamics, the obtained reactivity, that is, whether the reaction occurs or not under a given initial condition, is learned as a function of the initial positions and momenta of all the atoms in the system. The prediction accuracy of the trained model is greater than 95%, indicating that machine learning captures the features of the phase space that affect reactivity. Machine learning models are shown to successfully reproduce reactivity boundaries without any prior knowledge of classical reaction dynamics theory. Subsequent analyses reveal that the Ar atom affects the reaction by displacing the effective saddle point. When the Ar atom is positioned close to the N atom (resp. the C atom), the saddle point shifts to the CNH (HCN) region, which disfavors the forward (backward) reaction. The results imply that analyses aided by machine learning are promising tools for enhancing the understanding of reaction dynamics.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoaki Miyamura
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shinnosuke Kawai
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
3
|
Nagahata Y, Hernandez R, Komatsuzaki T. Phase space geometry of isolated to condensed chemical reactions. J Chem Phys 2021; 155:210901. [PMID: 34879678 DOI: 10.1063/5.0059618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The complexity of gas and condensed phase chemical reactions has generally been uncovered either approximately through transition state theories or exactly through (analytic or computational) integration of trajectories. These approaches can be improved by recognizing that the dynamics and associated geometric structures exist in phase space, ensuring that the propagator is symplectic as in velocity-Verlet integrators and by extending the space of dividing surfaces to optimize the rate variationally, respectively. The dividing surface can be analytically or variationally optimized in phase space, not just over configuration space, to obtain more accurate rates. Thus, a phase space perspective is of primary importance in creating a deeper understanding of the geometric structure of chemical reactions. A key contribution from dynamical systems theory is the generalization of the transition state (TS) in terms of the normally hyperbolic invariant manifold (NHIM) whose geometric phase-space structure persists under perturbation. The NHIM can be regarded as an anchor of a dividing surface in phase space and it gives rise to an exact non-recrossing TS theory rate in reactions that are dominated by a single bottleneck. Here, we review recent advances of phase space geometrical structures of particular relevance to chemical reactions in the condensed phase. We also provide conjectures on the promise of these techniques toward the design and control of chemical reactions.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Tamiki Komatsuzaki
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0 020, Japan
| |
Collapse
|
4
|
Revuelta F, Benito RM, Borondo F. Identification of the invariant manifolds of the LiCN molecule using Lagrangian descriptors. Phys Rev E 2021; 104:044210. [PMID: 34781455 DOI: 10.1103/physreve.104.044210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/28/2021] [Indexed: 11/07/2022]
Abstract
In this paper, we apply Lagrangian descriptors to study the invariant manifolds that emerge from the top of two barriers existing in the LiCN⇌LiNC isomerization reaction. We demonstrate that the integration times must be large enough compared with the characteristic stability exponents of the periodic orbit under study. The invariant manifolds manifest as singularities in the Lagrangian descriptors. Furthermore, we develop an equivalent potential energy surface with 2 degrees of freedom, which reproduces with a great accuracy previous results [F. Revuelta, R. M. Benito, and F. Borondo, Phys. Rev. E 99, 032221 (2019)2470-004510.1103/PhysRevE.99.032221]. This surface allows the use of an adiabatic approximation to develop a more simplified potential energy with solely 1 degree of freedom. The reduced dimensional model is still able to qualitatively describe the results observed with the original 2-degrees-of-freedom potential energy landscape. Likewise, it is also used to study in a more simple manner the influence on the Lagrangian descriptors of a bifurcation, where some of the previous invariant manifolds emerge, even before it takes place.
Collapse
Affiliation(s)
- F Revuelta
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2-4, 28040 Madrid, Spain
| | - R M Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2-4, 28040 Madrid, Spain
| | - F Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain.,Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Hernandez R. A Cuban Campesino in Chemistry's Academic Court. J Phys Chem B 2021; 125:8261-8267. [PMID: 34313115 DOI: 10.1021/acs.jpcb.1c06073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Departments of Chemical & Biomolecular Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Bardakcioglu R, Reiff J, Feldmaier M, Main J, Hernandez R. Thermal decay rates of an activated complex in a driven model chemical reaction. Phys Rev E 2020; 102:062204. [PMID: 33466091 DOI: 10.1103/physreve.102.062204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/15/2020] [Indexed: 11/07/2022]
Abstract
Recent work has shown that in a nonthermal, multidimensional system, the trajectories in the activated complex possess different instantaneous and time-averaged reactant decay rates. Under dissipative dynamics, it is known that these trajectories, which are bound on the normally hyperbolic invariant manifold (NHIM), converge to a single trajectory over time. By subjecting these dissipative systems to thermal noise, we find fluctuations in the saddle-bound trajectories and their instantaneous decay rates. Averaging over these instantaneous rates results in the decay rate of the activated complex in a thermal system. We find that the temperature dependence of the activated complex decay in a thermal system can be linked to the distribution of the phase space resolved decay rates on the NHIM in the nondissipative case. By adjusting the external driving of the reaction, we show that it is possible to influence how the decay rate of the activated complex changes with rising temperature.
Collapse
Affiliation(s)
- Robin Bardakcioglu
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik I, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
8
|
Feldmaier M, Reiff J, Benito RM, Borondo F, Main J, Hernandez R. Influence of external driving on decays in the geometry of the LiCN isomerization. J Chem Phys 2020; 153:084115. [DOI: 10.1063/5.0015509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rosa M. Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Florentino Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Nagahata Y, Borondo F, Benito RM, Hernandez R. Identifying reaction pathways in phase space via asymptotic trajectories. Phys Chem Chem Phys 2020; 22:10087-10105. [PMID: 32342955 DOI: 10.1039/c9cp06610a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we revisit the concepts of the reactivity map and the reactivity bands as an alternative to the use of perturbation theory for the determination of the phase space geometry of chemical reactions. We introduce a reformulated metric, called the asymptotic trajectory indicator, and an efficient algorithm to obtain reactivity boundaries. We demonstrate that this method has sufficient accuracy to reproduce phase space structures such as turnstiles for a 1D model of the isomerization of ketene in an external field. The asymptotic trajectory indicator can be applied to higher dimensional systems coupled to Langevin baths as we demonstrate for a 3D model of the isomerization of ketene.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
10
|
Tschöpe M, Feldmaier M, Main J, Hernandez R. Neural network approach for the dynamics on the normally hyperbolic invariant manifold of periodically driven systems. Phys Rev E 2020; 101:022219. [PMID: 32168686 DOI: 10.1103/physreve.101.022219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 01/29/2020] [Indexed: 05/21/2023]
Abstract
Chemical reactions in multidimensional systems are often described by a rank-1 saddle, whose stable and unstable manifolds intersect in the normally hyperbolic invariant manifold (NHIM). Trajectories started on the NHIM in principle never leave this manifold when propagated forward or backward in time. However, the numerical investigation of the dynamics on the NHIM is difficult because of the instability of the motion. We apply a neural network to describe time-dependent NHIMs and use this network to stabilize the motion on the NHIM for a periodically driven model system with two degrees of freedom. The method allows us to analyze the dynamics on the NHIM via Poincaré surfaces of section (PSOS) and to determine the transition-state (TS) trajectory as a periodic orbit with the same periodicity as the driving saddle, viz. a fixed point of the PSOS surrounded by near-integrable tori. Based on transition state theory and a Floquet analysis of a periodic TS trajectory we compute the rate constant of the reaction with significantly reduced numerical effort compared to the propagation of a large trajectory ensemble.
Collapse
Affiliation(s)
- Martin Tschöpe
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Feldmaier M, Bardakcioglu R, Reiff J, Main J, Hernandez R. Phase-space resolved rates in driven multidimensional chemical reactions. J Chem Phys 2019; 151:244108. [DOI: 10.1063/1.5127539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
12
|
Bartsch T, Revuelta F, Benito RM, Borondo F. Finite-barrier corrections for multidimensional barriers in colored noise. Phys Rev E 2019; 99:052211. [PMID: 31212507 DOI: 10.1103/physreve.99.052211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Indexed: 06/09/2023]
Abstract
The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.
Collapse
Affiliation(s)
- Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, England, United Kingdom
| | - F Revuelta
- Grupo de Sistemas Complejos, E. T. S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2-4, 28040 Madrid, Spain
- Instituto de Ciencias Matemáticas, Cantoblanco, 28049 Madrid, Spain
| | - R M Benito
- Grupo de Sistemas Complejos, E. T. S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2-4, 28040 Madrid, Spain
| | - F Borondo
- Instituto de Ciencias Matemáticas, Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Feldmaier M, Schraft P, Bardakcioglu R, Reiff J, Lober M, Tschöpe M, Junginger A, Main J, Bartsch T, Hernandez R. Invariant Manifolds and Rate Constants in Driven Chemical Reactions. J Phys Chem B 2019; 123:2070-2086. [DOI: 10.1021/acs.jpcb.8b10541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Philippe Schraft
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Johannes Reiff
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Melissa Lober
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Martin Tschöpe
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Craven GT, Chen R, Nitzan A. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. II. Heat transfer and energy partitioning of a free particle. J Chem Phys 2018; 149:104103. [PMID: 30219017 DOI: 10.1063/1.5045361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The energy partitioning during activation and relaxation events under steady-state conditions for a Brownian particle driven by multiple thermal reservoirs of different local temperatures is investigated. Specifically, we apply the formalism derived in Paper I [G. T. Craven and A. Nitzan, J. Chem. Phys. 148, 044101 (2018)] to examine the thermal transport properties of two sub-ensembles of Brownian processes, distinguished at any given time by the specification that all the trajectories in each group have, at that time, energy either above (upside) or below (downside) a preselected energy threshold. Dynamical properties describing energy accumulation and release during activation/relaxation events and relations for upside/downside energy partitioning between thermal reservoirs are derived. The implications for heat transport induced by upside and downside events are discussed.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renai Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Schraft P, Junginger A, Feldmaier M, Bardakcioglu R, Main J, Wunner G, Hernandez R. Neural network approach to time-dependent dividing surfaces in classical reaction dynamics. Phys Rev E 2018; 97:042309. [PMID: 29758767 DOI: 10.1103/physreve.97.042309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 05/21/2023]
Abstract
In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.
Collapse
Affiliation(s)
- Philippe Schraft
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Robin Bardakcioglu
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Günter Wunner
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | | |
Collapse
|
16
|
Patra S, Keshavamurthy S. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling. Phys Chem Chem Phys 2018; 20:4970-4981. [PMID: 29387842 DOI: 10.1039/c7cp05912d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.
Collapse
Affiliation(s)
- Sarbani Patra
- Department of Chemistry, Indian Institute of Technology, Kanpur, U.P. 208 016, India.
| | | |
Collapse
|
17
|
Craven GT, Nitzan A. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle. J Chem Phys 2018; 148:044101. [PMID: 29390855 DOI: 10.1063/1.5007854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
18
|
Feldmaier M, Junginger A, Main J, Wunner G, Hernandez R. Obtaining time-dependent multi-dimensional dividing surfaces using Lagrangian descriptors. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Chen R, Craven GT, Nitzan A. Electron-transfer-induced and phononic heat transport in molecular environments. J Chem Phys 2017; 147:124101. [DOI: 10.1063/1.4990410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Renai Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
USA
| | - Galen T. Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
USA
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Revuelta F, Craven GT, Bartsch T, Borondo F, Benito RM, Hernandez R. Transition state theory for activated systems with driven anharmonic barriers. J Chem Phys 2017; 147:074104. [DOI: 10.1063/1.4997571] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- F. Revuelta
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
| | - Galen T. Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
USA
| | - Thomas Bartsch
- Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, Loughborough
LE11 3TU, United Kingdom
| | - F. Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - R. M. Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Junginger A, Duvenbeck L, Feldmaier M, Main J, Wunner G, Hernandez R. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins. J Chem Phys 2017; 147:064101. [DOI: 10.1063/1.4997379] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Lennart Duvenbeck
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Matthias Feldmaier
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Jörg Main
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Günter Wunner
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
22
|
Craven GT, Junginger A, Hernandez R. Lagrangian descriptors of driven chemical reaction manifolds. Phys Rev E 2017; 96:022222. [PMID: 28950601 DOI: 10.1103/physreve.96.022222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrej Junginger
- Institut für Theoretische Physik 1, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
23
|
Junginger A, Hernandez R. Lagrangian descriptors in dissipative systems. Phys Chem Chem Phys 2016; 18:30282-30287. [PMID: 27327139 DOI: 10.1039/c6cp02532c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction dynamics of time-dependent systems can be resolved through a recrossing-free dividing surface associated with the transition state trajectory-that is, the unique trajectory which is bound to the barrier region for all time in response to a given time-dependent potential. A general procedure based on the minimization of Lagrangian descriptors has recently been developed by Craven and Hernandez [Phys. Rev. Lett., 2015, 115, 148301] to construct this particular trajectory without requiring perturbative expansions relative to the naive transition state point at the top of the barrier. The extension of the method to account for dissipation in the equations of motion requires additional considerations established in this paper because the calculation of the Lagrangian descriptor involves the integration of trajectories in forward and backward time. The two contributions are in general very different because the friction term can act as a source (in backward time) or sink (in forward time) of energy, leading to the possibility that information about the phase space structure may be lost due to the dominance of only one of the terms. To compensate for this effect, we introduce a weighting scheme within the Lagrangian descriptor and demonstrate that for thermal Langevin dynamics it preserves the essential phase space structures, while they are lost in the nonweighted case.
Collapse
Affiliation(s)
- Andrej Junginger
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, Georgia.
| | - Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, Georgia.
| |
Collapse
|
24
|
Kawai S, Miyazaki Y. Recovering hidden dynamical modes from the generalized Langevin equation. J Chem Phys 2016; 145:094102. [PMID: 27608984 DOI: 10.1063/1.4962065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In studying large molecular systems, insights can better be extracted by selecting a limited number of physical quantities for analysis rather than treating every atomic coordinate in detail. Some information may, however, be lost by projecting the total system onto a small number of coordinates. For such problems, the generalized Langevin equation (GLE) is shown to provide a useful framework to examine the interaction between the observed variables and their environment. Starting with the GLE obtained from the time series of the observed quantity, we perform a transformation to introduce a set of variables that describe dynamical modes existing in the environment. The introduced variables are shown to effectively recover the essential information of the total system that appeared to be lost by the projection.
Collapse
Affiliation(s)
- Shinnosuke Kawai
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yusuke Miyazaki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
25
|
Abstract
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104; School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
26
|
Revuelta F, Bartsch T, Garcia-Muller PL, Hernandez R, Benito RM, Borondo F. Transition state theory for solvated reactions beyond recrossing-free dividing surfaces. Phys Rev E 2016; 93:062304. [PMID: 27415277 DOI: 10.1103/physreve.93.062304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 11/07/2022]
Abstract
The accuracy of rate constants calculated using transition state theory depends crucially on the correct identification of a recrossing-free dividing surface. We show here that it is possible to define such optimal dividing surface in systems with non-Markovian friction. However, a more direct approach to rate calculation is based on invariant manifolds and avoids the use of a dividing surface altogether, Using that method we obtain an explicit expression for the rate of crossing an anharmonic potential barrier. The excellent performance of our method is illustrated with an application to a realistic model for LiNC⇌LiCN isomerization.
Collapse
Affiliation(s)
- F Revuelta
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Complutense s/n 28040 Madrid, Spain.,Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain
| | - Thomas Bartsch
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - P L Garcia-Muller
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Avda. Complutense 40, 28040 Madrid, Spain
| | - Rigoberto Hernandez
- Center for Computational Molecular Sciences and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
| | - R M Benito
- Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Avda. Complutense s/n 28040 Madrid, Spain
| | - F Borondo
- Instituto de Ciencias Matemáticas (ICMAT), Cantoblanco, 28049 Madrid, Spain.,Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Junginger A, Craven GT, Bartsch T, Revuelta F, Borondo F, Benito RM, Hernandez R. Transition state geometry of driven chemical reactions on time-dependent double-well potentials. Phys Chem Chem Phys 2016; 18:30270-30281. [DOI: 10.1039/c6cp02519f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The minimum contour in the forward Lagrangian descriptor overlaps the invariant manifold (in green) dividing reactant and product regions.
Collapse
Affiliation(s)
- Andrej Junginger
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Galen T. Craven
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Thomas Bartsch
- Department of Mathematical Sciences
- Loughborough University
- Loughborough LE11 3TU
- UK
| | - F. Revuelta
- Grupo de Sistemas Complejos
- Escuela Técnica Superior de Ingeniería Agronómica
- Alimentaria y de Biosistemas
- Universidad Politécnica de Madrid
- Madrid
| | - F. Borondo
- Instituto de Ciencias Matemáticas (ICMAT)
- Cantoblanco
- Spain
- Departamento de Química
- Universidad Autónoma de Madrid
| | - R. M. Benito
- Grupo de Sistemas Complejos
- Escuela Técnica Superior de Ingeniería Agronómica
- Alimentaria y de Biosistemas
- Universidad Politécnica de Madrid
- Madrid
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
28
|
Craven GT, Hernandez R. Deconstructing field-induced ketene isomerization through Lagrangian descriptors. Phys Chem Chem Phys 2016; 18:4008-18. [DOI: 10.1039/c5cp06624g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase space contours (shown in color) constructed using the method of Lagrangian descriptors resolve the separatrices governing state transitions on the reaction-path potential energy surface (shown in white) for field-induced ketene isomerization.
Collapse
Affiliation(s)
- Galen T. Craven
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology
- School of Chemistry and Biochemistry
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
29
|
Junginger A, Hernandez R. Uncovering the Geometry of Barrierless Reactions Using Lagrangian Descriptors. J Phys Chem B 2015; 120:1720-5. [DOI: 10.1021/acs.jpcb.5b09003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrej Junginger
- Center for Computational
and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rigoberto Hernandez
- Center for Computational
and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Craven GT, Hernandez R. Lagrangian Descriptors of Thermalized Transition States on Time-Varying Energy Surfaces. PHYSICAL REVIEW LETTERS 2015; 115:148301. [PMID: 26551825 DOI: 10.1103/physrevlett.115.148301] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 06/05/2023]
Abstract
Thermalized chemical reactions driven under dynamical load are characteristic of activated dynamics for arbitrary nonautonomous systems. Recent generalizations of transition state theory to obtain formally exact rates have required the construction of a time-dependent transition state trajectory. Here, we show that Lagrangian descriptors can be used to obtain this structure directly. By developing a phase space separatrix that is void of recrossings, these constructs allow for the principal criterion in the implementation of modern rate theories to be satisfied. Thus, the reactive flux over a time-varying barrier can be determined without ambiguity in chemical reactions. The generality of the formalism suggests that this approach is applicable to any activated system subjected to arbitrary driving and thermal fluctuations.
Collapse
Affiliation(s)
- Galen T Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
31
|
Kawai S. On the environmental modes for the generalized Langevin equation. J Chem Phys 2015; 143:094101. [DOI: 10.1063/1.4929710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shinnosuke Kawai
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
32
|
Classical-quantum correspondence in a model for conformational dynamics: Connecting phase space reactive islands with rare events sampling. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Craven GT, Bartsch T, Hernandez R. Chemical reactions induced by oscillating external fields in weak thermal environments. J Chem Phys 2015; 142:074108. [DOI: 10.1063/1.4907590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Galen T. Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Thomas Bartsch
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
34
|
Teramoto H, Toda M, Komatsuzaki T. A new method to improve validity range of Lie canonical perturbation theory: with a central focus on a concept of non-blow-up region. Theor Chem Acc 2014. [DOI: 10.1007/s00214-014-1571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Craven GT, Bartsch T, Hernandez R. Communication: Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields. J Chem Phys 2014; 141:041106. [DOI: 10.1063/1.4891471] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Hernandez R, Popov AV. Molecular dynamics out of equilibrium: mechanics and measurables. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2014. [DOI: 10.1002/wcms.1190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rigoberto Hernandez
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA USA
| | - Alexander V. Popov
- Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA USA
| |
Collapse
|
37
|
|
38
|
Craven GT, Bartsch T, Hernandez R. Persistence of transition-state structure in chemical reactions driven by fields oscillating in time. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:040801. [PMID: 24827174 DOI: 10.1103/physreve.89.040801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Indexed: 06/03/2023]
Abstract
Chemical reactions subjected to time-varying external forces cannot generally be described through a fixed bottleneck near the transition-state barrier or dividing surface. A naive dividing surface attached to the instantaneous, but moving, barrier top also fails to be recrossing-free. We construct a moving dividing surface in phase space over a transition-state trajectory. This surface is recrossing-free for both Hamiltonian and dissipative dynamics. This is confirmed even for strongly anharmonic barriers using simulation. The power of transition-state theory is thereby applicable to chemical reactions and other activated processes even when the bottlenecks are time dependent and move across space.
Collapse
Affiliation(s)
- Galen T Craven
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Thomas Bartsch
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rigoberto Hernandez
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
39
|
Párraga H, Arranz FJ, Benito RM, Borondo F. Ab initio potential energy surface for the highly nonlinear dynamics of the KCN molecule. J Chem Phys 2013; 139:194304. [DOI: 10.1063/1.4830102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Nagahata Y, Teramoto H, Li CB, Kawai S, Komatsuzaki T. Reactivity boundaries for chemical reactions associated with higher-index and multiple saddles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042923. [PMID: 24229265 DOI: 10.1103/physreve.88.042923] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Indexed: 06/02/2023]
Abstract
Reactivity boundaries that divide the origin and destination of trajectories are of crucial importance to reveal the mechanism of reactions, which was recently found to exist robustly even at high energies for index 1 saddles [Phys. Rev. Lett. 105, 048304 (2010)]. Here we revisit the concept of the reactivity boundary and propose a more general definition that can involve a single reaction associated with a bottleneck composed of higher-index saddles and/or several saddle points with different indices, where the normal form theory, based on expansion around a single stationary point, does not work. We numerically demonstrate the reactivity boundary by using a reduced model system of the H(5)(+) cation where the proton exchange reaction takes place through a bottleneck composed of two index 2 saddle points and two index 1 saddle points. The cross section of the reactivity boundary in the reactant region of the phase space reveals which initial conditions are effective in making the reaction happen and thus sheds light on the reaction mechanism.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | |
Collapse
|
41
|
Nagahata Y, Teramoto H, Li CB, Kawai S, Komatsuzaki T. Reactivity boundaries to separate the fate of a chemical reaction associated with an index-two saddle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062817. [PMID: 23848739 DOI: 10.1103/physreve.87.062817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 05/27/2013] [Indexed: 06/02/2023]
Abstract
Reactivity boundaries that divide the destination and the origin of trajectories are of crucial importance to reveal the mechanism of reactions. We investigate whether such reactivity boundaries can be extracted for higher index saddles in terms of a nonlinear canonical transformation successful for index-one saddles by using a model system with an index-two saddle. It is found that the true reactivity boundaries do not coincide with those extracted by the transformation taking into account a nonlinearity in the region of the saddle even for small perturbations, and the discrepancy is more pronounced for the less repulsive direction of the index-two saddle system. The present result indicates an importance of the global properties of the phase space to identify the reactivity boundaries, relevant to the question of what reactant and product are in phase space, for saddles with index more than one.
Collapse
Affiliation(s)
- Yutaka Nagahata
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
42
|
Müller PLG, Hernandez R, Benito RM, Borondo F. Detailed study of the direct numerical observation of the Kramers turnover in the LiNC⇌LiCN isomerization rate. J Chem Phys 2012. [DOI: 10.1063/1.4766257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Kawai S, Komatsuzaki T. Laser Control of Chemical Reactions by Phase Space Structures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20120085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shinnosuke Kawai
- Molecule and Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University
| | - Tamiki Komatsuzaki
- Molecule and Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University
| |
Collapse
|
44
|
Bartsch T, Revuelta F, Benito RM, Borondo F. Reaction rate calculation with time-dependent invariant manifolds. J Chem Phys 2012; 136:224510. [DOI: 10.1063/1.4726125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Revuelta F, Bartsch T, Benito RM, Borondo F. Communication: Transition state theory for dissipative systems without a dividing surface. J Chem Phys 2012; 136:091102. [DOI: 10.1063/1.3692182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Kawai S, Komatsuzaki T. Derivation of the generalized Langevin equation in nonstationary environments. J Chem Phys 2011; 134:114523. [DOI: 10.1063/1.3561065] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Kawai S, Komatsuzaki T. Phase space geometry of dynamics passing through saddle coupled with spatial rotation. J Chem Phys 2011; 134:084304. [DOI: 10.1063/1.3554906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Kawai S, Komatsuzaki T. Quantum reaction boundary to mediate reactions in laser fields. J Chem Phys 2011; 134:024317. [DOI: 10.1063/1.3528937] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Kawai S, Komatsuzaki T. Why and how do systems react in thermally fluctuating environments? Phys Chem Chem Phys 2011; 13:21217-29. [DOI: 10.1039/c1cp22504a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Kawai S, Komatsuzaki T. Robust existence of a reaction boundary to separate the fate of a chemical reaction. PHYSICAL REVIEW LETTERS 2010; 105:048304. [PMID: 20867892 DOI: 10.1103/physrevlett.105.048304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Nonlinear dynamics around a rank-one saddle is investigated in a high energy regime above the reaction threshold. The transition state (TS) is considered as a surface of a "point of no return" through which all reactive trajectories pass only once in the process of climbing over the saddle before being captured in the product state. A no-return TS ceases to exist above a certain high energy regime. However, even at high energies where the no-return TS can no longer exist, it is shown that "an impenetrable barrier" in the phase space robustly persists, which acts as a boundary between reactive and nonreactive trajectories. This implies that we can yet predict the fate of reactions even when the no-return TS may not exist. As an example, we show the analysis of dynamical systems theory for a hydrogen atom in crossed electric and magnetic fields.
Collapse
Affiliation(s)
- Shinnosuke Kawai
- Molecule and Life Nonlinear Sciences Laboratory, Research Institute for Electronic Science, Hokkaido University, Kita 20 Nishi 10, Kita-ku, Sapporo 001-0020, Japan.
| | | |
Collapse
|