1
|
Cheung SC, Shin JY, Lau Y, Chen Z, Sun J, Zhang Y, Müller MA, Eremin IM, Wright JN, Pasupathy AN. Dictionary learning in Fourier-transform scanning tunneling spectroscopy. Nat Commun 2020; 11:1081. [PMID: 32102995 PMCID: PMC7044214 DOI: 10.1038/s41467-020-14633-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/17/2020] [Indexed: 11/15/2022] Open
Abstract
Modern high-resolution microscopes are commonly used to study specimens that have dense and aperiodic spatial structure. Extracting meaningful information from images obtained from such microscopes remains a formidable challenge. Fourier analysis is commonly used to analyze the structure of such images. However, the Fourier transform fundamentally suffers from severe phase noise when applied to aperiodic images. Here, we report the development of an algorithm based on nonconvex optimization that directly uncovers the fundamental motifs present in a real-space image. Apart from being quantitatively superior to traditional Fourier analysis, we show that this algorithm also uncovers phase sensitive information about the underlying motif structure. We demonstrate its usefulness by studying scanning tunneling microscopy images of a Co-doped iron arsenide superconductor and prove that the application of the algorithm allows for the complete recovery of quasiparticle interference in this material. Aperiodic structure imaging suffers limitations when utilizing Fourier analysis. The authors report an algorithm that quantitatively overcomes these limitations based on nonconvex optimization, demonstrated by studying aperiodic structures via the phase sensitive interference in STM images.
Collapse
Affiliation(s)
- Sky C Cheung
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - John Y Shin
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yenson Lau
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Zhengyu Chen
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ju Sun
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuqian Zhang
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Marvin A Müller
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Ilya M Eremin
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44801, Bochum, Germany.,National University of Science and Technology MISiS, 119049, Moscow, Russian Federation
| | - John N Wright
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Xue J, Sanchez-Yamagishi J, Watanabe K, Taniguchi T, Jarillo-Herrero P, LeRoy BJ. Long-wavelength local density of states oscillations near graphene step edges. PHYSICAL REVIEW LETTERS 2012; 108:016801. [PMID: 22304277 DOI: 10.1103/physrevlett.108.016801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 05/31/2023]
Abstract
Using scanning tunneling microscopy and spectroscopy, we have studied the local density of states (LDOS) of graphene over step edges in boron nitride. Long-wavelength oscillations in the LDOS are observed with maxima parallel to the step edge. Their wavelength and amplitude are controlled by the energy of the quasiparticles allowing a direct probe of the graphene dispersion relation. We also observe a faster decay of the LDOS oscillations away from the step edge than in conventional metals. This is due to the chiral nature of the Dirac fermions in graphene.
Collapse
Affiliation(s)
- Jiamin Xue
- Department of Physics, University of Arizona, Tucson, Arizona 85721 USA
| | | | | | | | | | | |
Collapse
|
3
|
Sun GF, Liu Y, Qi Y, Jia JF, Xue QK, Weinert M, Li L. Electron standing waves on the GaN(0001)-pseudo (1 × 1) surface: a FT-STM study at room temperature. NANOTECHNOLOGY 2010; 21:435401. [PMID: 20890020 DOI: 10.1088/0957-4484/21/43/435401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report the direct imaging of standing waves on a GaN(0001)-pseudo (1 × 1) metallic surface, which consists of two atomic Ga layers with the top layer incommensurate. Two types of periodic oscillation are observed by scanning tunneling microscopy at room temperature. The longer wavelength standing waves are due to electron scattering by dislocation-induced steps and two-dimensional InN islands. The localized shorter wavelength waves are attributed to a structural transition of the incommensurate Ga bilayer to a tetrahedral Ga bilayer after the growth of the InN islands.
Collapse
Affiliation(s)
- G F Sun
- Institute of Physics, The Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
4
|
Bena C. Effect of a single localized impurity on the local density of States in monolayer and bilayer graphene. PHYSICAL REVIEW LETTERS 2008; 100:076601. [PMID: 18352581 DOI: 10.1103/physrevlett.100.076601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Indexed: 05/26/2023]
Abstract
We use the T-matrix approximation to analyze the effect of a localized impurity on the local density of states in monolayer and bilayer graphene. For monolayer graphene the Friedel oscillations generated by intranodal scattering obey an inverse-square law, while the internodal ones obey an inverse law. In the Fourier transform this translates into a filled circle of high intensity in the center of the Brillouin zone, and empty circular contours around its corners. For bilayer graphene both types of oscillations obey an inverse law.
Collapse
Affiliation(s)
- Cristina Bena
- Service de Physique Théorique, CEA/Saclay, Orme des Merisiers, 91190 Gif-sur-Yvette CEDEX, France
| |
Collapse
|