1
|
Knüppel P, Ravets S, Kroner M, Fält S, Wegscheider W, Imamoglu A. Nonlinear optics in the fractional quantum Hall regime. Nature 2019; 572:91-94. [PMID: 31285587 DOI: 10.1038/s41586-019-1356-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/02/2019] [Indexed: 11/09/2022]
Abstract
Engineering strong interactions between optical photons is a challenge for quantum science. Polaritonics, which is based on the strong coupling of photons to atomic or electronic excitations in an optical resonator, has emerged as a promising approach to address this challenge, paving the way for applications such as photonic gates for quantum information processing1 and photonic quantum materials for the investigation of strongly correlated driven-dissipative systems2,3. Recent experiments have demonstrated the onset of quantum correlations in exciton-polariton systems4,5, showing that strong polariton blockade6-the prevention of resonant injection of additional polaritons in a well delimited region by the presence of a single polariton-could be achieved if interactions were an order of magnitude stronger. Here we report time-resolved four-wave-mixing experiments on a two-dimensional electron system embedded in an optical cavity7, demonstrating that polariton-polariton interactions are strongly enhanced when the electrons are initially in the fractional quantum Hall regime. Our experiments indicate that, in addition to strong correlations in the electronic ground state, exciton-electron interactions leading to the formation of polaron-polaritons8-11 have a key role in enhancing the nonlinear optical response of the system. Our findings could facilitate the realization of strongly interacting photonic systems, and suggest that nonlinear optical measurements could provide information about fractional quantum Hall states that is not accessible through their linear optical response.
Collapse
Affiliation(s)
- Patrick Knüppel
- Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - Sylvain Ravets
- Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland. .,Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris-Sud, Université Paris-Saclay, Palaiseau, France.
| | - Martin Kroner
- Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland
| | - Stefan Fält
- Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland.,Solid State Physics Laboratory, ETH Zürich, Zürich, Switzerland
| | | | - Atac Imamoglu
- Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Ravets S, Knüppel P, Faelt S, Cotlet O, Kroner M, Wegscheider W, Imamoglu A. Polaron Polaritons in the Integer and Fractional Quantum Hall Regimes. PHYSICAL REVIEW LETTERS 2018; 120:057401. [PMID: 29481149 DOI: 10.1103/physrevlett.120.057401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 11/26/2017] [Indexed: 06/08/2023]
Abstract
Elementary quasiparticles in a two-dimensional electron system can be described as exciton polarons since electron-exciton interactions ensures dressing of excitons by Fermi-sea electron-hole pair excitations. A relevant open question is the modification of this description when the electrons occupy flat bands and electron-electron interactions become prominent. Here, we perform cavity spectroscopy of a two-dimensional electron system in the strong coupling regime, where polariton resonances carry signatures of strongly correlated quantum Hall phases. By measuring the evolution of the polariton splitting under an external magnetic field, we demonstrate the modification of polaron dressing that we associate with filling factor dependent electron-exciton interactions.
Collapse
Affiliation(s)
- Sylvain Ravets
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Patrick Knüppel
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Stefan Faelt
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
- Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Ovidiu Cotlet
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Martin Kroner
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | - Atac Imamoglu
- Institute of Quantum Electroncis, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
3
|
Mukherjee S, Mandal SS, Wu YH, Wójs A, Jain JK. Enigmatic 4/11 state: a prototype for unconventional fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2014; 112:016801. [PMID: 24483916 DOI: 10.1103/physrevlett.112.016801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 06/03/2023]
Abstract
The origin of the fractional quantum Hall effect (FQHE) at 4/11 and 5/13 has remained controversial. We make a compelling case that the FQHE is possible here for fully spin polarized composite fermions, but with an unconventional underlying physics. Thanks to a rather unusual interaction between composite fermions, the FQHE here results from the suppression of pairs with a relative angular momentum of three rather than one, confirming the exotic mechanism proposed by Wójs, Yi, and Quinn [Phys. Rev. B 69, 205322 (2004)]. We predict that the 4/11 state reported a decade ago by Pan et al. [Phys. Rev. Lett. 90, 016801 (2003)] is a conventional partially spin polarized FQHE of composite fermions, and we estimate the Zeeman energy where a phase transition into the unconventional fully spin polarized state will occur.
Collapse
Affiliation(s)
- Sutirtha Mukherjee
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sudhansu S Mandal
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Ying-Hai Wu
- Department of Physics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arkadiusz Wójs
- Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland
| | - Jainendra K Jain
- Department of Physics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Archer AC, Jain JK. Phase diagram of the two-component fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2013; 110:246801. [PMID: 25165951 DOI: 10.1103/physrevlett.110.246801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 06/03/2023]
Abstract
We calculate the phase diagram of the two component fractional quantum Hall effect as a function of the spin or valley Zeeman energy and the filling factor, which reveals new phase transitions and phase boundaries spanning many fractional plateaus. This phase diagram is relevant to the fractional quantum Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or valley degree of freedom is active.
Collapse
Affiliation(s)
- Alexander C Archer
- Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jainendra K Jain
- Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
5
|
Drozdov IK, Kulik LV, Zhuravlev AS, Kirpichev VE, Kukushkin IV, Schmult S, Dietsche W. Extra spin-wave mode in quantum Hall systems: beyond the Skyrmion limit. PHYSICAL REVIEW LETTERS 2010; 104:136804. [PMID: 20481903 DOI: 10.1103/physrevlett.104.136804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Indexed: 05/29/2023]
Abstract
We report on the observation of a new spin mode in a quantum Hall system in the vicinity of odd electron filling factors under experimental conditions excluding the possibility of Skyrmion excitations. The new mode having presumably zero energy at odd filling factors emerges at small deviations from odd filling factors and couples to the spin exciton. The existence of an extra spin mode assumes a nontrivial magnetic order at partial fillings of Landau levels surrounding quantum Hall ferromagnets other then the Skyrmion crystal.
Collapse
Affiliation(s)
- I K Drozdov
- Institute of Solid State Physics, RAS, Chernogolovka, 142432 Russia
| | | | | | | | | | | | | |
Collapse
|
6
|
Orso G, Burovski E, Jolicoeur T. Luttinger liquid of trimers in Fermi gases with unequal masses. PHYSICAL REVIEW LETTERS 2010; 104:065301. [PMID: 20366827 DOI: 10.1103/physrevlett.104.065301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 12/09/2009] [Indexed: 05/29/2023]
Abstract
We investigate one dimensional attractive Fermi gases in spin-dependent optical lattices. We show that three-body bound states--"trimers"--exist as soon as the two tunneling rates are different. We calculate the binding energy and the effective mass of a single trimer. We then show numerically that for finite and commensurate densities n(up) = n(down)/2 an energy gap appears, implying that the gas is a one-component Luttinger liquid of trimers with suppressed superfluid correlations. The boundaries of this novel phase are given. We discuss experimental situations to test our predictions.
Collapse
Affiliation(s)
- Giuliano Orso
- Laboratoire de Physique Théorique et Modèles statistiques, Université Paris-Sud, 91405 Orsay, France
| | | | | |
Collapse
|
7
|
Plochocka P, Schneider JM, Maude DK, Potemski M, Rappaport M, Umansky V, Bar-Joseph I, Groshaus JG, Gallais Y, Pinczuk A. Optical absorption to probe the quantum Hall ferromagnet at filling factor nu=1. PHYSICAL REVIEW LETTERS 2009; 102:126806. [PMID: 19392309 DOI: 10.1103/physrevlett.102.126806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor nu=1 and at very low temperatures ( approximately 40 mK). A small change in filling factor (deltanu approximately +/-0.01) leads to a significant depolarization. This suggests that the itinerant quantum Hall ferromagnet at nu=1 is surprisingly fragile against increasing temperature, or against small changes in filling factor.
Collapse
Affiliation(s)
- P Plochocka
- Laboratoire National des Champs Magnétiques Intenses, Grenoble High Magnetic Field Laboratory, 38042 Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Groshaus JG, Dujovne I, Gallais Y, Hirjibehedin CF, Pinczuk A, Tan YW, Stormer H, Dennis BS, Pfeiffer LN, West KW. Spin texture and magnetoroton excitations at nu=1/3. PHYSICAL REVIEW LETTERS 2008; 100:046804. [PMID: 18352317 DOI: 10.1103/physrevlett.100.046804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Indexed: 05/26/2023]
Abstract
Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum. With increasing in-plane magnetic field these mode energies cross at a critical ratio of the Zeeman and Coulomb energies of eta(c)=0.020+/-0.001. Surprisingly, the intensity of the ST mode grows with temperature in the range in which the magnetoroton modes collapse. The temperature dependence is interpreted in terms of a competition between coexisting phases supporting different excitations. We consider the role of the ST excitations in activated transport at nu=1/3.
Collapse
Affiliation(s)
- Javier G Groshaus
- Physics & Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|