1
|
Wang C, Gupta A, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Winkler R, Shayegan M. Highly Anisotropic Even-Denominator Fractional Quantum Hall State in an Orbitally Coupled Half-Filled Landau Level. PHYSICAL REVIEW LETTERS 2023; 131:056302. [PMID: 37595236 DOI: 10.1103/physrevlett.131.056302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
The even-denominator fractional quantum Hall states (FQHSs) in half-filled Landau levels are generally believed to host non-Abelian quasiparticles and be of potential use in topological quantum computing. Of particular interest is the competition and interplay between the even-denominator FQHSs and other ground states, such as anisotropic phases and composite fermion Fermi seas. Here, we report the observation of an even-denominator fractional quantum Hall state with highly anisotropic in-plane transport coefficients at Landau level filling factor ν=3/2. We observe this state in an ultra-high-quality GaAs two-dimensional hole system when a large in-plane magnetic field is applied. By increasing the in-plane field, we observe a sharp transition from an isotropic composite fermion Fermi sea to an anisotropic even-denominator FQHS. Our data and calculations suggest that a unique feature of two-dimensional holes, namely the coupling between heavy-hole and light-hole states, combines different orbital components in the wave function of one Landau level, and leads to the emergence of a highly anisotropic even-denominator fractional quantum Hall state. Our results demonstrate that the GaAs two-dimensional hole system is a unique platform for the exploration of exotic, many-body ground states.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Hossain MS, Ma MK, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Unconventional Anisotropic Even-Denominator Fractional Quantum Hall State in a System with Mass Anisotropy. PHYSICAL REVIEW LETTERS 2018; 121:256601. [PMID: 30608773 DOI: 10.1103/physrevlett.121.256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Indexed: 06/09/2023]
Abstract
The fractional quantum Hall state (FQHS) observed at a half-filled Landau level in an interacting two-dimensional electron system (2DES) is among the most exotic states of matter as its quasiparticles are expected to be Majorana excitations with non-Abelian statistics. We demonstrate here the unexpected presence of such a state in a novel 2DES with a strong band-mass anisotropy. The FQHS we observe has unusual characteristics. While its Hall resistance is well quantized at low temperatures, it exhibits highly anisotropic in-plane transport resembling compressible stripe or nematic charge-density-wave phases. More striking, the anisotropy sets in suddenly below a critical temperature, suggesting a finite-temperature phase transition. Our observations highlight how anisotropy modifies the many-body phases of a 2DES, and should further fuel the discussion surrounding the enigmatic even-denominator FQHS.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Meng K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Lin X, Du R, Xie X. Recent experimental progress of fractional quantum Hall effect: 5/2 filling state and graphene. Natl Sci Rev 2014. [DOI: 10.1093/nsr/nwu071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The phenomenon of fractional quantum Hall effect (FQHE) was first experimentally observed 33 years ago. FQHE involves strong Coulomb interactions and correlations among the electrons, which leads to quasiparticles with fractional elementary charge. Three decades later, the field of FQHE is still active with new discoveries and new technical developments. A significant portion of attention in FQHE has been dedicated to filling factor 5/2 state, for its unusual even denominator and possible application in topological quantum computation. Traditionally, FQHE has been observed in high-mobility GaAs heterostructure, but new materials such as graphene also open up a new area for FQHE. This review focuses on recent progress of FQHE at 5/2 state and FQHE in graphene.
Collapse
Affiliation(s)
- Xi Lin
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ruirui Du
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Xincheng Xie
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Bangert U, Pierce W, Kepaptsoglou DM, Ramasse Q, Zan R, Gass MH, Van den Berg JA, Boothroyd CB, Amani J, Hofsäss H. Ion implantation of graphene-toward IC compatible technologies. NANO LETTERS 2013; 13:4902-7. [PMID: 24059439 DOI: 10.1021/nl402812y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Doping of graphene via low energy ion implantation could open possibilities for fabrication of nanometer-scale patterned graphene-based devices as well as for graphene functionalization compatible with large-scale integrated semiconductor technology. Using advanced electron microscopy/spectroscopy methods, we show for the first time directly that graphene can be doped with B and N via ion implantation and that the retention is in good agreement with predictions from calculation-based literature values. Atomic resolution high-angle dark field imaging (HAADF) combined with single-atom electron energy loss (EEL) spectroscopy reveals that for sufficiently low implantation energies ions are predominantly substitutionally incorporated into the graphene lattice with a very small fraction residing in defect-related sites.
Collapse
Affiliation(s)
- U Bangert
- School of Materials, The University of Manchester , Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Smith PM, Kennett MP. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:055601. [PMID: 22227599 DOI: 10.1088/0953-8984/24/5/055601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role.
Collapse
Affiliation(s)
- Peter M Smith
- Physics Department, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|
6
|
Koduvayur SP, Lyanda-Geller Y, Khlebnikov S, Csathy G, Manfra MJ, Pfeiffer LN, West KW, Rokhinson LP. Effect of strain on stripe phases in the quantum Hall regime. PHYSICAL REVIEW LETTERS 2011; 106:016804. [PMID: 21231765 DOI: 10.1103/physrevlett.106.016804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Indexed: 05/30/2023]
Abstract
Preferential orientation of the stripe phases in the quantum Hall (QH) regime has remained a puzzle since its discovery. We show experimentally and theoretically that the direction of high and low resistance of the two-dimensional (2D) hole gas in the QH regime can be controlled by an external strain. Depending on the sign of the in-plane shear strain, the Hartree-Fock energy of holes or electrons is minimized when the charge density wave (CDW) is oriented along the [110] or [110] directions. We suggest that shear strains due to internal electric fields in the growth direction are responsible for the observed orientation of CDW in pristine electron and hole samples.
Collapse
Affiliation(s)
- Sunanda P Koduvayur
- Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|