1
|
Mechanism of superconductivity and electron-hole doping asymmetry in κ-type molecular conductors. Nat Commun 2019; 10:3167. [PMID: 31320623 PMCID: PMC6639402 DOI: 10.1038/s41467-019-11022-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/13/2019] [Indexed: 11/19/2022] Open
Abstract
Unconventional superconductivity in molecular conductors is observed at the border of metal-insulator transitions in correlated electrons under the influence of geometrical frustration. The symmetry as well as the mechanism of the superconductivity (SC) is highly controversial. To address this issue, we theoretically explore the electronic properties of carrier-doped molecular Mott system κ-(BEDT-TTF)2X. We find significant electron-hole doping asymmetry in the phase diagram where antiferromagnetic (AF) spin order, different patterns of charge order, and SC compete with each other. Hole-doping stabilizes AF phase and promotes SC with dxy-wave symmetry, which has similarities with high-Tc cuprates. In contrast, in the electron-doped side, geometrical frustration destabilizes the AF phase and the enhanced charge correlation induces another SC with extended-s + \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$d_{x^2 - y^2}$$\end{document}dx2-y2wave symmetry. Our results disclose the mechanism of each phase appearing in filling-control molecular Mott systems, and elucidate how physics of different strongly-correlated electrons are connected, namely, molecular conductors and high-Tc cuprates. The mechanism of unconventional superconductivity in molecular conductors remains controversial. Here, Watanabe et al. theoretically study and report electron-hole doping asymmetry and competing orders with superconductivity in a doped molecular Mott system.
Collapse
|
2
|
Kawasugi Y, Seki K, Tajima S, Pu J, Takenobu T, Yunoki S, Yamamoto HM, Kato R. Two-dimensional ground-state mapping of a Mott-Hubbard system in a flexible field-effect device. SCIENCE ADVANCES 2019; 5:eaav7282. [PMID: 31093527 PMCID: PMC6510553 DOI: 10.1126/sciadv.aav7282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the superconductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However, the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase diagram showed many unexpected features such as an abrupt first-order superconducting transition under electron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant superconducting transition temperature in a wide parameter range. These results are expected to contribute toward elucidating one of the standard solutions for the Mott-Hubbard model.
Collapse
Affiliation(s)
| | - Kazuhiro Seki
- RIKEN, Wako, Saitama 351-0198, Japan
- SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
- RIKEN Center for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan
| | - Satoshi Tajima
- Department of Physics, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Jiang Pu
- Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taishi Takenobu
- Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Seiji Yunoki
- RIKEN, Wako, Saitama 351-0198, Japan
- RIKEN Center for Computational Science (R-CCS), Kobe, Hyogo 650-0047, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Hiroshi M Yamamoto
- RIKEN, Wako, Saitama 351-0198, Japan
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
3
|
Electron-hole doping asymmetry of Fermi surface reconstructed in a simple Mott insulator. Nat Commun 2016; 7:12356. [PMID: 27492864 PMCID: PMC5155723 DOI: 10.1038/ncomms12356] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 06/24/2016] [Indexed: 11/21/2022] Open
Abstract
It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron–hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping. Electron or hole doping in a Mott insulator leads to superconductivity, with the mechanism obscured by multi-orbital Fermi surface reconstructions. Here, Kawasugi et al. report doping dependent Hall coefficients and resistivity anisotropy of an organic Mott insulator, revealing doping asymmetry of reconstructed Fermi surface of a single electronic orbital.
Collapse
|
4
|
Wang Z, Nevidomskyy AH. Orbital nematic order and interplay with magnetism in the two-orbital Hubbard model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:225602. [PMID: 25988222 DOI: 10.1088/0953-8984/27/22/225602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Motivated by the recent angle-resolved photoemission spectroscopy (ARPES) on FeSe and iron pnictide families of iron-based superconductors, we have studied the orbital nematic order and its interplay with antiferromagnetism within the two-orbital Hubbard model. We used random phase approximation (RPA) to calculate the dependence of the orbital and magnetic susceptibilities on the strength of interactions and electron density (doping). To account for strong electron correlations not captured by RPA, we further employed non-perturbative variational cluster approximation (VCA) capable of capturing symmetry broken magnetic and orbitally ordered phases. Both approaches show that the electron and hole doping affect the two orders differently. While hole doping tends to suppress both magnetism and orbital ordering, the electron doping suppresses magnetism faster. Crucially, we find a realistic parameter regime for moderate electron doping that stabilizes orbital nematicity in the absence of long-range antiferromagnetic order. This is reminiscent of the non-magnetic orbital nematic phase observed recently in FeSe and a number of iron pnictide materials and raises the possibility that at least in some cases, the observed electronic nematicity may be primarily due to orbital rather than magnetic fluctuations.
Collapse
Affiliation(s)
- Zhentao Wang
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
5
|
Black-Schaffer AM, Honerkamp C. Chiral d-wave superconductivity in doped graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:423201. [PMID: 25238054 DOI: 10.1088/0953-8984/26/42/423201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A highly unconventional superconducting state with a spin-singlet dx2-y2+/-idxy-wave, or chiral d-wave symmetry has recently been suggested to emerge from electron-electron interactions in doped graphene. It has been argued that graphene doped to the van Hove singularity at 1/4 doping, where the density of states diverge, is particularly likely to be a chiral d-wave superconductor. In this review we summarize the currently mounting theoretical evidence for the existence of a chiral d-wave superconducting state in graphene, obtained with methods ranging from mean-field studies of effective Hamiltonians to angle-resolved renormalization group calculations. We further discuss the multiple distinctive properties of the chiral d-wave superconducting state in graphene, as well as its stability in the presence of disorder. We also review the means of enhancing the chiral d-wave state using proximity-induced superconductivity. The appearance of chiral d-wave superconductivity is intimately linked to the hexagonal crystal lattice and we also offer a brief overview of other materials which have also been proposed to be chiral d-wave superconductors.
Collapse
|
6
|
Scriven E, Powell BJ. Toward the parametrization of the Hubbard model for salts of bis(ethylenedithio)tetrathiafulvalene: A density functional study of isolated molecules. J Chem Phys 2009; 130:104508. [DOI: 10.1063/1.3080543] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Clay RT, Li H, Mazumdar S. Absence of superconductivity in the half-filled band Hubbard model on the anisotropic triangular lattice. PHYSICAL REVIEW LETTERS 2008; 101:166403. [PMID: 18999691 DOI: 10.1103/physrevlett.101.166403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Indexed: 05/27/2023]
Abstract
We report exact calculations of magnetic and superconducting pair-pair correlations for the half-filled band Hubbard model on an anisotropic triangular lattice. Our results for the magnetic phases are similar to those obtained with other techniques. The superconducting pair-pair correlations at distances beyond nearest neighbor decrease monotonically with increasing Hubbard interaction U for all anisotropy, indicating the absence of frustration-driven superconductivity within the model.
Collapse
Affiliation(s)
- R T Clay
- Department of Physics and Astronomy and HPC2 Center for Computational Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | |
Collapse
|
8
|
Sahebsara P, Sénéchal D. Hubbard model on the triangular lattice: spiral order and spin liquid. PHYSICAL REVIEW LETTERS 2008; 100:136402. [PMID: 18517975 DOI: 10.1103/physrevlett.100.136402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Indexed: 05/26/2023]
Abstract
We investigate the half-filled Hubbard model on an isotropic triangular lattice with the variational cluster approximation. By decreasing the on-site repulsion U (or equivalently increasing pressure) we go from a phase with long-range, three-sublattice, spiral magnetic order, to a nonmagnetic Mott insulating phase--a spin liquid--and then, for U less or similar to 6.7t, to a metallic phase. Clusters of sizes 3, 6, and 15 with open boundary conditions are used in these calculations, and an extrapolation to infinite size is argued to lead to a disordered phase at U = 8t, but to a spiral order at U greater or similar to 12.
Collapse
Affiliation(s)
- Peyman Sahebsara
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
| | | |
Collapse
|