1
|
Raybin JG, Wai RB, Ginsberg NS. Nonadditive Interactions Unlock Small-Particle Mobility in Binary Colloidal Monolayers. ACS NANO 2023; 17:8303-8314. [PMID: 37093781 PMCID: PMC10173694 DOI: 10.1021/acsnano.2c12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examine the organization and dynamics of binary colloidal monolayers composed of micron-scale silica particles interspersed with smaller-diameter silica particles that serve as minority component impurities. These binary monolayers are prepared at the surface of ionic liquid droplets over a range of size ratios (σ = 0.16-0.66) and are studied with low-dose minimally perturbative scanning electron microscopy (SEM). The high resolution of SEM imaging provides direct tracking of all particle coordinates over time, enabling a complete description of the microscopic state. In these bidisperse size mixtures, particle interactions are nonadditive because interfacial pinning to the droplet surface causes the equators of differently sized particles to lie in separate planes. By varying the size ratio, we control the extent of nonadditivity in order to achieve phase behavior inaccessible to additive 2D systems. Across the range of size ratios, we tune the system from a mobile small-particle phase (σ < 0.24) to an interstitial solid (0.24 < σ < 0.33) and furthermore to a disordered glass (σ > 0.33). These distinct phase regimes are classified through measurements of hexagonal ordering of the large-particle host lattice and the lattice's capacity for small-particle transport. Altogether, we explain these structural and dynamic trends by considering the combined influence of interparticle interactions and the colloidal packing geometry. Our measurements are reproduced in molecular dynamics simulations of 2D nonadditive disks, suggesting an efficient method for describing confined systems with reduced dimensionality representations.
Collapse
Affiliation(s)
- Jonathan G Raybin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca B Wai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Pieprzyk S, Yuste SB, Santos A, de Haro ML, Brańka AC. Structural properties of additive binary hard-sphere mixtures. II. Asymptotic behavior and structural crossovers. Phys Rev E 2021; 104:024128. [PMID: 34525547 DOI: 10.1103/physreve.104.024128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 11/07/2022]
Abstract
The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous paper [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]2470-004510.1103/PhysRevE.101.012117. The so-called rational-function approximation method and an approach combining accurate molecular dynamics simulation data, the pole structure representation of the total correlation functions, and the Ornstein-Zernike equation are considered. The density, composition, and size-ratio dependencies of the leading poles of the Fourier transforms of the total correlation functions h_{ij}(r) of such mixtures are presented, those poles accounting for the asymptotic decay of h_{ij}(r) for large r. Structural crossovers, in which the asymptotic wavelength of the oscillations of the total correlation functions changes discontinuously, are investigated. The behavior of the structural crossover lines as the size ratio and densities of the two species are changed is also discussed.
Collapse
Affiliation(s)
- Sławomir Pieprzyk
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Santos B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain
| | - Mariano López de Haro
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (U.N.A.M.), Temixco, Morelos 62580, Mexico
| | - Arkadiusz C Brańka
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
3
|
Marín-Aguilar S, Wensink HH, Foffi G, Smallenburg F. Tetrahedrality Dictates Dynamics in Hard Sphere Mixtures. PHYSICAL REVIEW LETTERS 2020; 124:208005. [PMID: 32501099 DOI: 10.1103/physrevlett.124.208005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
The link between local structure and dynamical slowdown in glassy fluids has been the focus of intense debate for the better part of a century. Nonetheless, a simple method to predict the dynamical behavior of a fluid purely from its local structural features is still missing. Here, we demonstrate that the diffusivity of perhaps the most fundamental family of glass formers-hard sphere mixtures-can be accurately predicted based on just the packing fraction and a simple order parameter measuring the tetrahedrality of the local structure. Essentially, we show that the number of tetrahedral clusters in a hard sphere mixture is directly linked to its global diffusivity. Moreover, the same order parameter is capable of locally pinpointing particles in the system with high and low mobility. We attribute the power of the local tetrahedrality for predicting local and global dynamics to the high stability of tetrahedral clusters, the most fundamental building and densest-packing building blocks for a disordered fluid.
Collapse
Affiliation(s)
- Susana Marín-Aguilar
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Henricus H Wensink
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Giuseppe Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
4
|
Rodrigues NT, Oliveira TJ. Thermodynamic behavior of binary mixtures of hard spheres: Semianalytical solutions on a Husimi lattice built with cubes. Phys Rev E 2019; 100:032112. [PMID: 31639939 DOI: 10.1103/physreve.100.032112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/07/2022]
Abstract
We study binary mixtures of hard particles, which exclude up to their kth nearest neighbors (kNN) on the simple cubic lattice and have activities z_{k}. In the first model analyzed, point particles (0NN) are mixed with 1NN ones. The grand-canonical solution of this model on a Husimi lattice built with cubes unveils a phase diagram with a fluid and a solid phase separated by a continuous and a discontinuous transition line which meet at a tricritical point. A density anomaly, characterized by minima in isobaric curves of the total density of particles against z_{0} (or z_{1}), is also observed in this system. Overall, this scenario is identical to the one previously found for this model when defined on the square lattice. The second model investigated consists of the mixture of 1NN particles with 2NN ones. In this case, a very rich phase behavior is found in its Husimi lattice solution, with two solid phases-one associated with the ordering of 1NN particles (S1) and the other with the ordering of 2NN ones (S2)-beyond the fluid (F) phase. While the transitions between F-S2 and S1-S2 phases are always discontinuous, the F-S1 transition is continuous (discontinuous) for small (large) z_{2}. The critical and coexistence F-S1 lines meet at a tricritical point. Moreover, the coexistence F-S1,F-S2, and S1-S2 lines meet at a triple point. Density anomalies are absent in this case.
Collapse
Affiliation(s)
- Nathann T Rodrigues
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
5
|
Abstract
Collections of polar active particles have been unable to form stable and long-living structures due to the presence of self-propulsion. We solve this timely issue by introducing the concept of “active doping” and show that a few light-activated apolar, i.e., non–self-propelling, units can be used to rapidly trigger the formation of solid clusters and gels composed of passive colloidal particles. Our active doping can be used to assemble disparate microscopic objects, including synthetic or biological ones, paving the way toward the extension of fundamental concepts of gel and glass formation to active out-of-equilibrium systems. Collections of interacting active particles, self-propelling or not, have shown remarkable phenomena including the emergence of dynamic patterns across different length scales, from animal groups to vibrated grains, microtubules, bacteria, and chemical- or field-driven colloids. Burgeoning experimental and simulation activities are now exploring the possibility of realizing solid and stable structures from passive elements that are assembled by a few active dopants. Here we show that such an elusive task may be accomplished by using a small amount of apolar dopants, namely synthetic active but not self-propelling units. We use blue light to rapidly assemble 2D colloidal clusters and gels via nonequilibrium diffusiophoresis, where microscopic hematite dockers form long-living interstitial bonds that strongly glue passive silica microspheres. By varying the relative fraction of doping, we uncover a rich phase diagram including ordered and disordered clusters, space-filling gels, and bicontinuous structures formed by filamentary dockers percolating through a solid network of silica spheres. We characterize the slow relaxation and dynamic arrest of the different phases via correlation and scattering functions. Our findings provide a pathway toward the rapid engineering of mesoscopic gels and clusters via active colloidal doping.
Collapse
|
6
|
Coupette F, Lee AA, Härtel A. Screening Lengths in Ionic Fluids. PHYSICAL REVIEW LETTERS 2018; 121:075501. [PMID: 30169089 DOI: 10.1103/physrevlett.121.075501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The decay of correlations in ionic fluids is a classical problem in soft matter physics that underpins applications ranging from controlling colloidal self-assembly to batteries and supercapacitors. The conventional wisdom, based on analyzing a solvent-free electrolyte model, suggests that all correlation functions between species decay with a common decay length in the asymptotic far field limit. Nonetheless, a solvent is present in many electrolyte systems. We show using an analytical theory and molecular dynamics simulations that multiple decay lengths can coexist in the asymptotic limit as well as at intermediate distances once a hard sphere solvent is considered. Our analysis provides an explanation for the recently observed discontinuous change in the structural force across a thin film of ionic liquid-solvent mixtures as the composition is varied, as well as reframes recent debates in the literature about the screening length in concentrated electrolytes.
Collapse
Affiliation(s)
- Fabian Coupette
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Alpha A Lee
- Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Thorneywork AL, Schnyder SK, Aarts DGAL, Horbach J, Roth R, Dullens RPA. Structure factors in a two-dimensional binary colloidal hard sphere system. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1492745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alice L. Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Simon K. Schnyder
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | - Dirk G. A. L. Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, Tübingen, Germany
| | - Roel P. A. Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Walters MC, Subramanian P, Archer AJ, Evans R. Structural crossover in a model fluid exhibiting two length scales: Repercussions for quasicrystal formation. Phys Rev E 2018; 98:012606. [PMID: 30110766 DOI: 10.1103/physreve.98.012606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 06/08/2023]
Abstract
We investigate the liquid state structure of the two-dimensional model introduced by Barkan et al. [Phys. Rev. Lett. 113, 098304 (2014)10.1103/PhysRevLett.113.098304], which exhibits quasicrystalline and other unusual solid phases, focusing on the radial distribution function g(r) and its asymptotic decay r→∞. For this particular model system, we find that as the density is increased there is a structural crossover from damped oscillatory asymptotic decay with one wavelength to damped oscillatory asymptotic decay with another distinct wavelength. The ratio of these wavelengths is ≈1.932. Following the locus in the phase diagram of this structural crossover leads directly to the region where quasicrystals are found. We argue that identifying and following such a crossover line in the phase diagram towards higher densities where the solid phase(s) occur is a good strategy for finding quasicrystals in a wide variety of systems. We also show how the pole analysis of the asymptotic decay of equilibrium fluid correlations is intimately connected with the nonequilibrium growth or decay of small-amplitude density fluctuations in a bulk fluid.
Collapse
Affiliation(s)
- M C Walters
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - P Subramanian
- Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - A J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough, LE11 3TU, United Kingdom
| | - R Evans
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
9
|
Coles S, Smith AM, Fedorov MV, Hausen F, Perkin S. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent. Faraday Discuss 2018; 206:427-442. [DOI: 10.1039/c7fd00168a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oscillatory and monotonic decay in mixtures of salt and solvent at interfaces with varying surface charge.
Collapse
Affiliation(s)
- Samuel W. Coles
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Alexander M. Smith
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
- Department of Inorganic and Analytical Chemistry
| | - Maxim V. Fedorov
- Department of Physics
- Scottish Universities Physics Alliance (SUPA)
- Strathclyde University
- Glasgow G4 0NG
- UK
| | - Florian Hausen
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
- Institute of Energy and Climate Research
| | - Susan Perkin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| |
Collapse
|
10
|
Smith AM, Lee AA, Perkin S. Switching the Structural Force in Ionic Liquid-Solvent Mixtures by Varying Composition. PHYSICAL REVIEW LETTERS 2017; 118:096002. [PMID: 28306271 DOI: 10.1103/physrevlett.118.096002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Indexed: 06/06/2023]
Abstract
The structure and interactions in electrolytes at high concentration have implications from energy storage to biomolecular interactions. However, many experimental observations are yet to be explained in these mixtures, which are far beyond the regime of validity of mean-field models. Here, we study the structural forces in a mixture of ionic liquid and solvent that is miscible in all proportions at room temperature. Using the surface force balance to measure the force between macroscopic smooth surfaces across the liquid mixtures, we uncover an abrupt increase in the wavelength above a threshold ion concentration. Below the threshold concentration, the wavelength is determined by the size of the solvent molecule, whereas above the threshold, it is the diameter of a cation-anion pair that determines the wavelength.
Collapse
Affiliation(s)
- Alexander M Smith
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
- Department of Inorganic and Analytical Chemistry, University of Geneva, 1205 Geneva, Switzerland
| | - Alpha A Lee
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Susan Perkin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
11
|
Thorneywork AL, Aarts DGAL, Horbach J, Dullens RPA. Self-diffusion in two-dimensional binary colloidal hard-sphere fluids. Phys Rev E 2017; 95:012614. [PMID: 28208506 DOI: 10.1103/physreve.95.012614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 06/06/2023]
Abstract
We present a systematic experimental study of the dynamic behavior of monodisperse and bidisperse two-dimensional colloidal hard-sphere fluids. We consider the diffusive behavior of the two types of particles for systems with a variety of compositions and total area fractions. In particular, we measure the short- and long-time diffusion coefficients for both species independently. We find that the short-time self-diffusion coefficients show an approximately linear dependence on the area fraction and that the long-time self-diffusion coefficients are well described by an expression dependent upon only the area fraction and contact value of the radial distribution function. Finally, we consider the effect of composition change and find some variation in the long-time self-diffusion coefficients, which we ascribe to the complex packing effects exhibited by binary systems.
Collapse
Affiliation(s)
- Alice L Thorneywork
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jürgen Horbach
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
12
|
Lavergne FA, Diana S, Aarts DGAL, Dullens RPA. Equilibrium Grain Boundary Segregation and Clustering of Impurities in Colloidal Polycrystalline Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12716-12724. [PMID: 27934528 DOI: 10.1021/acs.langmuir.6b02683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigate the segregation of impurities to grain boundaries in colloidal polycrystalline monolayers using video microscopy. A model colloidal alloy is prepared by embedding large spherical impurities in a polycrystalline monolayer of small host colloidal hard spheres, which stops grain growth at a finite grain size. The size ratio between the impurities and the host particles determines whether they behave as interstitial or substitutional impurities in the bulk crystal, akin to those in real alloys. We find that the partitioning of impurities between the grains and the grain boundaries is in very good agreement with the Langmuir-McLean adsorption model for equilibrium grain boundary segregation. This enables the direct measurement of the free energy of adsorption for the two types of impurities. Near saturation, we characterize the spatial distribution of the adsorbed impurities and find that it strongly depends on their interstitial or substitutional nature. This is because the relative importance of clustering and mixing due to nonadditivity is determined by geometrical constraints imposed by the crystalline host lattice.
Collapse
Affiliation(s)
- François A Lavergne
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Samuel Diana
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford , South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
13
|
Statt A, Pinchaipat R, Turci F, Evans R, Royall CP. Direct observation in 3d of structural crossover in binary hard sphere mixtures. J Chem Phys 2016; 144:144506. [DOI: 10.1063/1.4945808] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Antonia Statt
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, 55128 Mainz, Germany
- Graduate School of Excellence Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Rattachai Pinchaipat
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - C. Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
14
|
Schindler M, Maggs AC. Cavity averages for hard spheres in the presence of polydispersity and incomplete data. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:97. [PMID: 26359237 DOI: 10.1140/epje/i2015-15097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 06/05/2023]
Abstract
We develop a cavity-based method which allows to extract thermodynamic properties from position information in hard-sphere/disk systems. So far, there are available-volume and free-volume methods. We add a third one, which we call available volume after take-out, and which is shown to be mathematically equivalent to the others. In applications, where data sets are finite, all three methods show limitations, and they do this in different parameter ranges. We illustrate the principal equivalence and the limitations on data from molecular dynamics: In particular, we test robustness against missing data. We have in mind experimental limitations where there is a small polydispersity, say 4% in the particle radii, but individual radii cannot be determined. We observe that, depending on the used method, the errors in such a situation are easily 100% for the pressure and 10kT for the chemical potentials. Our work is meant as guideline to the experimentalists for choosing the right one of the three methods, in order to keep the outcome of experimental data analysis meaningful.
Collapse
Affiliation(s)
- Michael Schindler
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005, Paris, France.
| | - A C Maggs
- UMR Gulliver 7083 CNRS, ESPCI ParisTech, PSL Research University, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
15
|
Horn T, Löwen H. How does a thermal binary crystal break under shear? J Chem Phys 2014; 141:224505. [DOI: 10.1063/1.4903274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Abstract
Significance
Many natural systems are structured by the ordering of repeated, distinct shapes. Understanding how this happens is difficult because shape affects structure in two ways. One is how the shape of a cell or nanoparticle, for example, affects its surface, chemical, or other intrinsic properties. The other is an emergent, entropic effect that arises from the geometry of the shape itself, which we term “shape entropy,” and is not well understood. In this paper, we determine how shape entropy affects structure. We quantify the mechanism and determine when shape entropy competes with intrinsic shape effects. Our results show that in a wide class of systems, shape affects bulk structure because crowded particles optimize their local packing.
Collapse
|
17
|
Abstract
Entropy drives the phase behavior of colloids ranging from dense suspensions of hard spheres or rods to dilute suspensions of hard spheres and depletants. Entropic ordering of anisotropic shapes into complex crystals, liquid crystals, and even quasicrystals was demonstrated recently in computer simulations and experiments. The ordering of shapes appears to arise from the emergence of directional entropic forces (DEFs) that align neighboring particles, but these forces have been neither rigorously defined nor quantified in generic systems. Here, we show quantitatively that shape drives the phase behavior of systems of anisotropic particles upon crowding through DEFs. We define DEFs in generic systems and compute them for several hard particle systems. We show they are on the order of a few times the thermal energy ([Formula: see text]) at the onset of ordering, placing DEFs on par with traditional depletion, van der Waals, and other intrinsic interactions. In experimental systems with these other interactions, we provide direct quantitative evidence that entropic effects of shape also contribute to self-assembly. We use DEFs to draw a distinction between self-assembly and packing behavior. We show that the mechanism that generates directional entropic forces is the maximization of entropy by optimizing local particle packing. We show that this mechanism occurs in a wide class of systems and we treat, in a unified way, the entropy-driven phase behavior of arbitrary shapes, incorporating the well-known works of Kirkwood, Onsager, and Asakura and Oosawa.
Collapse
|
18
|
Tierno P. Magnetic assembly and annealing of colloidal lattices and superlattices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7670-5. [PMID: 24941202 DOI: 10.1021/la501273b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The ability to assemble mesoscopic colloidal lattices above a surface is important for fundamental studies related with nucleation and crystallization but also for a variety of technological applications in photonics and microengineering. Current techniques based on particle sedimentation above a lithographic template are limited by a slow deposition process and by the use of static templates, which make difficult to implement fast annealing procedures. Here it is demonstrated a method to realize and anneal a series of colloidal lattices displaying triangular, honeycomb, or kagome-like symmetry above a structure magnetic substrate. By using a binary mixture of particles, superlattices can be realized increasing further the variety and complexity of the colloidal patterns which can be produced.
Collapse
Affiliation(s)
- Pietro Tierno
- Departament d'Estructura i Constituents de la Matèria and Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona , Avenida Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Thorneywork AL, Roth R, Aarts DGAL, Dullens RPA. Communication: Radial distribution functions in a two-dimensional binary colloidal hard sphere system. J Chem Phys 2014; 140:161106. [DOI: 10.1063/1.4872365] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
20
|
|
21
|
Hopkins P, Schmidt M. Binary non-additive hard sphere mixtures: fluid demixing, asymptotic decay of correlations and free fluid interfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:325108. [PMID: 21386490 DOI: 10.1088/0953-8984/22/32/325108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Using a fundamental measure density functional theory we investigate both bulk and inhomogeneous systems of the binary non-additive hard sphere model. For sufficiently large (positive) non-additivity the mixture phase separates into two fluid phases with different compositions. We calculate bulk fluid-fluid coexistence curves for a range of size ratios and non-additivity parameters and find that they compare well to simulation results from the literature. Using the Ornstein-Zernike equation, we investigate the asymptotic, [Formula: see text], decay of the partial pair correlation functions, g(ij)(r). At low densities a structural crossover occurs in the asymptotic decay between two different damped oscillatory modes with different wavelengths corresponding to the two intra-species hard-core diameters. On approaching the fluid-fluid critical point there is a Fisher-Widom crossover from exponentially damped oscillatory to monotonic asymptotic decay. Using the density functional we calculate the density profiles for the planar free fluid-fluid interface between coexisting fluid phases. We show that the type of asymptotic decay of g(ij)(r) not only determines the asymptotic decay of the interface profiles, but is also relevant for intermediate and even short-ranged behaviour. We also determine the surface tension of the free fluid interface, finding that it increases with non-additivity, and that on approaching the critical point mean-field scaling holds.
Collapse
Affiliation(s)
- Paul Hopkins
- H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| | | |
Collapse
|
22
|
Affiliation(s)
- Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
23
|
Boruah BR. Lateral resolution enhancement in confocal microscopy by vectorial aperture engineering. APPLIED OPTICS 2010; 49:701-707. [PMID: 20119022 DOI: 10.1364/ao.49.000701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article reports the design and implementation of a lateral resolution-enhancement technique in confocal microscopy that can work, in principle, either in the reflection mode or in the fluorescence mode. Taking the difference between two images corresponding to two different vectorially (involving amplitude, phase, and polarization of light) engineered illumination pupils or apertures of a confocal microscope, high spatial frequency contents in the resultant image can be significantly enhanced. This can be realized by incorporating an extra vectorial beam-forming element into the illumination beam path of a conventional confocal microscope. The method of the proposed technique has been explained by giving it an analytical treatment supported by numerical simulation results. The technique has been implemented in a reflection mode confocal microscope and results obtained are presented.
Collapse
Affiliation(s)
- B R Boruah
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.
| |
Collapse
|
24
|
Franzrahe K, Nielaba P. Controlled structuring of binary hard-disk mixtures via a periodic, external potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051505. [PMID: 19518460 DOI: 10.1103/physreve.79.051505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Indexed: 05/27/2023]
Abstract
Ordering phenomena on surfaces or in monolayers can be successfully studied by model systems as binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. For the field-free case the thermodynamic stability of space-filling lattice structures for binary hard-disk mixtures is studied by Monte Carlo computer simulations. As these structures prove to be thermodynamically stable only in high pressure environments, the phase behavior of an equimolar binary mixture with a diameter ratio of sigma_{B}/sigma_{A}=0.414 exposed to an external, one-dimensional, periodic potential is analyzed in detail. The underlying ordering mechanisms and the resulting order differ considerably, depending on which components of the mixture interact with the external potential. The simulations show that slight deviations in the concentration of large particles x_{A} or the diameter ratio sigma_{B}/sigma_{A} have no impact on the occurrence of the various field-induced phenomena as long as the mixture stays in the relevant regime of the packing fraction eta . Furthermore the importance of the commensurability of the external potential to the S1(AB) square lattice for the occurrence of the induced ordering is discussed.
Collapse
Affiliation(s)
- K Franzrahe
- Fachbereich Physik, Universität Konstanz, Postfach 692,78457 Konstanz, Germany.
| | | |
Collapse
|
25
|
Ghofraniha N, Andreozzi P, Russo J, La Mesa C, Sciortino F. Assembly Kinetics in Binary Mixtures of Strongly Attractive Colloids. J Phys Chem B 2009; 113:6775-81. [DOI: 10.1021/jp807999n] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neda Ghofraniha
- Dipartimento di Fisica, Dipartimento di Chimica, and SOFT-INFM-CNR, c/o Universita’ “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Patrizia Andreozzi
- Dipartimento di Fisica, Dipartimento di Chimica, and SOFT-INFM-CNR, c/o Universita’ “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - John Russo
- Dipartimento di Fisica, Dipartimento di Chimica, and SOFT-INFM-CNR, c/o Universita’ “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Camillo La Mesa
- Dipartimento di Fisica, Dipartimento di Chimica, and SOFT-INFM-CNR, c/o Universita’ “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesco Sciortino
- Dipartimento di Fisica, Dipartimento di Chimica, and SOFT-INFM-CNR, c/o Universita’ “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| |
Collapse
|
26
|
Yang W, Nelissen K, Kong M, Zeng Z, Peeters FM. Structure of binary colloidal systems confined in a quasi-one-dimensional channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:041406. [PMID: 19518232 DOI: 10.1103/physreve.79.041406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Indexed: 05/27/2023]
Abstract
The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The impact of three decisive parameters (the density of particles, the magnetic-moment ratio, and the fraction between the two species) on the transition from disordered phase to crystal-like phases and the transitions among the different mixed phases are summarized in a phase diagram.
Collapse
Affiliation(s)
- Wen Yang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, China
| | | | | | | | | |
Collapse
|
27
|
Schmidt M. Test particle limit for the pair structure of quenched-annealed fluid mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:031405. [PMID: 19391942 DOI: 10.1103/physreve.79.031405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 02/23/2009] [Indexed: 05/27/2023]
Abstract
A density functional route to the pair structure of quenched-annealed fluid mixtures is presented. The bulk two-body partial pair correlation functions of the mixture are identified with the one-body density distributions in an external potential that models a fixed test particle. Quenched-annealed (replica) density functional theory is used to calculate the inhomogeneous one-body density distributions. A closed theory is obtained by using an exact sum rule that equates two different expressions for the cross pair correlation function between unlike species. Results for binary quenched-annealed hard sphere mixtures are found to agree well with computer simulation data, improving over results from the replica Ornstein-Zernike equations using the direct correlation functions, obtained as second functional derivatives of the quenched-annealed excess free energy functional, as input. The proposed framework allows for the independent determination of the blocked part of the fluid-fluid partial pair correlation function.
Collapse
Affiliation(s)
- Matthias Schmidt
- Theoretische Physik II, Universität Bayreuth, D-95440 Bayreuth, Germany and H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
28
|
Pontoni D, Alvine KJ, Checco A, Gang O, Ocko BM, Pershan PS. Equilibrating nanoparticle monolayers using wetting films. PHYSICAL REVIEW LETTERS 2009; 102:016101. [PMID: 19257214 DOI: 10.1103/physrevlett.102.016101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Indexed: 05/27/2023]
Abstract
Monolayers of bimodal gold nanoparticles on silicon are investigated by a combination of microscopy (dry monolayers) and x-ray diffraction (dry and wet monolayers). In the presence of an excess of small particles, the nanoscale packing structure closely resembles the small-particle-rich scenario of the structural crossover transition that has been predicted and also observed with micron-scale hard-sphere colloids. Structural morphology is monitored in situ during monolayer dissolution and reassembly within the thin liquid wetting film. This approach allows investigation of size and solvent effects on nanoparticles in quasi-two-dimensional confinement.
Collapse
Affiliation(s)
- Diego Pontoni
- Department of Physics and SEAS, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Torres A, Téllez G, van Roij R. The polydisperse cell model: Nonlinear screening and charge renormalization in colloidal mixtures. J Chem Phys 2008; 128:154906. [DOI: 10.1063/1.2907719] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Reichhardt C, Reichhardt CJO. Disordering transitions and peak effect in polydisperse particle systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:041401. [PMID: 18517611 DOI: 10.1103/physreve.77.041401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 11/20/2007] [Indexed: 05/26/2023]
Abstract
We show numerically that in a binary system of Yukawa particles, a dispersity-driven disordering transition occurs. In the presence of quenched disorder this disordering transition coincides with a marked increase in the depinning threshold, known as a peak effect. We find that the addition of poorly pinned particles can increase the overall pinning in the sample by increasing the amount of topological disorder present. If the quenched disorder is strong enough to create a significant amount of topological disorder in the monodisperse system, addition of a poorly pinned species generates further disorder but does not produce a peak in the depinning force. Our results indicate that for binary mixtures, optimal pinning occurs for topological defect fraction densities from 0.2 to 0.25. For defect densities below this range, the system retains orientational order. We determine the effect of the pinning density, strength, and radius on the depinning peak and find that the peak effect is more pronounced in weakly pinning systems.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|
31
|
Franzrahe K, Nielaba P. Entropy versus energy: the phase behavior of a hard-disk mixture in a periodic external potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:061503. [PMID: 18233851 DOI: 10.1103/physreve.76.061503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Indexed: 05/25/2023]
Abstract
The phase behavior of a 50% binary hard-disk mixture with diameter ratio sigmaB/sigmaA=0.414 , which is exposed to a one-dimensional periodic potential, is examined via Monte Carlo simulations. We find an induced structural crossover in the modulated liquid. At higher densities, depending on the strength of the external potential, the system exhibits a tunable demixing transition, followed by fluid-solid coexistence of an equimolar mixture with the S1(AB) square lattice. We find a decoupled melting of the sublattices of the S1(AB) lattice. The melting of the small-component sublattice perpendicular to the external potential minima leads to fissuring in the large-component sublattice.
Collapse
Affiliation(s)
- Kerstin Franzrahe
- Department of Physics, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | | |
Collapse
|
32
|
Royall CP, Louis AA, Tanaka H. Measuring colloidal interactions with confocal microscopy. J Chem Phys 2007; 127:044507. [PMID: 17672707 DOI: 10.1063/1.2755962] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use confocal laser scanning microscopy to measure interactions in colloidal suspensions. By inverting the radial distribution function, determined by tracking the particle coordinates, we obtain the effective interaction between the colloidal particles. Although this method can be applied to arbitrary colloidal interactions, here we demonstrate its efficacy with two well-known systems for which accurate theories are available: a colloid-polymer mixture and binary hard spheres. The high sensitivity of this method allows for the precise determination of complex interactions, as exemplified, for example, by the accurate resolution of the oscillatory effective potential of the binary hard sphere system. We argue that the method is particularly well suited for the determination of attractive forces.
Collapse
Affiliation(s)
- C Patrick Royall
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | | | | |
Collapse
|