1
|
Egedal J, Ng J, Le A, Daughton W, Wetherton B, Dorelli J, Gershman D, Rager A. Pressure Tensor Elements Breaking the Frozen-In Law During Reconnection in Earth's Magnetotail. PHYSICAL REVIEW LETTERS 2019; 123:225101. [PMID: 31868399 DOI: 10.1103/physrevlett.123.225101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Aided by fully kinetic simulations, spacecraft observations of magnetic reconnection in Earth's magnetotail are analyzed. The structure of the electron diffusion region is in quantitative agreement with the numerical model. Of special interest, the spacecraft data reveal how reconnection is mediated by off-diagonal stress in the electron pressure tensor breaking the frozen-in law of the electron fluid.
Collapse
Affiliation(s)
- J Egedal
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J Ng
- Center for Heliophysics, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - A Le
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - W Daughton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - B Wetherton
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - J Dorelli
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - D Gershman
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - A Rager
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| |
Collapse
|
2
|
Eastwood JP, Mistry R, Phan TD, Schwartz SJ, Ergun RE, Drake JF, Øieroset M, Stawarz JE, Goldman MV, Haggerty C, Shay MA, Burch JL, Gershman DJ, Giles BL, Lindqvist PA, Torbert RB, Strangeway RJ, Russell CT. Guide Field Reconnection: Exhaust Structure and Heating. GEOPHYSICAL RESEARCH LETTERS 2018; 45:4569-4577. [PMID: 31031447 PMCID: PMC6473590 DOI: 10.1029/2018gl077670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 06/09/2023]
Abstract
Magnetospheric Multiscale observations are used to probe the structure and temperature profile of a guide field reconnection exhaust ~100 ion inertial lengths downstream from the X-line in the Earth's magnetosheath. Asymmetric Hall electric and magnetic field signatures were detected, together with a density cavity confined near 1 edge of the exhaust and containing electron flow toward the X-line. Electron holes were also detected both on the cavity edge and at the Hall magnetic field reversal. Predominantly parallel ion and electron heating was observed in the main exhaust, but within the cavity, electron cooling and enhanced parallel ion heating were found. This is explained in terms of the parallel electric field, which inhibits electron mixing within the cavity on newly reconnected field lines but accelerates ions. Consequently, guide field reconnection causes inhomogeneous changes in ion and electron temperature across the exhaust.
Collapse
Affiliation(s)
| | - R. Mistry
- The Blackett LaboratoryImperial College LondonLondonUK
| | - T. D. Phan
- Space Sciences LaboratoryUniversity of CaliforniaBerkeleyCAUSA
| | - S. J. Schwartz
- The Blackett LaboratoryImperial College LondonLondonUK
- LASP/Department of Astrophysical and Planetary SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - R. E. Ergun
- LASP/Department of Astrophysical and Planetary SciencesUniversity of Colorado BoulderBoulderCOUSA
| | - J. F. Drake
- Department of Physics and Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkMDUSA
| | - M. Øieroset
- Space Sciences LaboratoryUniversity of CaliforniaBerkeleyCAUSA
| | - J. E. Stawarz
- The Blackett LaboratoryImperial College LondonLondonUK
| | - M. V. Goldman
- Department of PhysicsUniversity of Colorado BoulderBoulderCOUSA
| | - C. Haggerty
- Department of Physics and AstronomyUniversity of DelawareNewarkDEUSA
- Now at The Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoILUSA
| | - M. A. Shay
- Department of Physics and AstronomyUniversity of DelawareNewarkDEUSA
| | - J. L. Burch
- Southwest Research InstituteSan AntonioTXUSA
| | - D. J. Gershman
- Department of Physics and AstronomyUniversity of DelawareNewarkDEUSA
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - B. L. Giles
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - P. A. Lindqvist
- Department of Space and Plasma PhysicsRoyal Institute of TechnologyStockholmSweden
| | - R. B. Torbert
- Now at The Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoILUSA
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | - R. J. Strangeway
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
| | - C. T. Russell
- Department of Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
3
|
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath. Nature 2018; 557:202-206. [PMID: 29743689 DOI: 10.1038/s41586-018-0091-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/30/2018] [Indexed: 11/08/2022]
Abstract
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
Collapse
|
4
|
Wilder FD, Ergun RE, Eriksson S, Phan TD, Burch JL, Ahmadi N, Goodrich KA, Newman DL, Trattner KJ, Torbert RB, Giles BL, Strangeway RJ, Magnes W, Lindqvist PA, Khotyaintsev YV. Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field. PHYSICAL REVIEW LETTERS 2017; 118:265101. [PMID: 28707935 DOI: 10.1103/physrevlett.118.265101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 06/07/2023]
Abstract
We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV/m, which led to dissipation on the order of 8 nW/m^{3}. The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.
Collapse
Affiliation(s)
- F D Wilder
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - R E Ergun
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - S Eriksson
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - N Ahmadi
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - K A Goodrich
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - D L Newman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - K J Trattner
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - R B Torbert
- Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - B L Giles
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - R J Strangeway
- Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, California 90095, USA
| | - W Magnes
- Space Research Institute, Austrian Academy of Sciences, Graz 8042, Austria
| | - P-A Lindqvist
- Royal Institute of Technology, Stockholm SE-11428, Sweden
| | | |
Collapse
|
5
|
Eriksson S, Wilder FD, Ergun RE, Schwartz SJ, Cassak PA, Burch JL, Chen LJ, Torbert RB, Phan TD, Lavraud B, Goodrich KA, Holmes JC, Stawarz JE, Sturner AP, Malaspina DM, Usanova ME, Trattner KJ, Strangeway RJ, Russell CT, Pollock CJ, Giles BL, Hesse M, Lindqvist PA, Drake JF, Shay MA, Nakamura R, Marklund GT. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection. PHYSICAL REVIEW LETTERS 2016; 117:015001. [PMID: 27419573 DOI: 10.1103/physrevlett.117.015001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 06/06/2023]
Abstract
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
Collapse
Affiliation(s)
- S Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - F D Wilder
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - R E Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - S J Schwartz
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
| | - P A Cassak
- West Virginia University, Morgantown, West Virginia 26506, USA
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238-5166, USA
| | - L-J Chen
- University of Maryland, College Park, Maryland 20742, USA
| | - R B Torbert
- Southwest Research Institute, San Antonio, Texas 78238-5166, USA
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - B Lavraud
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, 31028 Toulouse, France
- Centre National de la Recherche Scientifique, UMR 5277, Toulouse, France
| | - K A Goodrich
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - J C Holmes
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - J E Stawarz
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - A P Sturner
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - D M Malaspina
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - M E Usanova
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - K J Trattner
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - R J Strangeway
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C T Russell
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C J Pollock
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - B L Giles
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - M Hesse
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - P-A Lindqvist
- KTH Royal Institute of Technology, SE-11428 Stockholm, Sweden
| | - J F Drake
- University of Maryland, College Park, Maryland 20742, USA
| | - M A Shay
- University of Delaware, Newark, Delaware 19716, USA
| | - R Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
| | - G T Marklund
- KTH Royal Institute of Technology, SE-11428 Stockholm, Sweden
| |
Collapse
|
6
|
Ergun RE, Goodrich KA, Wilder FD, Holmes JC, Stawarz JE, Eriksson S, Sturner AP, Malaspina DM, Usanova ME, Torbert RB, Lindqvist PA, Khotyaintsev Y, Burch JL, Strangeway RJ, Russell CT, Pollock CJ, Giles BL, Hesse M, Chen LJ, Lapenta G, Goldman MV, Newman DL, Schwartz SJ, Eastwood JP, Phan TD, Mozer FS, Drake J, Shay MA, Cassak PA, Nakamura R, Marklund G. Magnetospheric Multiscale Satellites Observations of Parallel Electric Fields Associated with Magnetic Reconnection. PHYSICAL REVIEW LETTERS 2016; 116:235102. [PMID: 27341241 DOI: 10.1103/physrevlett.116.235102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 06/06/2023]
Abstract
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Collapse
Affiliation(s)
- R E Ergun
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - K A Goodrich
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - F D Wilder
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - J C Holmes
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - J E Stawarz
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - S Eriksson
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - A P Sturner
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - D M Malaspina
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - M E Usanova
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - R B Torbert
- University of New Hampshire, Durham, New Hampshire 03824, USA
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - P-A Lindqvist
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Y Khotyaintsev
- Swedish Institute of Space Physics (Uppsala), Uppsala, Sweden
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - R J Strangeway
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C T Russell
- University of California, Los Angeles, Los Angeles, California 90095, USA
| | - C J Pollock
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - B L Giles
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - M Hesse
- NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - L J Chen
- University of Maryland, College Park, Maryland 20742, USA
| | - G Lapenta
- Leuven Universiteit, Leuven, Belgium
| | - M V Goldman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - D L Newman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - S J Schwartz
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
- The Blackett Laboratory, Imperial College London, United Kingdom
| | - J P Eastwood
- The Blackett Laboratory, Imperial College London, United Kingdom
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - F S Mozer
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - J Drake
- University of Maryland, College Park, Maryland 20742, USA
| | - M A Shay
- University of Delaware, Newark, Delaware 19716, USA
| | - P A Cassak
- West Virginia University, Morgantown, West Virginia 26506, USA
| | - R Nakamura
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - G Marklund
- KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
7
|
|
8
|
Rosenberg MJ, Li CK, Fox W, Zylstra AB, Stoeckl C, Séguin FH, Frenje JA, Petrasso RD. Slowing of Magnetic Reconnection Concurrent with Weakening Plasma Inflows and Increasing Collisionality in Strongly Driven Laser-Plasma Experiments. PHYSICAL REVIEW LETTERS 2015; 114:205004. [PMID: 26047236 DOI: 10.1103/physrevlett.114.205004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 06/04/2023]
Abstract
An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, β≲20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}∼20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.
Collapse
Affiliation(s)
- M J Rosenberg
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C K Li
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Fox
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - A B Zylstra
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Stoeckl
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - F H Séguin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J A Frenje
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R D Petrasso
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
9
|
Leonardis E, Chapman SC, Daughton W, Roytershteyn V, Karimabadi H. Identification of intermittent multifractal turbulence in fully kinetic simulations of magnetic reconnection. PHYSICAL REVIEW LETTERS 2013; 110:205002. [PMID: 25167422 DOI: 10.1103/physrevlett.110.205002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Indexed: 06/03/2023]
Abstract
Recent fully nonlinear, kinetic three-dimensional simulations of magnetic reconnection [W. Daughton et al., Nat. Phys. 7, 539 (2011)] evolve structures and exhibit dynamics on multiple scales, in a manner reminiscent of turbulence. These simulations of reconnection are among the first to be performed at sufficient spatiotemporal resolution to allow formal quantitative analysis of statistical scaling, which we present here. We find that the magnetic field fluctuations generated by reconnection are anisotropic, have nontrivial spatial correlation, and exhibit the hallmarks of finite range fluid turbulence: they have non-Gaussian distributions, exhibit extended self-similarity in their scaling, and are spatially multifractal. Furthermore, we find that the rate at which the fields do work on the particles, J · E, is also multifractal, so that magnetic energy is converted to plasma kinetic energy in a manner that is spatially intermittent. This suggests that dissipation in this sense in collisionless reconnection on kinetic scales has an analogue in fluidlike turbulent phenomenology, in that it proceeds via multifractal structures generated by an intermittent cascade.
Collapse
Affiliation(s)
- E Leonardis
- Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S C Chapman
- Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - W Daughton
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - V Roytershteyn
- University of California, San Diego, La Jolla, California 92093, USA
| | - H Karimabadi
- University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
10
|
Le A, Egedal J, Ohia O, Daughton W, Karimabadi H, Lukin VS. Regimes of the electron diffusion region in magnetic reconnection. PHYSICAL REVIEW LETTERS 2013; 110:135004. [PMID: 23581331 DOI: 10.1103/physrevlett.110.135004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Indexed: 06/02/2023]
Abstract
The electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers. This new regime with electron current sheets extending to the system size is also reproduced by fluid simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent spacecraft observations.
Collapse
Affiliation(s)
- A Le
- Department of Physics, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dong QL, Wang SJ, Lu QM, Huang C, Yuan DW, Liu X, Lin XX, Li YT, Wei HG, Zhong JY, Shi JR, Jiang SE, Ding YK, Jiang BB, Du K, He XT, Yu MY, Liu CS, Wang S, Tang YJ, Zhu JQ, Zhao G, Sheng ZM, Zhang J. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction. PHYSICAL REVIEW LETTERS 2012; 108:215001. [PMID: 23003270 DOI: 10.1103/physrevlett.108.215001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Indexed: 06/01/2023]
Abstract
Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.
Collapse
Affiliation(s)
- Quan-Li Dong
- Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Goldman MV, Lapenta G, Newman DL, Markidis S, Che H. Jet deflection by very weak guide fields during magnetic reconnection. PHYSICAL REVIEW LETTERS 2011; 107:135001. [PMID: 22026861 DOI: 10.1103/physrevlett.107.135001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Indexed: 05/31/2023]
Abstract
Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended "outer electron diffusion regions." New PIC simulations with an ion to electron mass ratio as large as 1836 (an H(+) plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.
Collapse
Affiliation(s)
- M V Goldman
- Department of Physics and CIPS, University of Colorado, Boulder, 80309, USA
| | | | | | | | | |
Collapse
|
13
|
Shay MA, Drake JF, Eastwood JP, Phan TD. Super-Alfvénic propagation of substorm reconnection signatures and Poynting flux. PHYSICAL REVIEW LETTERS 2011; 107:065001. [PMID: 21902330 DOI: 10.1103/physrevlett.107.065001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Indexed: 05/31/2023]
Abstract
The propagation of reconnection signatures and their associated energy are examined using kinetic particle-in-cell simulations and Cluster satellite observations. It is found that the quadrupolar out-of-plane magnetic field near the separatrices is associated with a kinetic Alfvén wave. For magnetotail parameters, the parallel propagation of this wave is super-Alfvénic (V(∥) ∼ 1500-5500 km/s) and generates substantial Poynting flux (S ∼ 10(-5)-10(-4) W/m(2)) consistent with Cluster observations of magnetic reconnection. This Poynting flux substantially exceeds that due to frozen-in ion bulk outflows and is sufficient to generate white light aurora in Earth's ionosphere.
Collapse
Affiliation(s)
- M A Shay
- Department of Physics and Astronomy, University of Delaware, Newark, 19716, USA.
| | | | | | | |
Collapse
|
14
|
Zenitani S, Hesse M, Klimas A, Kuznetsova M. New measure of the dissipation region in collisionless magnetic reconnection. PHYSICAL REVIEW LETTERS 2011; 106:195003. [PMID: 21668168 DOI: 10.1103/physrevlett.106.195003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 05/30/2023]
Abstract
A new measure to identify a small-scale dissipation region in collisionless magnetic reconnection is proposed. The energy transfer from the electromagnetic field to plasmas in the electron's rest frame is formulated as a Lorentz-invariant scalar quantity. The measure is tested by two-dimensional particle-in-cell simulations in typical configurations: symmetric and asymmetric reconnection, with and without the guide field. The innermost region surrounding the reconnection site is accurately located in all cases. We further discuss implications for nonideal MHD dissipation.
Collapse
Affiliation(s)
- Seiji Zenitani
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | | | | | | |
Collapse
|
15
|
Eastwood JP. The science of space weather. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2008; 366:4489-4500. [PMID: 18812302 DOI: 10.1098/rsta.2008.0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The basic physics underpinning space weather is reviewed, beginning with a brief overview of the main causes of variability in the near-Earth space environment. Although many plasma phenomena contribute to space weather, one of the most important is magnetic reconnection, and recent cutting edge research in this field is reviewed. We then place this research in context by discussing a number of specific types of space weather in more detail. As society inexorably increases its dependence on space, the necessity of predicting and mitigating space weather will become ever more acute. This requires a deep understanding of the complexities inherent in the plasmas that fill space and has prompted the development of a new generation of scientific space missions at the international level.
Collapse
Affiliation(s)
- Jonathan P Eastwood
- Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Faganello M, Califano F, Pegoraro F. Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth's magnetosphere: formation of electromagnetic coherent structures. PHYSICAL REVIEW LETTERS 2008; 101:105001. [PMID: 18851219 DOI: 10.1103/physrevlett.101.105001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Indexed: 05/26/2023]
Abstract
We give evidence for the first time of the onset of undriven fast, collisionless magnetic reconnection during the evolution of an initially homogeneous magnetic field advected in a sheared velocity field. We consider the interaction of the solar wind with the magnetospheric plasma at low latitude and show that reconnection takes place in the layer between adjacent vortices generated by the Kelvin-Helmholtz instability. This process generates coherent magnetic structures with a size comparable to the ion inertial scale, much smaller than the system dimensions but much larger than the electron inertial scale. These magnetic structures are further advected in the plasma in a complex pattern but remain stable over a time interval much longer than their formation time. These results can be crucial for the interpretation of satellite data showing coherent magnetic structures in the Earth's magnetosheath or the magnetotail.
Collapse
Affiliation(s)
- M Faganello
- Physics Department, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
17
|
Ren Y, Yamada M, Ji H, Gerhardt SP, Kulsrud R. Identification of the electron-diffusion region during magnetic reconnection in a laboratory plasma. PHYSICAL REVIEW LETTERS 2008; 101:085003. [PMID: 18764626 DOI: 10.1103/physrevlett.101.085003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Indexed: 05/26/2023]
Abstract
We report the first identification of the electron-diffusion region, where demagnetized electrons are accelerated to super-Alfvénic speed, in a reconnecting laboratory plasma. The width of the electron-diffusion region scales with the electron skin depth [ approximately (5.5-7.5)c/omega_{pe}] and the peak electron outflow velocity scales with the electron Alfvén velocity [ approximately (0.12-0.16)V_{eA}], independent of ion mass.
Collapse
Affiliation(s)
- Yang Ren
- Center for Magnetic Self-organization in Laboratory and Astrophysical Plasmas, Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA
| | | | | | | | | |
Collapse
|
18
|
Wan W, Lapenta G. Electron self-reinforcing process of magnetic reconnection. PHYSICAL REVIEW LETTERS 2008; 101:015001. [PMID: 18764118 DOI: 10.1103/physrevlett.101.015001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Indexed: 05/26/2023]
Abstract
The growth of collisionless magnetic reconnection is discovered to be a nonlinear electron self-reinforcing process. Accelerated by the reconnection electric field, the small portion of energetic electrons in the vicinity of the X point are found to be the cause of the fast reconnection rate. This new mechanism explains that recent simulation results of different reconnection evolutions (i.e., steady state, quasisteady state, or nonsteady state) are essentially determined by the availability of feeding plasma inflows. Simulations are carried out with open boundary conditions.
Collapse
Affiliation(s)
- Weigang Wan
- Plasma Theory Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|