Rosenow B, Gefen Y. Dephasing by a zero-temperature detector and the Friedel sum rule.
PHYSICAL REVIEW LETTERS 2012;
108:256805. [PMID:
23004634 DOI:
10.1103/physrevlett.108.256805]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Indexed: 06/01/2023]
Abstract
Detecting the passage of an interfering particle through one of the interferometer's arms, known as "which path" measurement, gives rise to interference visibility degradation (dephasing). Here, we consider a detector at equilibrium. At finite temperature, dephasing is caused by thermal fluctuations of the detector. More interestingly, in the zero-temperature limit, equilibrium quantum fluctuations of the detector give rise to dephasing of the out-of-equilibrium interferometer. This dephasing is a manifestation of an orthogonality catastrophe, which differs qualitatively from Anderson's. Its magnitude is directly related to the Friedel sum rule.
Collapse