1
|
Guan H, Wang H, Huang J, Liu M, Chen T, Shan X, Chen H, Shen J. Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi ( Litchi chinensis Sonn.) and Their Involvement in Floral Sex Determination. PLANTS 2021; 10:plants10102142. [PMID: 34685951 PMCID: PMC8540616 DOI: 10.3390/plants10102142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development.
Collapse
Affiliation(s)
- Hongling Guan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Han Wang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Huang
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Shan
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houbin Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| | - Jiyuan Shen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; (H.G.); (H.W.); (J.H.); (M.L.); (T.C.); (X.S.)
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- Correspondence: (H.C.); (J.S.); Tel.: +86-20-85280231 (H.C. & J.S.)
| |
Collapse
|
3
|
Fragoso V, Goddard H, Baldwin IT, Kim SG. A simple and efficient micrografting method for stably transformed Nicotiana attenuata plants to examine shoot-root signaling. PLANT METHODS 2011; 7:34. [PMID: 22014154 PMCID: PMC3207920 DOI: 10.1186/1746-4811-7-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
To adjust their development to the environment, plants rely on specific signals that travel from shoot to root and vice versa. Here we describe an efficient micrografting protocol for Nicotiana attenuata, a useful tool for identifying these signals and understanding their functions. Additionally we analyzed transcript accumulation profiles of scions and rootstocks of grafts performed with wild-type and stably transformed N. attenuata. Our results are consistent with the source-to-sink movement of an sRNA silencing signal.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | | | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
4
|
Allmann S, Halitschke R, Schuurink RC, Baldwin IT. Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. PLANT, CELL & ENVIRONMENT 2010; 33:2028-40. [PMID: 20584148 DOI: 10.1111/j.1365-3040.2010.02203.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipoxygenases (LOXs) are key enzymes in the biosynthesis of oxylipins, and catalyse the formation of fatty acid hydroperoxides (HPs), which represent the first committed step in the synthesis of metabolites that function as signals and defences in plants. HPs are the initial substrates for different branches of the oxylipin pathway, and some plant species may express different LOX isoforms that supply specific branches. Here, we compare isogenic lines of the wild tobacco Nicotiana attenuata with reduced expression of NaLOX2 (irlox2) or NaLOX3 (irlox3) to determine the role of these different LOX isoforms in supplying substrates for two different pathways: green leaf volatiles (GLVs) and jasmonic acid (JA). Reduced NaLOX2 expression strongly decreased the production of GLVs without influencing the formation of JA and JA-related secondary metabolites. Conversely, reduced NaLOX3 expression strongly decreased JA biosynthesis, without influencing GLV production. The temporal expression of NaLOX2 and NaLOX3 also differed after elicitation; NaLOX3 was rapidly induced, attaining highest transcript levels within 1 h after elicitation, whereas NaLOX2 transcripts reached maximum levels after 14 h. These results demonstrate that N. attenuata channels the flux of HPs through the activities of different LOXs, leading to different direct and indirect defence responses mediating the plant's herbivore resistance.
Collapse
Affiliation(s)
- Silke Allmann
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
5
|
Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B, Schneider B, Jassbi AR, Baldwin IT. Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. THE PLANT CELL 2010; 22:273-92. [PMID: 20081114 PMCID: PMC2828710 DOI: 10.1105/tpc.109.071449] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/11/2009] [Accepted: 12/20/2009] [Indexed: 05/18/2023]
Abstract
We identified 11 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) that occur in concentrations equivalent to starch (mg/g fresh mass) in aboveground tissues of coyote tobacco (Nicotiana attenuata) and differ in their sugar moieties and malonyl sugar esters (0-2). Concentrations of HGL-DTGs, particularly malonylated compounds, are highest in young and reproductive tissues. Within a tissue, herbivore elicitation changes concentrations and biosynthetic kinetics of individual compounds. Using stably transformed N. attenuata plants silenced in jasmonate production and perception, or production of N. attenuata Hyp-rich glycopeptide systemin precursor by RNA interference, we identified malonylation as the key biosynthetic step regulated by herbivory and jasmonate signaling. We stably silenced N. attenuata geranylgeranyl diphosphate synthase (ggpps) to reduce precursors for the HGL-DTG skeleton, resulting in reduced total HGL-DTGs and greater vulnerability to native herbivores in the field. Larvae of the specialist tobacco hornworm (Manduca sexta) grew up to 10 times as large on ggpps silenced plants, and silenced plants suffered significantly more damage from herbivores in N. attenuata's native habitat than did wild-type plants. We propose that high concentrations of HGL-DTGs effectively defend valuable tissues against herbivores and that malonylation may play an important role in regulating the distribution and storage of HGL-DTGs in plants.
Collapse
Affiliation(s)
- Sven Heiling
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Meredith C. Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Matthias Schoettner
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Purba Mukerjee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Beatrice Berger
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Bernd Schneider
- Department of Biosynthesis/Nuclear Magnetic Resonance, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Amir R. Jassbi
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany 07745
| |
Collapse
|
6
|
Pearce G, Bhattacharya R, Chen YC, Barona G, Yamaguchi Y, Ryan CA. Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. PLANT PHYSIOLOGY 2009; 150:1422-33. [PMID: 19403725 PMCID: PMC2705048 DOI: 10.1104/pp.109.138669] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 04/20/2009] [Indexed: 05/20/2023]
Abstract
A gene encoding a preprohydroxyproline-rich systemin, SnpreproHypSys, was identified from the leaves of black nightshade (Solanum nigrum), which is a member of a small gene family of at least three genes that have orthologs in tobacco (Nicotiana tabacum; NtpreproHypSys), tomato (Solanum lycopersicum; SlpreproHypSys), petunia (Petunia hybrida; PhpreproHypSys), potato (Solanum tuberosum; PhpreproHypSys), and sweet potato (Ipomoea batatas; IbpreproHypSys). SnpreproHypSys was induced by wounding and by treatment with methyl jasmonate. The encoded precursor protein contained a signal sequence and was posttranslationally modified to produce three hydroxyproline-rich glycopeptide signals (HypSys peptides). The three HypSys peptides isolated from nightshade leaf extracts were called SnHypSys I (19 amino acids with six pentoses), SnHypSys II (20 amino acids with six pentoses), and SnHypSys III (20 amino acids with either six or nine pentoses) by their sequential appearance in SnpreproHypSys. The three SnHypSys peptides were synthesized and tested for their abilities to alkalinize suspension culture medium, with synthetic SnHypSys I demonstrating the highest activity. Synthetic SnHypSys I was capable of inducing alkalinization in other Solanaceae cell types (or species), indicating that structural conformations within the peptides are recognized by the different cells/species to initiate signal transduction pathways, apparently through recognition by homologous receptor(s). To further demonstrate the biological relevance of the SnHypSys peptides, the early defense gene lipoxygenase D was shown to be induced by all three synthetic peptides when supplied to excised nightshade plants.
Collapse
Affiliation(s)
- Gregory Pearce
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA.
| | | | | | | | | | | |
Collapse
|