1
|
Yang R, Wang Q, Wang Y, Zhang X, Zheng X, Li Y, Prusky D, Bi Y, Han Y. MYB168 and WRKY20 transcription factors synergistically regulate lignin monomer synthesis during potato tuber wound healing. PLANT PHYSIOLOGY 2024; 197:kiae573. [PMID: 39498832 DOI: 10.1093/plphys/kiae573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/07/2024]
Abstract
Lignin is a critical component of the closing layer of the potato (Solanum tuberosum L.) tuber during healing; however, the molecular mechanism of its formation remains poorly understood. To elucidate the molecular mechanism of tuber healing, we screened the genes encoding transcription factors that regulate lignin synthesis(StMYB24/49/105/144/168, StWRKY19/20/22/23/34) and the key genes involved in lignin monomer synthesis (PHENYLALANINE AMMONIA LYASE 5 (StPAL5) and CINNAMYL ALCOHOL DEHYDROGENASE 14 (StCAD14)) for induced expression after wounding using transcriptome data. Dual-luciferase assay, yeast one-hybrid, electrophoretic mobility shift assay, and chromatin immunoprecipitation-qPCR assays revealed that StMYB168 could bind directly to the StPAL5 and StCAD14 promoters to activate their expression and that StWRKY20 enhanced this regulation with a synergistic effect. Y2H, bimolecular fluorophore complementation, and coimmunoprecipitation assays showed that StMYB168 interacted with StWRKY20 to form a MYB-WRKY complex. Furthermore, transient overexpression (OE) of StMYB168 and StWRKY20 in Nicotiana benthamiana leaves upregulated the expression of NbPAL and NbCAD10 and promoted lignin accumulation in the leaves. In addition, OE of StWRKY20 and StMYB168 together resulted in higher expression levels of NbPAL and NbCAD10 and higher levels of lignin monomer and total lignin. In contrast, silencing of StMYB168 and StWRKY20 in potato significantly reduced the lignin content of wounded tubers. In conclusion, StMYB168 and StWRKY20 are important regulators of lignin biosynthesis in potato tubers during healing and can positively regulate lignin biosynthesis by forming a complex. The elucidation of this regulatory module provides information on the regulatory mechanism of lignin monomer synthesis in wounded tubers at the transcriptional level.
Collapse
Affiliation(s)
- Ruirui Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qihui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejiao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyuan Zheng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
2
|
Bunwaree HD, Klein E, Saubeau G, Desprez B, Ziegler-Graff V, Gilmer D. Rapid and Visual Screening of Virus Infection in Sugar Beets Through Polerovirus-Induced Gene Silencing. Viruses 2024; 16:1823. [PMID: 39772132 PMCID: PMC11680160 DOI: 10.3390/v16121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Since the ban of neonicotinoid insecticides in the European Union, sugar beet production is threatened by outbreaks of virus yellows (VY) disease, caused by several aphid-transmitted viruses, including the polerovirus beet mild yellowing virus (BMYV). As the symptoms induced may vary depending on multiple infections and other stresses, there is an urgent need for fast screening tests to evaluate resistance/tolerance traits in sugar beet accessions. To address this issue, we exploited the virus-induced gene silencing (VIGS) system, by introducing a fragment of a Beta vulgaris gene involved in chlorophyll synthesis in the BMYV genome. This recombinant virus was able to generate early clear vein chlorosis symptoms in infected sugar beets, allowing easy and rapid visual discernment of infected plants across five sugar beet lines. The recombinant virus displayed similar infectivity as the wild-type, and the insert remained stable within the viral progeny. We demonstrated that the percentage of VIGS-symptomatic plants was representative of the infection rate of each evaluated line, and depending on the susceptibility of the line to BMYV infection, VIGS symptoms may last over months. Our work provides a polerovirus-based VIGS system adapted to sugar beet crop allowing visual and rapid large-scale screens for resistance or functional genomic studies.
Collapse
Affiliation(s)
- Heemee Devi Bunwaree
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
| | - Elodie Klein
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
- Florimond Desprez, 3 rue Florimond Desprez, 59242 Cappelle-en-Pévèle, France
| | - Guillaume Saubeau
- Florimond Desprez, 3 rue Florimond Desprez, 59242 Cappelle-en-Pévèle, France
| | - Bruno Desprez
- Florimond Desprez, 3 rue Florimond Desprez, 59242 Cappelle-en-Pévèle, France
| | - Véronique Ziegler-Graff
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR 2357, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Tuo D, Yao Y, Yan P, Chen X, Qu F, Xue W, Liu J, Kong H, Guo J, Cui H, Dai Z, Shen W. Development of cassava common mosaic virus-based vector for protein expression and gene editing in cassava. PLANT METHODS 2023; 19:78. [PMID: 37537660 PMCID: PMC10399001 DOI: 10.1186/s13007-023-01055-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Plant virus vectors designed for virus-mediated protein overexpression (VOX), virus-induced gene silencing (VIGS), and genome editing (VIGE) provide rapid and cost-effective tools for functional genomics studies, biotechnology applications and genome modification in plants. We previously reported that a cassava common mosaic virus (CsCMV, genus Potexvirus)-based VIGS vector was used for rapid gene function analysis in cassava. However, there are no VOX and VIGE vectors available in cassava. RESULTS In this study, we developed an efficient VOX vector (CsCMV2-NC) for cassava by modifying the CsCMV-based VIGS vector. Specifically, the length of the duplicated putative subgenomic promoter (SGP1) of the CsCMV CP gene was increased to improve heterologous protein expression in cassava plants. The modified CsCMV2-NC-based VOX vector was engineered to express genes encoding green fluorescent protein (GFP), bacterial phytoene synthase (crtB), and Xanthomonas axonopodis pv. manihotis (Xam) type III effector XopAO1 for viral infection tracking, carotenoid biofortification and Xam virulence effector identification in cassava. In addition, we used CsCMV2-NC to deliver single guide RNAs (gMePDS1/2) targeting two loci of the cassava phytoene desaturase gene (MePDS) in Cas9-overexpressing transgenic cassava lines. The CsCMV-gMePDS1/2 efficiently induced deletion mutations of the targeted MePDS with the albino phenotypes in systemically infected cassava leaves. CONCLUSIONS Our results provide a useful tool for rapid and efficient heterologous protein expression and guide RNA delivery in cassava. This expands the potential applications of CsCMV-based vector in gene function studies, biotechnology research, and precision breeding for cassava.
Collapse
Affiliation(s)
- Decai Tuo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Yuan Yao
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Pu Yan
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Xin Chen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Feihong Qu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Weiqian Xue
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Jinping Liu
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Hua Kong
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Jianchun Guo
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Zhaoji Dai
- School of Tropical Agriculture and Forestry, Sanya Nanfan Research Institute, Hainan University, Haikou & Sanya, Hainan, China
| | - Wentao Shen
- National Key Laboratory for Tropical Crops Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China.
| |
Collapse
|
4
|
Spechenkova N, Samarskaya VO, Kalinina NO, Zavriev SK, MacFarlane S, Love AJ, Taliansky M. Plant Poly(ADP-Ribose) Polymerase 1 Is a Potential Mediator of Cross-Talk between the Cajal Body Protein Coilin and Salicylic Acid-Mediated Antiviral Defence. Viruses 2023; 15:1282. [PMID: 37376582 DOI: 10.3390/v15061282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The nucleolus and Cajal bodies (CBs) are sub-nuclear domains with well-known roles in RNA metabolism and RNA-protein assembly. However, they also participate in other important aspects of cell functioning. This study uncovers a previously unrecognised mechanism by which these bodies and their components regulate host defences against pathogen attack. We show that the CB protein coilin interacts with poly(ADP-ribose) polymerase 1 (PARP1), redistributes it to the nucleolus and modifies its function, and that these events are accompanied by substantial increases in endogenous concentrations of salicylic acid (SA), activation of SA-responsive gene expression and callose deposition leading to the restriction of tobacco rattle virus (TRV) systemic infection. Consistent with this, we also find that treatment with SA subverts the negative effect of the pharmacological PARP inhibitor 3-aminobenzamide (3AB) on plant recovery from TRV infection. Our results suggest that PARP1 could act as a key molecular actuator in the regulatory network which integrates coilin activities as a stress sensor for virus infection and SA-mediated antivirus defence.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - S MacFarlane
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
5
|
Zhang Y, He T, Tian W, Xia Y, He Y, Su M, He G. The Expression of the StNRAMP2 Gene Determined the Accumulation of Cadmium in Different Tissues of Potato. Int J Mol Sci 2023; 24:ijms24119322. [PMID: 37298282 DOI: 10.3390/ijms24119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that threatens human health when enriched in crops. NRAMPs are a family of natural macrophage proteins reported to play a key role in Cd transport in plants. In order to explore the gene regulation mechanism of potato under Cd stress and the role of NRAMPs family in it, this study analyzed the gene expression differences of two different Cd accumulation levels in potato after 7 days of 50 mg/kg Cd stress and screened out the key genes that may play a major role in the differential accumulation of Cd in different varieties. Additionally, StNRAMP2 was selected for verification. Further verification showed that the StNRAMP2 gene plays an important role in the accumulation of Cd in potato. Interestingly, silencing StNRAMP2 increased Cd accumulation in tubers but significantly decreased Cd accumulation in other sites, suggesting a critical role of StNRAMP2 in Cd uptake and transport in potatoes. To further confirm this conclusion, we performed heterologous expression experiments in which overexpression of StNRAMP2 gene in tomato resulted in a threefold increase in Cd content, which further confirmed the important role of StNRAMP2 in the process of Cd accumulation compared with wild-type plants. In addition, we found that the addition of Cd to the soil increased the activity of the plant antioxidant enzyme system, and silencing StNRAMP2 partially reversed this effect. This suggests that the StNRAMP2 gene plays an important role in plant stress tolerance, and future studies could further explore the role of this gene in other environmental stresses. In conclusion, the results of this study improve the understanding of the mechanism of Cd accumulation in potato and provide experimental basis for remediation of Cd pollution.
Collapse
Affiliation(s)
- Yule Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Weijun Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yabei Xia
- Research and Development Center of Fine Chemical Industry, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Minmin Su
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Jagram N, Dasgupta I. Principles and practice of virus induced gene silencing for functional genomics in plants. Virus Genes 2023; 59:173-187. [PMID: 36266497 DOI: 10.1007/s11262-022-01941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Virus induced gene silencing (VIGS) has, of late, emerged as an important tool for transient silencing of genes in plants. This is now being increasingly used to determine functions of novel genes in a wide variety of plants, many of which are important crops yielding food and fiber or are sources of products having pharmaceutical uses. The technology for VIGS comprises the development of vectors derived from viruses, choosing the optimal orientation and size of the gene to be targeted and adopting the most suitable method of inoculation. This review gives a brief overview of the main aspects of VIGS technology as is being practiced. It also discusses the challenges the technology faces and the possible way ahead to improve its robustness, so that the technology finds wider applications.
Collapse
Affiliation(s)
- Neelam Jagram
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
7
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Establishment of a Virus-Induced Gene-Silencing (VIGS) System in Tea Plant and Its Use in the Functional Analysis of CsTCS1. Int J Mol Sci 2022; 24:ijms24010392. [PMID: 36613837 PMCID: PMC9820744 DOI: 10.3390/ijms24010392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) is an important global economic crop and is considered to enhance health. However, the functions of many genes in tea plants are unknown. Virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) is an effective tool for the analysis of gene functions, although this method has rarely been reported in tea plants. In this study, we established an effective VIGS-mediated gene knockout technology to understand the functional identification of large-scale genomic sequences in tea plants. The results showed that the VIGS system was verified by detecting the virus and using a real-time quantitative reverse transcription PCR (qRT-PCR) analysis. The reporter gene CsPOR1 (protochlorophyllide oxidoreductase) was silenced using the vacuum infiltration method, and typical photobleaching and albino symptoms were observed in newly sprouted leaves at the whole plant level of tea after infection for 12 d and 25 d. After optimization, the VIGS system was successfully used to silence the tea plant CsTCS1 (caffeine synthase) gene. The results showed that the relative caffeine content was reduced 6.26-fold compared with the control, and the level of expression of CsPOR1 decreased by approximately 3.12-fold in plants in which CsPOR1 was silenced. These results demonstrate that VIGS can be quickly and efficiently used to analyze the function of genes in tea plants. The successful establishment of VIGS could eliminate the need for tissue culture by providing an effective method to study gene function in tea plants and accelerate the process of functional genome research in tea.
Collapse
|
9
|
Chincinska IA, Miklaszewska M, Sołtys-Kalina D. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. PLANTA 2022; 257:25. [PMID: 36562862 PMCID: PMC9789015 DOI: 10.1007/s00425-022-04054-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
MAIN CONCLUSION Genome editing using CRISPR/Cas technology improves the quality of potato as a food crop and enables its use as both a model plant in fundamental research and as a potential biofactory for producing valuable compounds for industrial applications. Potato (Solanum tuberosum L.) plays a significant role in ensuring global food and nutritional security. Tuber yield is negatively affected by biotic and abiotic stresses, and enzymatic browning and cold-induced sweetening significantly contribute to post-harvest quality losses. With the dual challenges of a growing population and a changing climate, potato enhancement is essential for its sustainable production. However, due to several characteristics of potato, including high levels of heterozygosity, tetrasomic inheritance, inbreeding depression, and self-incompatibility of diploid potato, conventional breeding practices are insufficient to achieve substantial trait improvement in tetraploid potato cultivars within a relatively short time. CRISPR/Cas-mediated genome editing has opened new possibilities to develop novel potato varieties with high commercialization potential. In this review, we summarize recent developments in optimizing CRISPR/Cas-based methods for potato genome editing, focusing on approaches addressing the challenging biology of this species. We also discuss the feasibility of obtaining transgene-free genome-edited potato varieties and explore different strategies to improve potato stress resistance, nutritional value, starch composition, and storage and processing characteristics. Altogether, this review provides insight into recent advances, possible bottlenecks, and future research directions in potato genome editing using CRISPR/Cas technology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Miklaszewska
- Department of Functional and Evolutionary Ecology, Division of Molecular Systems Biology (MOSYS), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Dorota Sołtys-Kalina
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
10
|
Advances in RNA-Silencing-Related Resistance against Viruses in Potato. Genes (Basel) 2022; 13:genes13050731. [PMID: 35627117 PMCID: PMC9141481 DOI: 10.3390/genes13050731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Potato is a major food crop that has the potential to feed the increasing global population. Potato is the fourth most important crop and a staple food for many people worldwide. The traditional breeding of potato poses many challenges because of its autotetraploid nature and its tendency toward inbreeding depression. Moreover, potato crops suffer considerable production losses because of infections caused by plant viruses. In this context, RNA silencing technology has been successfully applied in model and crop species. In this review, we describe the RNA interference (RNAi) mechanisms, including small-interfering RNA, microRNA, and artificial microRNA, which may be used to engineer resistance against potato viruses. We also explore the latest advances in the development of antiviral strategies to enhance resistance against potato virus X, potato virus Y, potato virus A, potato leafroll virus, and potato spindle tuber viroid. Furthermore, the challenges in RNAi that need to be overcome are described in this review. Altogether, this report would be insightful for the researchers attempting to understand the RNAi-mediated resistance against viruses in potato.
Collapse
|
11
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
12
|
Nahirñak V, Almasia NI, González MN, Massa GA, Décima Oneto CA, Feingold SE, Hopp HE, Vazquez Rovere C. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. FRONTIERS IN PLANT SCIENCE 2022; 12:768233. [PMID: 35082806 PMCID: PMC8784693 DOI: 10.3389/fpls.2021.768233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Potato (Solanum tuberosum L.) is a crop of world importance that produces tubers of high nutritional quality. It is considered one of the promising crops to overcome the challenges of poverty and hunger worldwide. However, it is exposed to different biotic and abiotic stresses that can cause significant losses in production. Thus, potato is a candidate of special relevance for improvements through conventional breeding and biotechnology. Since conventional breeding is time-consuming and challenging, genetic engineering provides the opportunity to introduce/switch-off genes of interest without altering the allelic combination that characterize successful commercial cultivars or to induce targeted sequence modifications by New Breeding Techniques. There is a variety of methods for potato improvement via genetic transformation. Most of them incorporate genes of interest into the nuclear genome; nevertheless, the development of plastid transformation protocols broadened the available approaches for potato breeding. Although all methods have their advantages and disadvantages, Agrobacterium-mediated transformation is the most used approach. Alternative methods such as particle bombardment, protoplast transfection with polyethylene glycol and microinjection are also effective. Independently of the DNA delivery approach, critical steps for a successful transformation are a rapid and efficient regeneration protocol and a selection system. Several critical factors affect the transformation efficiency: vector type, insert size, Agrobacterium strain, explant type, composition of the subculture media, selective agent, among others. Moreover, transient or stable transformation, constitutive or inducible promoters, antibiotic/herbicide resistance or marker-free strategies can be considered. Although great efforts have been made to optimize all the parameters, potato transformation protocols are highly genotype-dependent. Genome editing technologies provide promising tools in genetic engineering allowing precise modification of targeted sequences. Interestingly, transient expression of genome editing components in potato protoplasts was reported to generate edited plants without the integration of any foreign DNA, which is a valuable aspect from both a scientific and a regulatory perspective. In this review, current challenges and opportunities concerning potato genetic engineering strategies developed to date are discussed. We describe their critical parameters and constrains, and the potential application of the available tools for functional analyses or biotechnological purposes. Public concerns and safety issues are also addressed.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Natalia I. Almasia
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Matías N. González
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Cecilia A. Décima Oneto
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Horacio E. Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| |
Collapse
|
13
|
Long-Term Potato Virus X (PVX)-Based Transient Expression of Recombinant GFP Protein in Nicotiana benthamiana Culture In Vitro. PLANTS 2021; 10:plants10102187. [PMID: 34685995 PMCID: PMC8537016 DOI: 10.3390/plants10102187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Plant molecular farming has a great potential to produce valuable proteins. Transient expression technology provides high yields of recombinant proteins in greenhouse-grown plants, but every plant must be artificially agroinfiltrated, and open greenhouse systems are less controlled. Here, we propose to propagate agrobacteria-free plants with high-efficient long-term self-replicated transient gene expression in a well-controlled closed in vitro system. Nicotiana benthamiana plant tissue culture in vitro, with transient expression of recombinant GFP, was obtained through shoot induction from leaf explants infected by a PVX-based vector. The transient expression occurs in new tissues and regenerants due to the natural systemic distribution of viral RNA carrying the target gene. Gene silencing was delayed in plants grown in vitro, and GFP was detected in plants for five to six months. Agrobacteria-free, GFP-expressing plants can be micropropagated in vitro (avoiding an agroinfiltration step), "rejuvenated" through regeneration (maintaining culture for years), or transferred in soil. The mean GFP in the regenerants was 18% of the total soluble proteins (TSP) (0.52 mg/g of fresh leaf weight (FW). The highest value reached 47% TSP (2 mg/g FW). This study proposes a new method for recombinant protein production combining the advantages of transient expression technology and closed cultural systems.
Collapse
|
14
|
Garg A, Sharma S, Srivastava P, Ghosh S. Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant. PROTOPLASMA 2021; 258:1155-1162. [PMID: 33704567 DOI: 10.1007/s00709-021-01631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Kalmegh [Andrographis paniculata (Burm.f.) Wall. ex Nees] is one of the most studied medicinal plants for pharmaceutical properties and phytochemistry. However, functional genomics studies in kalmegh are so far limited due to the unavailability of a robust tool for gene silencing. Here, we tested the application of virus-induced gene silencing (VIGS) in kalmegh using the well-known Tobacco rattle virus (TRV)-based vectors and achieved targeted silencing of phytoene desaturase (ApPDS) which is essential in plants for carotenoid biosynthesis that protects chlorophyll from photooxidation. ApPDS silencing in kalmegh leaves developed a typical photobleaching phenotype. The silencing of ApPDS was confirmed by analysing ApPDS transcript level and determining chlorophyll content in the leaves of VIGS seedlings. The analysis revealed ~30% reduction in chlorophyll content, and 40 to 60% reduction in ApPDS transcript level in the leaves of VIGS seedlings. These findings clearly demonstrated the applicability of VIGS in kalmegh using TRV-based vectors. The VIGS protocol presented in this study might be useful for studying gene function related to medicinal and agricultural traits in kalmegh.
Collapse
Affiliation(s)
- Anchal Garg
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shubha Sharma
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Payal Srivastava
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Ghosh
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
16
|
Tuo D, Zhou P, Yan P, Cui H, Liu Y, Wang H, Yang X, Liao W, Sun D, Li X, Shen W. A cassava common mosaic virus vector for virus-induced gene silencing in cassava. PLANT METHODS 2021; 17:74. [PMID: 34247636 PMCID: PMC8273954 DOI: 10.1186/s13007-021-00775-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/01/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cassava is an important crop for food security and industry in the least-developed and developing countries. The completion of the cassava genome sequence and identification of large numbers of candidate genes by next-generation sequencing provide extensive resources for cassava molecular breeding and increase the need for rapid and efficient gene function analysis systems in cassava. Several plant virus-induced gene silencing (VIGS) systems have been developed as reverse genetic tools for rapid gene function analysis in cassava. However, these VIGS vectors could cause severe viral symptoms or inefficient gene silencing. RESULTS In this study, we constructed agroinfection-compatible infectious cDNA clones of cassava common mosaic virus isolate CM (CsCMV-CM, genus Potexvirus, family Alphaflexiviridae) that causes systemic infection with mild symptoms in cassava. CsCMV-CM was then modified to a viral vector carrying the Nimble cloning frame, which facilitates the rapid and high-throughput cloning of silencing fragments into the viral genome. The CsCMV-based vector successfully silenced phytoene desaturase (PDS) and magnesium chelatase subunit I (ChlI) in different cassava varieties and Nicotiana benthamiana. The silencing of the ChlI gene could persist for more than two months. CONCLUSIONS This CsCMV-based VIGS system provides a new tool for rapid and efficient gene function studies in cassava.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hongguang Cui
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yang Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - He Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiukun Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Wenbin Liao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Di Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- College of Horticulture, Hainan University, Haikou, 570228, China
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture and Rural Affairs & Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources &, Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
17
|
Moran-Bertot I, Rodríguez-Cabrera L, Borras-Hidalgo O, Huang S, Kan Y, Wright DJ, Ayra-Pardo C. Potato virus X-mediated constitutive expression of Plutella xylostella PxSDF2L1 gene in Nicotiana benthamiana confers resistance to Phytophthora parasitica var. nicotianae. BMC PLANT BIOLOGY 2021; 21:78. [PMID: 33546586 PMCID: PMC7866777 DOI: 10.1186/s12870-021-02854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The Plutella xylostella PxSDF2L1 gene was previously reported to enhance insect resistance to pathogen at high basal transcription rate. PxSDF2L1 shows similitude with the stromal cell-derived factor 2 (SDF2), an ER stress-induced chaperon protein that is highly conserved throughout animals and plants. The precise biological function of SDF2 is not clear, but its expression is required for innate immunity in plants. Here, we investigate whether a continuous expression of PxSDF2L1 in Nicotiana benthamiana can similarly confer resistance to plant pathogen, particularly, the black shank Phytophthora parasitica var. nicotianae. RESULTS The N. benthamiana plants were inoculated with agrobacteria transformed with a PVX-based binary vector carrying the PxSDF2L1 gene; similar agroinoculation experiments with a PVX vector carrying the GFP gene were used for controls. In pot trials, agroinfected N. benthamiana plants constitutively expressing PxSDF2L1 showed a significant reduction of stem disease symptoms caused by the inoculation with P. parasitica, compared with controls. CONCLUSIONS We confirm a role of PxSDF2L1 in resistance to black shank, with a potential application to engineering active resistance against this oomycete in the commercial N. tabacum species and propose its evaluation in other crop families and plant pathogens.
Collapse
Affiliation(s)
- Ivis Moran-Bertot
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | | | - Orlando Borras-Hidalgo
- Plant Division, Centre for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biotechnology, Qi Lu University of Technology, Jinan, 250353, Shandong, People's Republic of China
| | - Siliang Huang
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Nanyang Normal University (NYNU), Nanyang, 473061, Henan, People's Republic of China
| | - Yunchao Kan
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Nanyang Normal University (NYNU), Nanyang, 473061, Henan, People's Republic of China
| | - Denis J Wright
- Department of Life Sciences, Imperial College London, Silwood Park campus, Ascot, Berkshire, SL5 7PY, UK.
| | - Camilo Ayra-Pardo
- China-UK-NYNU-RRES Joint Laboratory of Insect Biology, Nanyang Normal University (NYNU), Nanyang, 473061, Henan, People's Republic of China.
| |
Collapse
|
18
|
Calvo‐Baltanás V, Wijnen CL, Yang C, Lukhovitskaya N, de Snoo CB, Hohenwarter L, Keurentjes JJB, de Jong H, Schnittger A, Wijnker E. Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1437-1452. [PMID: 32955759 PMCID: PMC7756339 DOI: 10.1111/tpj.14990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 05/16/2023]
Abstract
Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies.
Collapse
Affiliation(s)
- Vanesa Calvo‐Baltanás
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Present address:
Department of Biological SciencesNational University of Singapore14 Science Drive 4Singapore117543Singapore
| | - Cris L. Wijnen
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Chao Yang
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Nina Lukhovitskaya
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Centre National de la Recherche ScientifiqueInstitut de Biologie Moléculaire des PlantesUniversité de Strasbourg12, rue du général ZimmerStrasbourg67084France
- Present address:
Division of VirologyDepartment of PathologyUniversity of CambridgeTennis Court RdCambridgeCB2 1QPUK
| | - C. Bastiaan de Snoo
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Rijk Zwaan R&D FijnaartEerste Kruisweg 9Fijnaart4793 RSthe Netherlands
| | - Linus Hohenwarter
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Hans de Jong
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| | - Arp Schnittger
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
- Department of Developmental BiologyInstitut für Pflanzenwissenschaften und MikrobiologieUniversity of HamburgOhnhorststrasse 18Hamburg22609Germany
| | - Erik Wijnker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708 PBthe Netherlands
| |
Collapse
|
19
|
Wang M, Gao S, Zeng W, Yang Y, Ma J, Wang Y. Plant Virology Delivers Diverse Toolsets for Biotechnology. Viruses 2020; 12:E1338. [PMID: 33238421 PMCID: PMC7700544 DOI: 10.3390/v12111338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Over a hundred years of research on plant viruses has led to a detailed understanding of viral replication, movement, and host-virus interactions. The functions of vast viral genes have also been annotated. With an increased understanding of plant viruses and plant-virus interactions, various viruses have been developed as vectors to modulate gene expressions for functional studies as well as for fulfilling the needs in biotechnology. These approaches are invaluable not only for molecular breeding and functional genomics studies related to pivotal agronomic traits, but also for the production of vaccines and health-promoting carotenoids. This review summarizes the latest progress in these forefronts as well as the available viral vectors for economically important crops and beyond.
Collapse
Affiliation(s)
- Mo Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shilei Gao
- Fujian University Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Wenzhi Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yongqing Yang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA;
| |
Collapse
|
20
|
Zhang Y, Chen M, Siemiatkowska B, Toleco MR, Jing Y, Strotmann V, Zhang J, Stahl Y, Fernie AR. A Highly Efficient Agrobacterium-Mediated Method for Transient Gene Expression and Functional Studies in Multiple Plant Species. PLANT COMMUNICATIONS 2020; 1:100028. [PMID: 33367253 PMCID: PMC7747990 DOI: 10.1016/j.xplc.2020.100028] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/08/2019] [Accepted: 02/03/2020] [Indexed: 05/08/2023]
Abstract
Although the use of stable transformation technology has led to great insight into gene function, its application in high-throughput studies remains arduous. Agro-infiltration have been widely used in species such as Nicotiana benthamiana for the rapid detection of gene expression and protein interaction analysis, but this technique does not work efficiently in other plant species, including Arabidopsis thaliana. As an efficient high-throughput transient expression system is currently lacking in the model plant species A. thaliana, we developed a method that is characterized by high efficiency, reproducibility, and suitability for transient expression of a variety of functional proteins in A. thaliana and 7 other plant species, including Brassica oleracea, Capsella rubella, Thellungiella salsuginea, Thellungiella halophila, Solanum tuberosum, Capsicum annuum, and N. benthamiana. Efficiency of this method was independently verified in three independent research facilities, pointing to the robustness of this technique. Furthermore, in addition to demonstrating the utility of this technique in a range of species, we also present a case study employing this method to assess protein-protein interactions in the sucrose biosynthesis pathway in Arabidopsis.
Collapse
Affiliation(s)
- Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Moxian Chen
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Beata Siemiatkowska
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mitchell Rey Toleco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yue Jing
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Vivien Strotmann
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Jianghua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Alisdair R. Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
21
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
22
|
Abstract
Virus-induced gene silencing (VIGS) is a favorable method to study gene function by posttranscriptional gene silencing in plants. Here we describe a methodology of graft-accelerated VIGS in rose aimed at obtaining posttranscriptional gene silencing in the flower. The resulting phenotype can be observed within 5-6 weeks post infiltration. By using this method, we successfully silenced the expression of several genes involved in processes such as scent production, petal coloration, or flower architecture. We showed that graft-accelerated VIGS was faster, more efficient, and more convenient than conventional methods previously developed in rose such as agroinfiltration of young plantlets and in vitro cultured tissues or seeds.
Collapse
|
23
|
Genome-Wide Identification, Expression Profile and Evolution Analysis of Karyopherin β Gene Family in Solanum tuberosum Group Phureja DM1-3 Reveals Its Roles in Abiotic Stresses. Int J Mol Sci 2020; 21:ijms21030931. [PMID: 32023817 PMCID: PMC7037939 DOI: 10.3390/ijms21030931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/19/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
In eukaryotic cells, nucleocytoplasmic trafficking of macromolecules is largely mediated by Karyopherin β/Importin (KPNβ or Impβ) nuclear transport factors, and they import and export cargo proteins or RNAs via the nuclear pores across the nuclear envelope, consequently effecting the cellular signal cascades in response to pathogen attack and environmental cues. Although achievements on understanding the roles of several KPNβs have been obtained from model plant Arabidopsis thaliana, comprehensive analysis of potato KPNβ gene family is yet to be elucidated. In our genome-wide identifications, a total of 13 StKPNβ (Solanum tuberosum KPNβ) genes were found in the genome of the doubled monoploid S. tuberosum Group Phureja DM1-3. Sequence alignment and conserved domain analysis suggested the presence of importin-β N-terminal domain (IBN_N, PF08310) or Exporin1-like domain (XpoI, PF08389) at N-terminus and HEAT motif at the C-terminal portion in most StKPNβs. Phylogenetic analysis indicated that members of StKPNβ could be classified into 16 subgroups in accordance with their homology to human KPNβs, which was also supported by exon-intron structure, consensus motifs, and domain compositions. RNA-Seq analysis and quantitative real-time PCR experiments revealed that, except StKPNβ3d and StKPNβ4, almost all StKPNβs were ubiquitously expressed in all tissues analyzed, whereas transcriptional levels of several StKPNβs were increased upon biotic/abiotic stress or phytohormone treatments, reflecting their potential roles in plant growth, development or stress responses. Furthermore, we demonstrated that silencing of StKPNβ3a, a SA- and H2O2-inducible KPNβ genes led to increased susceptibility to environmental challenges, implying its crucial roles in plant adaption to abiotic stresses. Overall, our results provide molecular insights into StKPNβ gene family, which will serve as a strong foundation for further functional characterization and will facilitate potato breeding programs.
Collapse
|
24
|
Zhao J, Jiang H, Wang G, Wang Z, Dong J, Song J. Virus-Induced Gene Silencing in Diploid and Tetraploid Potato Species. Methods Mol Biol 2020; 2172:39-50. [PMID: 32557360 DOI: 10.1007/978-1-0716-0751-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Potato is the world's fourth largest food crop and a vegetatively propagated model polyploid plant. To facilitate genomic studies in potato, here we describe detailed protocols to silence genes in both diploid potato Solanum bulbocastanum and tetraploid potato cultivars such as Maris Bard, Arran Pilot, Ancilla, and Serrana using tobacco rattle virus (TRV)- or potato virus X (PVX)-induced gene silencing (VIGS) system, respectively. The established VIGS system represents an efficient and powerful approach for functional analysis of genes involved in growth, development, metabolism, and responses to biotic and abiotic stresses in potato.
Collapse
Affiliation(s)
- Jinping Zhao
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, USA
| | - Haolang Jiang
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, USA
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guanyu Wang
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Mycotoxin and Molecular Plant Pathology Laboratory, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jingao Dong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Mycotoxin and Molecular Plant Pathology Laboratory, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Junqi Song
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, USA.
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
25
|
Bao S, Zhang Z, Lian Q, Sun Q, Zhang R. Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence. BMC Genet 2019; 20:91. [PMID: 31801457 PMCID: PMC6892148 DOI: 10.1186/s12863-019-0793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 11/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. Results To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. Conclusions This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.
Collapse
Affiliation(s)
- Sarina Bao
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Zhenxin Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qun Lian
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Qinghua Sun
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China
| | - Ruofang Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
26
|
Chalcone Synthase-Encoding AeCHS is Involved in Normal Petal Coloration in Actinidia eriantha. Genes (Basel) 2019; 10:genes10120949. [PMID: 31757002 PMCID: PMC6947247 DOI: 10.3390/genes10120949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022] Open
Abstract
Studies on anthocyanin biosynthesis have been mainly concentrated on the fruit, whereas few have focused the mechanism of flower coloration in kiwifruit. Here, we report that the structural gene, AeCHS, is involved in anthocyanin accumulation and indispensable for normal petal coloration in Actinidia eriantha. Petals from three different species including Actinidia eriantha (red petals), Actinidia hemsleyana (light pink petals) and Actinidia arguta (white petals) were selected for anthocyanin determination and gene expression analysis. The anthocyanin components in A. eriantha were significantly higher than in A. hemsleyana or A. arguta. Consistently, gene expression profiles suggested that AeCHS expression in A. eriantha was higher than in A. hemsleyana or A. arguta. Cluster analysis showed that AeCHS was clustered into a single group and distinctly separated from other genes, indicating the expression pattern of AeCHS gene was different from any other. Additionally, correlation analysis revealed AeCHS expression significantly correlated with anthocyanin content. The complete coding sequence of AeCHS was cloned from petals of A. eriantha 'Zaoxu', showing the length of AeCHS was 1170 bp encoding a protein of 389 amino acids. AeCHS was located in the cytoplasm, indicating it is indeed a structural gene involved in anthocyanin biosynthesis. AeCHS silencing performed by infiltration grafting-mediated virus-induced gene silencing (VIGS) reduced petal anthocyanin content and bleached red petals in A. eriantha. Our results confirm a crucial role of AeCHS in anthocyanin biosynthesis and accumulation in A. eriantha petals; furthermore, they offer important basic information and constitute a reference point for further research.
Collapse
|
27
|
Xie L, Zhang Q, Sun D, Yang W, Hu J, Niu L, Zhang Y. Virus-induced gene silencing in the perennial woody Paeonia ostii. PeerJ 2019; 7:e7001. [PMID: 31179188 PMCID: PMC6545099 DOI: 10.7717/peerj.7001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/21/2019] [Indexed: 11/24/2022] Open
Abstract
Tree peony is a perennial deciduous shrub with great ornamental and medicinal value. A limitation of its current functional genomic research is the lack of effective molecular genetic tools. Here, the first application of a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in the tree peony species Paeonia ostii is presented. Two different approaches, leaf syringe-infiltration and seedling vacuum-infiltration, were utilized for Agrobacterium-mediated inoculation. The vacuum-infiltration was shown to result in a more complete Agrobacterium penetration than syringe-infiltration, and thereby determined as an appropriate inoculation method. The silencing of reporter gene PoPDS encoding phytoene desaturase was achieved in TRV-PoPDS-infected triennial tree peony plantlets, with a typical photobleaching phenotype shown in uppermost newly-sprouted leaves. The endogenous PoPDS transcripts were remarkably down-regulated in VIGS photobleached leaves. Moreover, the green fluorescent protein (GFP) fluorescence was detected in leaves and roots of plants inoculated with TRV-GFP, suggesting the capability of TRV to silence genes in various tissues. Taken together, the data demonstrated that the TRV-based VIGS technique could be adapted for high-throughput functional characterization of genes in tree peony.
Collapse
Affiliation(s)
- Lihang Xie
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
28
|
Matsunaga W, Shimura H, Shirakawa S, Isoda R, Inukai T, Matsumura T, Masuta C. Transcriptional silencing of 35S driven-transgene is differentially determined depending on promoter methylation heterogeneity at specific cytosines in both plus- and minus-sense strands. BMC PLANT BIOLOGY 2019; 19:24. [PMID: 30642254 PMCID: PMC6332629 DOI: 10.1186/s12870-019-1628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND De novo DNA methylation triggered by short interfering RNAs is called RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through RdDM can be induced using a viral vector. We have previously induced RdDM on the 35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence phenotype segregated into two types, "red" and "orange" in the first self-fertilized (S1) progeny plants by the difference in degree of recovery from TGS on GFP expression. In the second self-fertilized generation (S2 plants), the phenotypes again segregated. Explaining what generates the red and orange types could answer a very important question in epigenetics: How is the robustness of TGS maintained after RdDM induction? RESULTS In bisulfite sequencing analyses, we found a significant difference in the overall promoter hypermethylation pattern between the red and orange types in S1 plants but little difference in S2 plants. Therefore, we assumed that methylation at some specific cytosine residues might be important in determining the two phenotypes. To find the factor that discriminates stable, robust TGS from the unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated cytosine residues on TGS. Because it has not yet been demonstrated that DNA methylation at a few specific cytosine residues on known sequence elements can indeed determine TGS robustness, we newly developed a method by which we can directly evaluate the effect of specific methylation on promoter activity. In this assay, we found that the effects of the specific cytosine methylation on TGS differed between the plus- and minus-strands. CONCLUSIONS We found two distinct phenotypes, the stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite sequencing analyses suggested that methylation at some specific cytosine residues in the 35S promoter played a role in determining whether stable or unstable TGSs are induced. Using the developed method, we inferred that DNA methylation heterogeneity in and between the plus- and minus-strands can differentially determine TGS.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Senri Shirakawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Reika Isoda
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tsuyoshi Inukai
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517 Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|
29
|
Gunupuru LR, Perochon A, Ali SS, Scofield SR, Doohan FM. Virus-Induced Gene Silencing (VIGS) for Functional Characterization of Disease Resistance Genes in Barley Seedlings. Methods Mol Biol 2019; 1900:95-114. [PMID: 30460561 DOI: 10.1007/978-1-4939-8944-7_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the recent advances in sequencing technologies, many studies are generating lists of candidate genes associated with specific traits. The major bottleneck in functional genomics is the validation of gene function. This is achieved by analyzing the effect of either gene silencing or overexpression on a specific phenotypic or biochemical trait. This usually requires the generation of stable transgenic plants and this can take considerable time. Therefore any technique that expedites the validation of gene function is of particular benefit in cereals, including barley. One such technique is Virus-Induced Gene Silencing (VIGS), which evokes a natural antiviral defense mechanism in plants. VIGS can be used to downregulate gene expression in a transient manner, but long enough to determine its effects on a specific phenotype. It is particularly useful for screening candidate genes and selecting those with potential for disease control. VIGS based on Barley Stripe Mosaic Virus (BSMV) is a powerful and efficient tool for the analysis of gene function in cereals. Here we present a BSMV VIGS protocol for simple and robust gene silencing in barley and describe it to evaluate the role of the hormone receptor BRI1 (Brassinosteroid Insensitive 1) in barley leaf resistance to Fusarium infection.
Collapse
Affiliation(s)
- Lokanadha R Gunupuru
- Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Alexandre Perochon
- School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - Shahin S Ali
- SPCL, USDA/ARS Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Steven R Scofield
- Crop Production and Pest Control Research Unit, USDA-ARS, West Lafayette, IN, USA.,Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Fiona M Doohan
- School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
30
|
Bortolamiol-Bécet D, Monsion B, Chapuis S, Hleibieh K, Scheidecker D, Alioua A, Bogaert F, Revers F, Brault V, Ziegler-Graff V. Phloem-Triggered Virus-Induced Gene Silencing Using a Recombinant Polerovirus. Front Microbiol 2018; 9:2449. [PMID: 30405546 PMCID: PMC6206295 DOI: 10.3389/fmicb.2018.02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
The phloem-limited poleroviruses infect Arabidopsis thaliana without causing noticeable disease symptoms. In order to facilitate visual infection identification, we developed virus-induced gene silencing (VIGS) vectors derived from Turnip yellows virus (TuYV). Short sequences from the host gene AtCHLI1 required for chlorophyll biosynthesis [42 nucleotides in sense or antisense orientation or as an inverted-repeat (IR), or an 81 nucleotide sense fragment] were inserted into the 3' non-coding region of the TuYV genome to screen for the most efficient and robust silencing vector. All recombinant viruses produced a clear vein chlorosis phenotype on infected Arabidopsis plants due to the expression inhibition of the AtCHLI1 gene. The introduction of a sense-oriented sequence into TuYV genome resulted in a virus exhibiting a more sustainable chlorosis than the virus containing an IR of the same length. This observation was correlated with a higher stability of the sense sequence insertion in the viral genome. In order to evaluate the impact of the TuYV silencing suppressor P0 in the VIGS mechanism a P0 knock-out mutation was introduced into the recombinant TuYV viruses. They induced a similar but milder vein clearing phenotype due to lower viral accumulation. This indicates that P0 does not hinder the performances of the TuYV silencing effect and confirms that in the viral infection context, P0 has no major impact on the production, propagation and action of the short distance silencing signal in phloem cells. Finally, we showed that TuYV can be used to strongly silence the phloem specific AtRTM1 gene. The TuYV-derived VIGS vectors therefore represent powerful tools to easily detect and monitor TuYV in infected plants and conduct functional analysis of phloem-restricted genes. Moreover this example indicates the potential of poleroviruses for use in functional genomic studies of agronomic plants.
Collapse
Affiliation(s)
- Diane Bortolamiol-Bécet
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire CNRS-UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,UMR1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sophie Chapuis
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Danièle Scheidecker
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Florent Bogaert
- SVQV, INRA UMR 1131, Université de Strasbourg, Colmar, France
| | - Frédéric Revers
- BFP, INRA UMR 1332, Univ. Bordeaux, Villenave d'Ornon, France.,BIOGECO, INRA UMR 1202, Univ. Bordeaux, Pessac, France
| | | | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
31
|
Zhou XT, Jia LJ, Wang HY, Zhao P, Wang WY, Liu N, Song SW, Wu Y, Su L, Zhang J, Zhong NQ, Xia GX. The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1055-1068. [PMID: 29952082 DOI: 10.1111/tpj.14010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) signalling plays an essential role in plant innate immunity. In this study, we identified a component in the SA signaling pathway in potato (Solanum tuberosum), the transcription factor StbZIP61, and characterized its function in defence against Phytophthora infestans. Expression of StbZIP61 was induced upon P. infestans infection and following exposure to the defense signaling hormones SA, ethylene and jasmonic acid. Overexpression of StbZIP61 increased the tolerance of potato plants to P. infestans while RNA interference (RNAi) increased susceptibility. Yeast two-hybrid and pull down experiments revealed that StbZIP61 could interact with an NPR3-like protein (StNPR3L) that inhibited its DNA-binding and transcriptional activation activities. Moreover, StNPR3L interacted with StbZIP61 in an SA-dependent manner. Among candidate genes involved in SA-regulated defense responses, StbZIP61 had a significant impact on expression of StICS1, which encodes a key enzyme for SA biosynthesis. StICS1 transcription was induced upon P. infestans infection and this responsive expression to the pathogen was reduced in StbZIP61 RNAi plants. Accordingly, StICS1 expression was remarkably enhanced in StbZIP61-overexpressing plants. Together, our data demonstrate that StbZIP61 functions in concert with StNPR3L to regulate the temporal activation of SA biosynthesis, which contributes to SA-mediated immunity against P. infestans infection in potato.
Collapse
Affiliation(s)
- Xin-Tong Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Jia Jia
- Institute of biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, Beijing, 100101, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Pan Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Wen-Yan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Shuang-Wei Song
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
- Yunnan Agriculture University, Kunming, 650201, China
| | - Yao Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Lei Su
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Jie Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Nai-Qin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Beijing, 100101, China
| |
Collapse
|
32
|
Xu H, Xu L, Yang P, Cao Y, Tang Y, He G, Yuan S, Ming J. Tobacco rattle virus-induced PHYTOENE DESATURASE ( PDS) and Mg-chelatase H subunit ( ChlH) gene silencing in Solanum pseudocapsicum L. PeerJ 2018; 6:e4424. [PMID: 29576941 PMCID: PMC5865466 DOI: 10.7717/peerj.4424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
Virus-induced gene silencing (VIGS) is an attractive tool for determining gene function in plants. The present study constitutes the first application of VIGS in S. pseudocapsicum, which has great ornamental and pharmaceutical value, using tobacco rattle virus (TRV) vectors. Two marker genes, PHYTOENE DESATURASE (PDS) and Mg-chelatase H subunit (ChlH), were used to test the VIGS system in S. pseudocapsicum. The photobleaching and yellow-leaf phenotypes of the silenced plants were shown to significantly correlate with the down-regulation of endogenous SpPDS and SpChlH, respectively (P ≤ 0.05). Moreover, the parameters potentially affecting the efficiency of VIGS in S. pseudocapsicum, including the Agrobacterium strain and the inoculation method (leaf syringe-infiltration, sprout vacuum-infiltration and seed vacuum-infiltration), were compared. The optimized VIGS parameters were the leaf syringe-infiltration method, the Agrobacterium strain GV3101 and the growth of agro-inoculated plants at 25°. With these parameters, the silencing efficiency of SpPDS and SpChlH could reach approximately 50% in S. pseudocapsicum. Additionally, the suitability of various reference genes was screened by RT-qPCR using three candidate genes, and the results demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) can serve as a suitable reference for assessing the gene expression levels of VIGS systems in S. pseudocapsicum. The proven application of VIGS in S. pseudocapsicum and the characterization of a suitable reference gene in the present work will expedite the functional characterization of novel genes in S. pseudocapsicum.
Collapse
Affiliation(s)
- Hua Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life and Environmental Science, GanNan Normal University, Ganzhou, China
| | - Leifeng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Panpan Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
| | - Yuwei Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchao Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoren He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suxia Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ming
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Yan H, Shi S, Ma N, Cao X, Zhang H, Qiu X, Wang Q, Jian H, Zhou N, Zhang Z, Tang K. Graft-accelerated virus-induced gene silencing facilitates functional genomics in rose flowers. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:34-44. [PMID: 28895654 DOI: 10.1111/jipb.12599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/10/2017] [Indexed: 05/02/2023]
Abstract
Rose has emerged as a model ornamental plant for studies of flower development, senescence, and morphology, as well as the metabolism of floral fragrances and colors. Virus-induced gene silencing (VIGS) has long been used in functional genomics studies of rose by vacuum infiltration of cuttings or seedlings with an Agrobacterium suspension carrying TRV-derived vectors. However, VIGS in rose flowers remains a challenge because of its low efficiency and long time to establish silencing. Here we present a novel and rapid VIGS method that can be used to analyze gene function in rose, called 'graft-accelerated VIGS', where axillary sprouts are cut from the rose plant and vacuum infiltrated with Agrobacterium. The inoculated scions are then grafted back onto the plants to flower and silencing phenotypes can be observed within 5 weeks, post-infiltration. Using this new method, we successfully silenced expression of the RhDFR1, RhAG, and RhNUDX1 in rose flowers, and affected their color, petal number, as well as fragrance, respectively. This grafting method will facilitate high-throughput functional analysis of genes in rose flowers. Importantly, it may also be applied to other woody species that are not currently amenable to VIGS by conventional leaf or plantlet/seedling infiltration methods.
Collapse
Affiliation(s)
- Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Xiaoqian Cao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Hao Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Xianqin Qiu
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Qigang Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Ningning Zhou
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, 100193 Beijing, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, 650205 Kunming, China
| |
Collapse
|
34
|
Lentz EM, Kuon JE, Alder A, Mangel N, Zainuddin IM, McCallum EJ, Anjanappa RB, Gruissem W, Vanderschuren H. Cassava geminivirus agroclones for virus-induced gene silencing in cassava leaves and roots. PLANT METHODS 2018; 14:73. [PMID: 30154909 PMCID: PMC6109987 DOI: 10.1186/s13007-018-0340-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/16/2018] [Indexed: 05/08/2023]
Abstract
AIM We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.
Collapse
Affiliation(s)
- Ezequiel Matias Lentz
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Joel-Elias Kuon
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Adrian Alder
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Nathalie Mangel
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ima M. Zainuddin
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Emily Jane McCallum
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Ravi Bodampalli Anjanappa
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Hervé Vanderschuren
- Department of Biology, Plant Biotechnology, ETH Zurich-LFW, E56.1, Universitaetstrasse 2, 8092 Zurich, Switzerland
- Plant Genetics Lab, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
| |
Collapse
|
35
|
Cheng C, Gao J, Ma N. Investigation of Petal Senescence by TRV-Mediated Virus-Induced Gene Silencing in Rose. Methods Mol Biol 2018; 1744:49-63. [PMID: 29392655 DOI: 10.1007/978-1-4939-7672-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The classic reverse genetic screening, such as EMS-induced or T-DNA-mediated mutation, is a powerful tool to identify senescence-related genes in many model plants. For most non-model plants, however, this strategy is hard to achieve. Even for model plants, construction of a mutant library is usually labor and time-consuming. Virus-induced gene silencing (VIGS) provides an alternative to characterize gene function in a wide spectrum of plants through transient gene expression. To date, more than a dozen of VIGS vector systems have been developed from different RNA and DNA viruses, while Tobacco rattle virus (TRV) system might be one of the most used due to its wide host range and ease of use. Here, we describe a modified TRV vector, TRV-GFP, in which a green fluorescent protein (GFP) is fused to 3'-end of the coat protein (CP) gene in the TRV2 vector. Since the GFP-tagged CP protein could be traced under UV light in planta, identification of TRV-GFP-infected plants is easy. Application of this system in identifying genes regulating petal senescence in rose is described.
Collapse
Affiliation(s)
- Chenxia Cheng
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China
| | - Junping Gao
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China
| | - Nan Ma
- Department of Ornamental Horticulture, China Agricultural University, Beijing, China. .,Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing, China.
| |
Collapse
|
36
|
Bai C, Wang P, Fan Q, Fu WD, Wang L, Zhang ZN, Song Z, Zhang GL, Wu JH. Analysis of the Role of the Drought-Induced Gene DRI15 and Salinity-Induced Gene SI1 in Alternanthera philoxeroides Plasticity Using a Virus-Based Gene Silencing Tool. FRONTIERS IN PLANT SCIENCE 2017; 8:1579. [PMID: 28955366 PMCID: PMC5601067 DOI: 10.3389/fpls.2017.01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Alternanthera philoxeroides is a notoriously invasive weed that can readily adapt to different environmental conditions. Control of this weed is difficult, and it spreads easily and causes damage to native habitats and agriculture. In this study, our goal was to investigate the molecular mechanisms that lead to the ability of A. philoxeroides to invade new habitats, to adapt to environmental stresses, and to cause damage. We developed a simple and highly effective potato virus X-based virus-induced gene silencing (VIGS) approach. The VIGS approach was first used to silence the phytoene desaturase gene, which resulted in the expected photo-bleaching phenotype. Next, the VIGS approach was used to silence two additional genes, drought-induced protein gene 15 (ApDRI15) and salinity-induced protein gene 1 (ApSI1). When ApDRI15 was knocked down, the plants were more sensitive to drought stress than the control plants, with smaller leaves, shorter internodes, and lower biomass. The ApDRI15-silenced plants had lower relative water content, lower free proline levels, and higher water loss rates than the control. Silencing of ApSI1 significantly decreased tolerance to salinity, and the ApSI1-silenced plants were withered and smaller. These results indicate that the pgR107 VIGS approach is a simple and highly effective tool for dissecting gene function in A. philoxeroides. Further experiments with the VIGS approach will enhance our understanding of the molecular mechanisms of the adaptability and plasticity of A. philoxeroides and improve our ability to combat the damage caused by this weed.
Collapse
Affiliation(s)
- Chao Bai
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Peng Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Qiang Fan
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Wei-Dong Fu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Le Wang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Zhen-Nan Zhang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| | - Zhen Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guo-Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jia-He Wu
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
37
|
Dobnik D, Lazar A, Stare T, Gruden K, Vleeshouwers VGAA, Žel J. Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity. PLANT METHODS 2016; 12:29. [PMID: 27213007 PMCID: PMC4875682 DOI: 10.1186/s13007-016-0129-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops, therefore studies performing functional analysis of its genes are very important. However, the majority of potato cultivars used in laboratory experimental setups are not well amenable to available VIGS systems, thus other model plants from Solanaceae family are used (usually Nicotiana benthamiana). Wild potato relatives can be a better choice for potato model, but their potential in this field was yet not fully explored. This manuscript presents the set-up of VIGS, based on Tobacco rattle virus (TRV) in wild potato relatives for functional studies in potato-virus interactions. RESULTS Five different potato cultivars, usually used in our lab, did not respond to silencing of phytoene desaturase (PDS) gene with TRV-based vector. Thus screening of a large set of wild potato relatives (different Solanum species and their clones) for their susceptibility to VIGS was performed by silencing PDS gene. We identified several responsive species and further tested susceptibility of these genotypes to potato virus Y (PVY) strain NTN and N. In some species we observed that the presence of empty TRV vector restricted the movement of PVY. Fluorescently tagged PVY(N)-GFP spread systemically in only five of tested wild potato relatives. Based on the results, Solanum venturii (VNT366-2) was selected as the most suitable system for functional analysis of genes involved in potato-PVY interaction. The system was tested by silencing two different plant immune signalling-related kinases, StWIPK and StMKK6. Silencing of StMKK6 enabled faster spreading of the virus throughout the plant, while silencing of WIPK had no effect on spreading of the virus. CONCLUSIONS The system employing S. venturii (VNT366-2) and PVY(N)-GFP is a suitable method for fast and simple functional analysis of genes involved in potato-PVY interactions. Additionally, a set of identified VIGS responsive species of wild potato relatives could serve as a tool for general studies of potato gene function.
Collapse
Affiliation(s)
- David Dobnik
- />Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Ana Lazar
- />Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Tjaša Stare
- />Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Kristina Gruden
- />Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Vivianne G. A. A. Vleeshouwers
- />Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Jana Žel
- />Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Singh AK, Dwivedi V, Rai A, Pal S, Reddy SGE, Rao DKV, Shasany AK, Nagegowda DA. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1287-99. [PMID: 25809293 DOI: 10.1111/pbi.12347] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 05/21/2023]
Abstract
Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides formation in W. somnifera leaves.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bangalore, India
| | - Varun Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bangalore, India
| | - Avanish Rai
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bangalore, India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | | | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Dinesh A Nagegowda
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, Bangalore, India
| |
Collapse
|
39
|
Strategies for altering plant traits using virus-induced gene silencing technologies. Methods Mol Biol 2015; 1287:25-41. [PMID: 25740354 DOI: 10.1007/978-1-4939-2453-0_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The rapid progress in genome sequencing and transcriptome analysis in model and crop plants has made possible the identification of a vast number of genes potentially associated with economically important complex traits. The ultimate goal is to assign functions to these genes by using forward and reverse genetic screens. Plant viruses have been developed for virus-induced gene silencing (VIGS) to generate rapid gene knockdown phenotypes in numerous plant species. To fulfill its potential for high-throughput phenomics, it is of prime importance to ensure that parameters conditioning the VIGS response, i.e., plant-virus interactions and associated loss-of-function screens, are "fit for purpose" and optimized to unequivocally conclude the role of a gene of interest in relation to a given trait. This chapter will review and discuss the different strategies used for the development of VIGS-based phenomics in model and crop species.
Collapse
|
40
|
Du J, Huang Z, Wang B, Sun H, Chen C, Ling HQ, Wu H. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato. ANNALS OF BOTANY 2015; 116:23-34. [PMID: 26070639 PMCID: PMC4479748 DOI: 10.1093/aob/mcv058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Iron is an essential micronutrient for all organisms and its uptake, translocation, distribution and utilization are regulated in a complex manner in plants. FER, isolated from tomato (Solanum lycopersicum), was the first transcription factor involved in the iron homeostasis of higher plants to be identified. A FER defect in the T3238fer mutant drastically downregulates the expression of iron uptake genes, such as ferric-chelate reductase 1 (LeFRO1) and iron-regulated transporter 1 (LeIRT1); however, the molecular mechanism by which FER regulates genes downstream remains unknown. The aim of this work was therefore to identify the gene that interacts with FER to regulate the iron-deficiency response in tomato. METHODS The homologue of the Arabidopsis Ib subgroup of the basic helix-loop-helix (bHLH) proteins, SlbHLH068, was identified by using the program BLASTP against the AtbHLH39 amino acid sequence in the tomato genome. The interaction between SlbHLH068 and FER was detected using yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. In addition, virus-induced gene silencing (VIGS) was used to generate tomato plants in which SlbHLH068 expression was downregulated. The expression of genes was analysed using northern blot hybridization and multiple RT-PCR analysis. Seedlings of wild-type and mutant plants were grown under conditions of different nutrient deficiency. KEY RESULTS SlbHLH068 is highly upregulated in roots, leaves and stems in response to iron deficiency. An interaction between SlbHLH068 and FER was demonstrated using yeast two-hybrid and BiFC assays. The heterodimer formed by FER with SlbHLH068 directly bound to the promoter of LeFRO1 and activated the expression of its reporter gene in the yeast assay. The downregulation of SlbHLH068 expression by VIGS resulted in a reduction of LeFRO1 and LeIRT1 expression and iron accumulation in leaves and roots. CONCLUSIONS The results indicate that SlbHLH068, as a putative transcription factor, is involved in iron homeostasis in tomato via an interaction with FER.
Collapse
Affiliation(s)
- Juan Du
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Zongan Huang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Biao Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Hua Sun
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Chunlin Chen
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| | - Huilan Wu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, West Beichen Road 1, Chaoyang District, Beijing 100101, China
| |
Collapse
|
41
|
Zhirnov IV, Trifonova EA, Kochetov AV, Shumny VK. Virus-induced silencing as a method for studying gene functions in higher plants. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Development of new potato virus X-based vectors for gene over-expression and gene silencing assay. Virus Res 2014; 191:62-9. [DOI: 10.1016/j.virusres.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/19/2022]
|
43
|
Shi Y, Wang R, Luo Z, Jin L, Liu P, Chen Q, Li Z, Li F, Wei C, Wu M, Wei P, Xie H, Qu L, Lin F, Yang J. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum. Int J Mol Sci 2014; 15:14766-85. [PMID: 25153631 PMCID: PMC4159881 DOI: 10.3390/ijms150814766] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.
Collapse
Affiliation(s)
- Yanmei Shi
- Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Ran Wang
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Zhaopeng Luo
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Lifeng Jin
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Pingping Liu
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Qiansi Chen
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Zefeng Li
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Feng Li
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Chunyang Wei
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Mingzhu Wu
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Pan Wei
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - He Xie
- Molecular Breeding Group, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650031, China.
| | - Lingbo Qu
- Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Fucheng Lin
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| | - Jun Yang
- National Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou 450001, China.
| |
Collapse
|
44
|
Agüero J, Vives MDC, Velázquez K, Pina JA, Navarro L, Moreno P, Guerri J. Effectiveness of gene silencing induced by viral vectors based on Citrus leaf blotch virus is different in Nicotiana benthamiana and citrus plants. Virology 2014; 460-461:154-64. [PMID: 25010281 DOI: 10.1016/j.virol.2014.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/12/2014] [Accepted: 04/12/2014] [Indexed: 11/23/2022]
Abstract
Virus induced gene silencing (VIGS) is an effective technology for gene function analysis in plants. We assessed the VIGS effectiveness in Nicotiana benthamiana and citrus plants of different Citrus leaf blotch virus (CLBV)-based vectors, using insets of the phytoene desaturase (pds) gene. While in N. benthamiana the silencing phenotype was induced only by the construct carrying a 58-nt pds hairpin, in citrus plants all the constructs induced the silencing phenotype. Differences in the generation of secondary small interfering RNAs in both species are believed to be responsible for differential host-species effects. The ability of CLBV-based vectors to silence different endogenous citrus genes was further confirmed. Since CLBV-based vectors are known to be stable and induce VIGS in successive flushes for several months, these vectors provide an important genomic tool and it is expected that they will be useful to analyze gene function by reverse genetics in the long-lived citrus plants.
Collapse
Affiliation(s)
- Jesus Agüero
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - María del Carmen Vives
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - Karelia Velázquez
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - José Antonio Pina
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - Luis Navarro
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - Pedro Moreno
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | - Jose Guerri
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain.
| |
Collapse
|
45
|
A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy. Biochem J 2014; 458:225-37. [PMID: 24325449 DOI: 10.1042/bj20130792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.
Collapse
|
46
|
Zhong X, Yuan X, Wu Z, Khan MA, Chen J, Li X, Gong B, Zhao Y, Wu J, Wu C, Yi M. Virus-induced gene silencing for comparative functional studies in Gladiolus hybridus. PLANT CELL REPORTS 2014; 33:301-12. [PMID: 24170343 DOI: 10.1007/s00299-013-1530-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 05/05/2023]
Abstract
Functional analysis of genes in gladiolus has previously been impractical due to the lack of an efficient stable genetic transformation method. However, virus-induced gene silencing (VIGS) is effective in some plants which are difficult to transform through other methods. Although the Tobacco rattle virus (TRV)-based VIGS system has been developed and used for verifying gene functions in diverse plants, an appropriate TRV-VIGS approach for gladiolus has not been established yet. In this report we describe the first use of the TRV-VIGS system for gene silencing in gladiolus. Vacuum infiltration of cormels and young plants with the GhPDS-VIGS vector effectively down-regulated the PHYTOENE DESATURASE ortholog GhPDS gene and also resulted in various degrees of photobleaching in Gladiolus hybridus. The reduction in GhPDS expression was tested after TRV-based vector infection using real-time RT-PCR. In addition, the progress of TRV infection was detected by fluorescence visualization using a pTRV2: CP-GFP vector. In conclusion, the TRV-mediated VIGS described here will be an effective gene function analysis mechanism in gladiolus.
Collapse
Affiliation(s)
- Xionghui Zhong
- Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Yuan Mingyuan Western Road 2#, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kawai T, Gonoi A, Nitta M, Kaido M, Yamagishi N, Yoshikawa N, Tao R. Virus-induced Gene Silencing in Apricot (Prunus armeniaca L.) and Japanese Apricot (P. mume Siebold ^|^amp; Zucc.) with the Apple Latent Spherical Virus Vector System. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.ch-091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Pflieger SP, Richard MMS, Blanchet S, Meziadi C, Geffroy VR. VIGS technology: an attractive tool for functional genomics studies in legumes. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1234-1248. [PMID: 32481191 DOI: 10.1071/fp13089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/14/2013] [Indexed: 05/20/2023]
Abstract
Legume species are among the most important crops worldwide. In recent years, six legume genomes have been completely sequenced, and there is now an urgent need for reverse-genetics tools to validate genes affecting yield and product quality. As most legumes are recalcitrant to stable genetic transformation, virus-induced gene silencing (VIGS) appears to be a powerful alternative technology for determining the function of unknown genes. VIGS technology is based on the property of plant viruses to trigger a defence mechanism related to post-transcriptional gene silencing (PTGS). Infection by a recombinant virus carrying a fragment of a plant target gene will induce homology-dependent silencing of the endogenous target gene. Several VIGS systems have been developed for legume species since 2004, including those based on Bean pod mottle virus, Pea early browning virus, and Apple latent spherical virus, and used in reverse-genetics studies of a wide variety of plant biological processes. In this work, we give an overview of the VIGS systems available for legumes, and present their successful applications in functional genomics studies. We also discuss the limitations of these VIGS systems and the future challenges to be faced in order to use VIGS to its full potential in legume species.
Collapse
Affiliation(s)
- St Phanie Pflieger
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Manon M S Richard
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Sophie Blanchet
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Chouaib Meziadi
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| | - Val Rie Geffroy
- Institut de Biologie des Plantes, UMR8618, CNRS Université Paris-Sud, Saclay Plant Sciences, Rue Noetzlin, 91405 Orsay, France
| |
Collapse
|
49
|
Abstract
Virus-induced gene silencing (VIGS) is a technology that exploits an RNA-mediated antiviral defense mechanism and which has great potential for use in plant reverse genetics. Recently, whole-genome studies and gene sequencing in plants have produced a massive amount of sequence information. A major challenge for plant biologists is to convert this sequence information into functional information. In this study, we demonstrate that VIGS can be used to determine gene functions in strawberry and that it is a powerful new tool for studying fruit ripening. The ABA synthetic gene FaNCED1, which can promote strawberry fruit ripening, was used as the reporter gene. In this chapter, we describe the use of TRV-mediated VIGS in strawberry fruit.
Collapse
|
50
|
Du J, Tian Z, Liu J, Vleeshouwers VGAA, Shi X, Xie C. Functional analysis of potato genes involved in quantitative resistance to Phytophthora infestans. Mol Biol Rep 2013; 40:957-67. [PMID: 23224656 DOI: 10.1007/s11033-012-2137-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022]
Abstract
The most significant threat to potato production worldwide is the late blight disease, which is caused by the oomycete pathogen Phytophthora infestans. Based on previous cDNA microarrays and cDNA-amplified fragment length polymorphism analysis, 63 candidate genes that are expected to contribute to developing a durable resistance to late blight were selected for further functional analysis. We performed virus-induced gene silencing (VIGS) to these candidate genes on both Nicotiana benthamiana and potato, subsequently inoculated detached leaves and assessed the resistance level. Ten genes decreased the resistance to P. infestans after VIGS treatment. Among those, a lipoxygenase (LOX; EC 1.13.11.12) and a suberization-associated anionic peroxidase affected the resistance in both N. benthamiana and potato. Our results identify genes that may play a role in quantitative resistance mechanisms to late blight.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, National Center for Vegetable Improvement (Central China), Potato Engineering and Technology Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | | | | | | | | | | |
Collapse
|