1
|
Wolowiec CT, Kanchanavatee N, Huang K, Ran S, Breindel AJ, Pouse N, Sasmal K, Baumbach RE, Chappell G, Riseborough PS, Maple MB. Isoelectronic perturbations to f- d-electron hybridization and the enhancement of hidden order in URu 2Si 2. Proc Natl Acad Sci U S A 2021; 118:e2026591118. [PMID: 33975950 PMCID: PMC8157968 DOI: 10.1073/pnas.2026591118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Electrical resistivity measurements were performed on single crystals of URu2-x Os x Si2 up to x = 0.28 under hydrostatic pressure up to P = 2 GPa. As the Os concentration, x, is increased, 1) the lattice expands, creating an effective negative chemical pressure Pch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressure Pc is required to induce the HO→LMAFM phase transition. We compare the behavior of the T(x, P) phase boundary reported here for the URu2-x Os x Si2 system with previous reports of enhanced HO in URu2Si2 upon tuning with P or similarly in URu2-x Fe x Si2 upon tuning with positive Pch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2 We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metal d-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2 Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and the d-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.
Collapse
Affiliation(s)
- Christian T Wolowiec
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Noravee Kanchanavatee
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Kevin Huang
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Sheng Ran
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Alexander J Breindel
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Naveen Pouse
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Kalyan Sasmal
- Department of Physics, University of California San Diego, La Jolla, CA 92093
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
- Department of Physics, Florida State University, Tallahassee, FL 32306
| | - Greta Chappell
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310
- Department of Physics, Florida State University, Tallahassee, FL 32306
| | | | - M Brian Maple
- Department of Physics, University of California San Diego, La Jolla, CA 92093;
- Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Knafo W, Duc F, Bourdarot F, Kuwahara K, Nojiri H, Aoki D, Billette J, Frings P, Tonon X, Lelièvre-Berna E, Flouquet J, Regnault LP. Field-induced spin-density wave beyond hidden order in URu 2Si 2. Nat Commun 2016; 7:13075. [PMID: 27762260 PMCID: PMC5080431 DOI: 10.1038/ncomms13075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/31/2016] [Indexed: 11/09/2022] Open
Abstract
URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations. The strongly-correlated electron system URu2Si2 possesses a hidden-order phase whose order parameter remains unidentified. Here, the authors demonstrate the development of spin-density-wave phases in URu2Si2 under high magnetic fields, providing a potential in-road to understanding this system.
Collapse
Affiliation(s)
- W Knafo
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UPS-INSA-UGA, 143 Avenue de Rangueil, 31400 Toulouse, France
| | - F Duc
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UPS-INSA-UGA, 143 Avenue de Rangueil, 31400 Toulouse, France
| | - F Bourdarot
- Service de Modélisation et d'Exploration des Matériaux, Université Grenoble Alpes et Commissariat á l'Energie Atomique, INAC, 17 rue des Martyrs, 38054 Grenoble, France
| | - K Kuwahara
- Institute of Quantum Beam Science, Ibaraki University, Mito 310-8512, Japan
| | - H Nojiri
- Institute for Materials Research, Tohoku University, Sendai 980-8578, Japan
| | - D Aoki
- Institute for Materials Research, Tohoku University, Ibaraki 311-1313, Japan.,Service Photonique, Electronique et Ingénierie Quantiques, Université Grenoble Alpes et Commissariat à l'Energie Atomique, INAC, 17 rue des Martyrs, 38054 Grenoble, France
| | - J Billette
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UPS-INSA-UGA, 143 Avenue de Rangueil, 31400 Toulouse, France
| | - P Frings
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UPS-INSA-UGA, 143 Avenue de Rangueil, 31400 Toulouse, France
| | - X Tonon
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - E Lelièvre-Berna
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
| | - J Flouquet
- Service Photonique, Electronique et Ingénierie Quantiques, Université Grenoble Alpes et Commissariat à l'Energie Atomique, INAC, 17 rue des Martyrs, 38054 Grenoble, France
| | - L-P Regnault
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble, France
| |
Collapse
|
3
|
Escudero R, López-Romero RE, Morales F. Study of the hidden-order of URu₂Si₂ by point contact tunnel junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:015701. [PMID: 25469859 DOI: 10.1088/0953-8984/27/1/015701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
URu2Si2 presents superconductivity at temperatures below 1.5 K and a hidden order (HO) at about 17.5 K. Both electronic phenomena are influenced by Fano and Kondo resonances. At 17.5 K the HO was related in the past to a Peierls distortion that produces an energy gap deformed by the resonances. This order has been studied for more than 20 years and still there is no clear understanding. In this work we studied the electronic characteristics of URu2Si2 in a single crystal, with tunneling and metallic point contact spectroscopies. In the superconducting state, we determined the energy gap, which shows the influence of the Fano and Kondo resonances. At temperatures where HO is observed, the tunnel junctions spectra show the influence of the two resonances. Tunnel junction characteristics show that the Fermi surface nesting depends on the crystallographic direction.
Collapse
Affiliation(s)
- R Escudero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. A. Postal 70-360, 04510 México city, DF, Mexico
| | | | | |
Collapse
|
4
|
Gofryk K, Saparov B, Durakiewicz T, Chikina A, Danzenbächer S, Vyalikh DV, Graf MJ, Sefat AS. Fermi-surface reconstruction and complex phase equilibria in CaFe2As2. PHYSICAL REVIEW LETTERS 2014; 112:186401. [PMID: 24856707 DOI: 10.1103/physrevlett.112.186401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 06/03/2023]
Abstract
Fermi-surface topology governs the relationship between magnetism and superconductivity in iron-based materials. Using low-temperature transport, angle-resolved photoemission, and x-ray diffraction, we show unambiguous evidence of large Fermi-surface reconstruction in CaFe2As2 at magnetic spin-density-wave and nonmagnetic collapsed-tetragonal (cT) transitions. For the cT transition, the change in the Fermi-surface topology has a different character with no contribution from the hole part of the Fermi surface. In addition, the results suggest that the pressure effect in CaFe2As2 is mainly leading to a rigid-band-like change of the valence electronic structure. We discuss these results and their implications for magnetism and superconductivity in this material.
Collapse
Affiliation(s)
- K Gofryk
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B Saparov
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T Durakiewicz
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A Chikina
- Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia and Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16, D-01062 Dresden, Germany
| | - S Danzenbächer
- Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16, D-01062 Dresden, Germany
| | - D V Vyalikh
- Department of Physics, St. Petersburg State University, St. Petersburg 198504, Russia and Institute of Solid State Physics, Dresden University of Technology, Zellescher Weg 16, D-01062 Dresden, Germany
| | - M J Graf
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A S Sefat
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
5
|
Kuwahara K, Yoshii S, Nojiri H, Aoki D, Knafo W, Duc F, Fabrèges X, Scheerer GW, Frings P, Rikken GLJA, Bourdarot F, Regnault LP, Flouquet J. Magnetic structure of phase II in U(Ru(0.96)Rh(0.04))2Si2 determined by neutron diffraction under pulsed high magnetic fields. PHYSICAL REVIEW LETTERS 2013; 110:216406. [PMID: 23745903 DOI: 10.1103/physrevlett.110.216406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/23/2013] [Indexed: 06/02/2023]
Abstract
We report neutron diffraction measurements on U(Ru(0.96)Rh(0.04))(2)Si(2) single crystal under pulsed high magnetic fields up to 30 T applied along the tetragonal c axis. The high-field experiments revealed that the field-induced phase II above 26 T corresponds to a commensurate up-up-down ferrimagnetic structure characterized by the wave vector q=(2/3,0,0) with the magnetic moments parallel to the c axis, which naturally explains the one-third magnetization plateau and the substantially changed Fermi surface in phase II. This a-axis modulated magnetic structure indicates that the phase II near the hidden order phase is closely related to the characteristic incommensurate magnetic fluctuations at Q(1)=(0.6,0,0) in the pure system URu(2)Si(2), in contrast to the pressure-induced antiferromagnetic order at Q(0)=(1,0,0).
Collapse
Affiliation(s)
- K Kuwahara
- Institute of Applied Beam Science, Ibaraki University, Mito 310-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Altarawneh MM, Harrison N, Sebastian SE, Balicas L, Tobash PH, Thompson JD, Ronning F, Bauer ED. Sequential spin polarization of the Fermi surface pockets in URu2Si2 and its implications for the hidden order. PHYSICAL REVIEW LETTERS 2011; 106:146403. [PMID: 21561207 DOI: 10.1103/physrevlett.106.146403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Using Shubnikov-de Haas oscillations measured in URu2Si2 over a broad range in a magnetic field of 11-45 T, we find a cascade of field-induced Fermi surface changes within the hidden order phase I and further signatures of oscillations within field-induced phases III and V [previously discovered by Kim et al., [Phys. Rev. Lett. 91, 256401 (2003)]. A comparison of kinetic and Zeeman energies indicates a pocket-by-pocket polarization of the Fermi surface leading up to the destruction of the hidden order phase I at ≈35 T. The anisotropy of the Zeeman energy driving the transitions in URu2Si2 points to an itinerant hidden order parameter involving quasiparticles whose spin degrees of freedom depart significantly from those of free electrons.
Collapse
Affiliation(s)
- M M Altarawneh
- Los Alamos National Laboratory, MS E536, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Pépin C, Norman MR, Burdin S, Ferraz A. Modulated spin liquid: a new paradigm for URu2Si2. PHYSICAL REVIEW LETTERS 2011; 106:106601. [PMID: 21469819 DOI: 10.1103/physrevlett.106.106601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Indexed: 05/30/2023]
Abstract
We argue that near a Kondo breakdown critical point, a spin liquid with spatial modulations can form. Unlike its uniform counterpart, we find that this occurs via a second order phase transition. The amount of entropy quenched when ordering is of the same magnitude as for an antiferromagnet. Moreover, the two states are competitive, and at low temperatures are separated by a first order phase transition. The modulated spin liquid we find breaks Z4 symmetry, as recently seen in the hidden order phase of URu2Si2. Based on this, we suggest that the modulated spin liquid is a viable candidate for this unique phase of matter.
Collapse
Affiliation(s)
- C Pépin
- Institut de Physique Théorique, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
8
|
Kim YH, Kaur N, Atkins BM, Dalal NS, Takano Y. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point. PHYSICAL REVIEW LETTERS 2009; 103:247201. [PMID: 20366226 DOI: 10.1103/physrevlett.103.247201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Indexed: 05/29/2023]
Abstract
At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations.
Collapse
Affiliation(s)
- Y H Kim
- Department of Physics, University of Florida, P.O. Box 118440, Gainesville, Florida 32611-8440, USA
| | | | | | | | | |
Collapse
|
9
|
Shishido H, Hashimoto K, Shibauchi T, Sasaki T, Oizumi H, Kobayashi N, Takamasu T, Takehana K, Imanaka Y, Matsuda TD, Haga Y, Onuki Y, Matsuda Y. Possible phase transition deep inside the hidden order phase of ultraclean URu2Si2. PHYSICAL REVIEW LETTERS 2009; 102:156403. [PMID: 19518659 DOI: 10.1103/physrevlett.102.156403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Indexed: 05/27/2023]
Abstract
To elucidate the underlying nature of the hidden order (HO) state in heavy-fermion compound URu(2)Si(2), we measure electrical transport properties of ultraclean crystals in a high field, low temperature regime. Unlike previous studies, the present system with much less impurity scattering resolves a distinct anomaly of the Hall resistivity at H;{*} = 22.5 T, well below the destruction field of the HO phase = or approximately 36 T. In addition, a novel quantum oscillation appears above a magnetic field slightly below H;{*}. These results indicate an abrupt reconstruction of the Fermi surface, which implies a possible phase transition well within the HO phase caused by a band-dependent destruction of the HO parameter.
Collapse
Affiliation(s)
- H Shishido
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Elgazzar S, Rusz J, Amft M, Oppeneer PM, Mydosh JA. Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. NATURE MATERIALS 2009; 8:337-341. [PMID: 19234447 DOI: 10.1038/nmat2395] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a 'hidden order' has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu(2)Si(2), where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface 'hot spots' where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations.
Collapse
Affiliation(s)
- S Elgazzar
- Department of Physics and Materials Science, Uppsala University, Box 530, S-751 21 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
11
|
Yano K, Sakakibara T, Tayama T, Yokoyama M, Amitsuka H, Homma Y, Miranović P, Ichioka M, Tsutsumi Y, Machida K. Field-angle-dependent specific heat measurements and gap determination of a heavy fermion superconductor URu2Si2. PHYSICAL REVIEW LETTERS 2008; 100:017004. [PMID: 18232809 DOI: 10.1103/physrevlett.100.017004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Indexed: 05/25/2023]
Abstract
To identify the superconducting gap structure in URu2Si2, we perform field-angle-dependent specific heat measurements for the two principal orientations in addition to field rotations, and a theoretical analysis based on microscopic calculations. The Sommerfeld coefficient gamma(H)'s in the mixed state exhibit a distinctly different field dependence. This comes from point nodes and the substantial Pauli paramagnetic effect of URu2Si2. These two features combined give rise to a consistent picture of superconducting properties, including a possible first order transition of Hc2 at low temperatures.
Collapse
Affiliation(s)
- K Yano
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 270-8581, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jo YJ, Balicas L, Capan C, Behnia K, Lejay P, Flouquet J, Mydosh JA, Schlottmann P. Field-induced Fermi surface reconstruction and adiabatic continuity between antiferromagnetism and the hidden-order state in URu2Si2. PHYSICAL REVIEW LETTERS 2007; 98:166404. [PMID: 17501440 DOI: 10.1103/physrevlett.98.166404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Indexed: 05/15/2023]
Abstract
Shubnikov-de Haas oscillations reveal at high fields an abrupt reconstruction of the Fermi surface within the hidden-order (HO) phase of URu2Si2. Taken together with reported Hall effect results, this implies an increase in the effective carrier density and suggests that the field suppression of the HO state is ultimately related to destabilizing a gap in the spectrum of itinerant quasiparticles. While hydrostatic pressure favors antiferromagnetism in detriment to the HO state, it has a modest effect on the complex H-T phase diagram. Instead of phase separation between HO and antiferromagnetism our observations indicate adiabatic continuity between both orderings with field and pressure changing their relative weight.
Collapse
Affiliation(s)
- Y J Jo
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|