1
|
Ostruszka R, Zoppellaro G, Tomanec O, Pinkas D, Filimonenko V, Šišková K. Evidence of Au(II) and Au(0) States in Bovine Serum Albumin-Au Nanoclusters Revealed by CW-EPR/LEPR and Peculiarities in HR-TEM/STEM Imaging. NANOMATERIALS 2022; 12:nano12091425. [PMID: 35564133 PMCID: PMC9105226 DOI: 10.3390/nano12091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023]
Abstract
Bovine serum albumin-embedded Au nanoclusters (BSA-AuNCs) are thoroughly probed by continuous wave electron paramagnetic resonance (CW-EPR), light-induced EPR (LEPR), and sequences of microscopic investigations performed via high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy dispersive X-ray analysis (EDS). To the best of our knowledge, this is the first report analyzing the BSA-AuNCs by CW-EPR/LEPR technique. Besides the presence of Au(0) and Au(I) oxidation states in BSA-AuNCs, the authors observe a significant amount of Au(II), which may result from a disproportionation event occurring within NCs: 2Au(I) → Au(II) + Au(0). Based on the LEPR experiments, and by comparing the behavior of BSA versus BSA-AuNCs under UV light irradiation (at 325 nm) during light off-on-off cycles, any energy and/or charge transfer event occurring between BSA and AuNCs during photoexcitation can be excluded. According to CW-EPR results, the Au nano assemblies within BSA-AuNCs are estimated to contain 6–8 Au units per fluorescent cluster. Direct observation of BSA-AuNCs by STEM and HR-TEM techniques confirms the presence of such diameters of gold nanoclusters in BSA-AuNCs. Moreover, in situ formation and migration of Au nanostructures are observed and evidenced after application of either a focused electron beam from HR-TEM, or an X-ray from EDS experiments.
Collapse
Affiliation(s)
- Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
| | - Dominik Pinkas
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Vlada Filimonenko
- Institute of Molecular Genetics of the Czech Academy of Sciences, Microscopy Centre, Electron Microscopy Core Facility, Vídeňská 1083, 14220 Prague, Czech Republic; (D.P.); (V.F.)
| | - Karolína Šišková
- Department of Experimental Physics, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 77900 Olomouc, Czech Republic;
- Correspondence: (G.Z.); (K.Š.)
| |
Collapse
|
2
|
Gubin SP, Koksharov YA, Ioni YV. Magnetism of Nanosized “Nonmagnetic” Materials; the Role of Defects (Review). RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Dong P, Fisher EA, Meli MV, Trudel S. Tuning the magnetism of gold nanoparticles by changing the thiol coating. NANOSCALE 2020; 12:19797-19803. [PMID: 32966519 DOI: 10.1039/d0nr05674j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Room-temperature ferromagnetic behaviour has been reported in nanoscale materials expected to be diamagnetic, including gold. However, it is yet unclear which factors (size, shape, surface coating) predominantly influence the magnitude of the magnetic response. In this work, we study the magnetic and electronic properties of similarly-sized gold nanoparticles (Au NPs) coated with four different n-alkanethiols, as well as hydroxyl- and carboxyl-functionalized alkanethiols using superconducting quantum interference device (SQUID) magnetometry and ultraviolet photoelectron spectroscopy (UPS). We find room-temperature behaviour (hysteresis in magnetization vs. field strength loops) in all samples, as well as large effective magnetic anisotropy. Importantly, we find the nanoparticles coated with polar chain end-groups (-OH and -COOH) show markedly higher magnetization; this increased magnetization correlates with a higher work function. This work establishes chemical handles to enhance magnetism in nanoscale gold particles.
Collapse
Affiliation(s)
- Pengcheng Dong
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4.
| | - Elizabeth A Fisher
- Department of Chemistry and Biochemistry, Mount Allison University, 63 C York Street, Sackville, NB, Canada E4L 1G8.
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, 63 C York Street, Sackville, NB, Canada E4L 1G8.
| | - Simon Trudel
- Department of Chemistry and Institute for Quantum Science and Technology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada T2N 1N4.
| |
Collapse
|
4
|
Agrachev M, Antonello S, Dainese T, Ruzzi M, Zoleo A, Aprà E, Govind N, Fortunelli A, Sementa L, Maran F. Magnetic Ordering in Gold Nanoclusters. ACS OMEGA 2017; 2:2607-2617. [PMID: 31457603 PMCID: PMC6640951 DOI: 10.1021/acsomega.7b00472] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 05/29/2023]
Abstract
Several research groups have observed magnetism in monolayer-protected gold cluster samples, but the results were often contradictory, and thus, a clear understanding of this phenomenon is still missing. We used Au25(SCH2CH2Ph)18 0, which is a paramagnetic cluster that can be prepared with atomic precision and whose structure is known precisely. Previous magnetometry studies only detected paramagnetism. We used samples representing a range of crystallographic orders and studied their magnetic behaviors using electron paramagnetic resonance (EPR). As a film, Au25(SCH2CH2Ph)18 0 exhibits a paramagnetic behavior, but at low temperature, ferromagnetic interactions are detectable. One or few single crystals undergo physical reorientation with the applied field and exhibit ferromagnetism, as detected through hysteresis experiments. A large collection of microcrystals is magnetic even at room temperature and shows distinct paramagnetic, superparamagnetic, and ferromagnetic behaviors. Simulation of the EPR spectra shows that both spin-orbit (SO) coupling and crystal distortion are important to determine the observed magnetic behaviors. Density functional theory calculations carried out on single cluster and periodic models predict the values of SO coupling and crystal-splitting effects in agreement with the EPR-derived quantities. Magnetism in gold nanoclusters is thus demonstrated to be the outcome of a very delicate balance of factors. To obtain reproducible results, the samples must be (i) controlled for composition and thus be monodisperse with atomic precision, (ii) of known charge state, and (iii) well-defined in terms of crystallinity and experimental conditions.
Collapse
Affiliation(s)
- Mikhail Agrachev
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Sabrina Antonello
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Tiziano Dainese
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Ruzzi
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Alfonso Zoleo
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Edoardo Aprà
- William
R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- William
R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Luca Sementa
- CNR-ICCOM
& IPCF, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Flavio Maran
- Department
of Chemistry, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Department
of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
5
|
Physico-Chemical Characteristics of Gold Nanoparticles. GOLD NANOPARTICLES IN ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/b978-0-444-63285-2.00003-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Crespo P, de la Presa P, Marín P, Multigner M, Alonso JM, Rivero G, Yndurain F, González-Calbet JM, Hernando A. Magnetism in nanoparticles: tuning properties with coatings. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:484006. [PMID: 24201075 DOI: 10.1088/0953-8984/25/48/484006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper reviews the effect of organic and inorganic coatings on magnetic nanoparticles. The ferromagnetic-like behaviour observed in nanoparticles constituted by materials which are non-magnetic in bulk is analysed for two cases: (a) Pd and Pt nanoparticles, formed by substances close to the onset of ferromagnetism, and (b) Au and ZnO nanoparticles, which were found to be surprisingly magnetic at the nanoscale when coated by organic surfactants. An overview of theories accounting for this unexpected magnetism, induced by the nanosize influence, is presented. In addition, the effect of coating magnetic nanoparticles with biocompatible metals, oxides or organic molecules is also reviewed, focusing on their applications.
Collapse
|
7
|
Tuboltsev V, Savin A, Pirojenko A, Räisänen J. Magnetism in nanocrystalline gold. ACS NANO 2013; 7:6691-6699. [PMID: 23829643 DOI: 10.1021/nn401914b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.
Collapse
Affiliation(s)
- Vladimir Tuboltsev
- Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, FI-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
8
|
|
9
|
Nealon GL, Donnio B, Greget R, Kappler JP, Terazzi E, Gallani JL. Magnetism in gold nanoparticles. NANOSCALE 2012; 4:5244-58. [PMID: 22814797 DOI: 10.1039/c2nr30640a] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Gold nanoparticles currently elicit an intense and very broad research activity because of their peculiar properties. Be it in catalysis, optics, electronics, sensing or theranostics, new applications are found daily for these materials. Approximately a decade ago a report was published with magnetometry data showing that gold nanoparticles, most surprisingly, could also be magnetic, with features that the usual rules of magnetism were unable to explain. Many ensuing experimental papers confirmed this observation, although the reported magnetic behaviours showed a great variability, for unclear reasons. In this review, most of the experimental facts pertaining to "magnetic gold" are summarized. The various theories put forth for explaining this unexpected magnetism are presented and discussed. We show that despite much effort, a satisfying explanation is still lacking and that the field of hypotheses should perhaps be widened.
Collapse
Affiliation(s)
- Gareth L Nealon
- IPCMS, CNRS, UMR7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| | | | | | | | | | | |
Collapse
|
10
|
Suzuki M, Kawamura N, Miyagawa H, Garitaonandia JS, Yamamoto Y, Hori H. Measurement of a pauli and orbital paramagnetic state in bulk gold using x-ray magnetic circular dichroism spectroscopy. PHYSICAL REVIEW LETTERS 2012; 108:047201. [PMID: 22400883 DOI: 10.1103/physrevlett.108.047201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Indexed: 05/31/2023]
Abstract
We show that bulk gold (Au) exhibits temperature-independent paramagnetism in an external magnetic field by x-ray magnetic circular dichroism spectroscopy at the Au L(2) and L(3) edges. Using the sum-rule analysis, we obtained a magnetic moment of 1.3 × 10(-4) μB/atom in an external magnetic field of 10 T and a paramagnetic susceptibility of 8.9 × 10(-6) for the 5d orbit. The induced paramagnetism in bulk Au is characterized by a large (≈ 30%) orbital contribution. This orbital component was retained even when Au atoms formed nanoparticles, playing an important role in stabilizing the spontaneous spin polarization in the Au nanoparticles.
Collapse
Affiliation(s)
- Motohiro Suzuki
- Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Hernando A, Crespo P, García MA. Two dimensional electron gas confined over a spherical surface: Magnetic moment. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/292/1/012005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
|
13
|
|
14
|
Garitaonandia JS, Insausti M, Goikolea E, Suzuki M, Cashion JD, Kawamura N, Ohsawa H, de Muro IG, Suzuki K, Plazaola F, Rojo T. Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: localization of the magnetism by element selective techniques. NANO LETTERS 2008; 8:661-7. [PMID: 18215085 DOI: 10.1021/nl073129g] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report a direct observation of the intrinsic magnetization behavior of Au in thiol-capped gold nanoparticles with permanent magnetism at room temperature. Two element specific techniques have been used for this purpose: X-ray magnetic circular dichroism on the L edges of the Au and 197Au Mössbauer spectroscopy. Besides, we show that silver and copper nanoparticles synthesized by the same chemical procedure also present room-temperature permanent magnetism. The observed permanent magnetism at room temperature in Ag and Cu dodecanethiol-capped nanoparticles proves that the physical mechanisms associated to this magnetization process can be extended to more elements, opening the way to new and still not-discovered applications and to new possibilities to research basic questions of magnetism.
Collapse
Affiliation(s)
- José S Garitaonandia
- Zientzia eta Teknologia Fakultatea. Euskal Herriko Unibertsitatea, 644pk. 48820 Bilbao, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Garcia MA, Merino JM, Fernández Pinel E, Quesada A, de la Venta J, Ruíz González ML, Castro GR, Crespo P, Llopis J, González-Calbet JM, Hernando A. Magnetic properties of ZnO nanoparticles. NANO LETTERS 2007; 7:1489-94. [PMID: 17521211 DOI: 10.1021/nl070198m] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.
Collapse
Affiliation(s)
- M A Garcia
- Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC), P.O. Box 155, 28230 Las Rozas, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|