1
|
Zhang Y, Sun Y, Du W, Sun S, Zhang S, Nie M, Liu Y, Irfan M, Zhang L, Chen L. Ethylene promotes anthocyanin synthesis in 'Viviana' lily via the LvMYB5-LvERF113-LvMYB1 module. HORTICULTURE RESEARCH 2025; 12:uhaf059. [PMID: 40291828 PMCID: PMC12023856 DOI: 10.1093/hr/uhaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/16/2025] [Indexed: 04/30/2025]
Abstract
Ethylene (ET) influences the synthesis of anthocyanins, although its regulatory effects can differ significantly across various plant species. In apples (Malus domestica), ET promotes anthocyanin synthesis, whereas in Arabidopsis thaliana, it inhibits its accumulation. Our research showed that ethephon (Eth), an ET derivative, promotes anthocyanin synthesis in 'Viviana' lilies, which has great potential in the cut flower industry. The regulatory mechanism whereby ET influences anthocyanin synthesis in lilies remains unclear. In this study, we screened and characterized an ET-induced ET response factors (ERFs), LvERF113, with inhibitory function. Our analyses suggested that LvERF113 could inhibit the negative regulatory function of LvMYB1 at transcriptional and posttranslational levels, promoting anthocyanin synthesis in 'Viviana' lily tepals. In addition, LvERF113 is positively regulated by LvMYB5, forming the LvMYB5-LvERF113-LvMYB1 module controlling anthocyanin synthesis by ET in 'Viviana' lily. These findings offer new insights into the ET regulatory network of anthocyanin synthesis and provide a theoretical basis for the application of ET derivatives in the cut flower industry.
Collapse
Affiliation(s)
- Yibing Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Weifeng Du
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, No. 84 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Shimiao Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Mengyao Nie
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Yudong Liu
- Key laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization Xinjiang of Production and Construction Crops, College of Agriculture, Shihezi University, No. 221, Beisi Road, Shihezi City, Xinjing 832003, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning 110161, China
| |
Collapse
|
2
|
Taylor JS, Bargmann BOR. Transcriptional Tuning: How Auxin Strikes Unique Chords in Gene Regulation. PHYSIOLOGIA PLANTARUM 2025; 177:e70229. [PMID: 40302163 PMCID: PMC12041631 DOI: 10.1111/ppl.70229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/01/2025]
Abstract
Auxin is a central regulator of plant growth, development, and responses to environmental cues. How a single phytohormone mediates such a diverse array of developmental responses has remained a longstanding question in plant biology. Somehow, perception of the same auxin signal can lead to divergent responses in different organs, tissues, and cell types. These responses are primarily mediated by the nuclear auxin signaling pathway, composed of ARF transcription factors, Aux/IAA repressors, and TIR1/AFB auxin receptors, which act together to regulate auxin-dependent transcriptional changes. Transcriptional specificity likely arises through the functional diversity within these signaling components, forming many coordinated regulatory layers to generate unique transcriptional outputs. These layers include differential binding affinities for cis-regulatory elements, protein-protein interaction-specificity, subcellular localization, co-expression patterns, and protein turnover. In this review, we explore the experimental evidence of functional diversity within auxin signaling machinery and discuss how these differences could contribute to transcriptional output specificity.
Collapse
Affiliation(s)
- Joseph S. Taylor
- Virginia TechSchool of Plant and Environmental SciencesBlacksburgVAUSA
| | | |
Collapse
|
3
|
Yusuf A, Wakaya K, Sakamoto T, Uemura T, Okamura K, Ramadan A, Nozawa A, Suzuki T, Inui Y, Matsunaga S, Sawasaki T, Arimura G. Histone Modification-Dependent Transcriptional Regulation of Defence Genes in Early Response of Arabidopsis to Spodoptera litura Attack. PLANT, CELL & ENVIRONMENT 2025; 48:3257-3268. [PMID: 39722556 PMCID: PMC11963488 DOI: 10.1111/pce.15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Histone modification is a cellular process for transcriptional regulation. In herbivore-damaged plants, activation of genes involved in defence responses is required for antiherbivore properties, but little is known about how the chromatin remodelling system is involved. In Arabidopsis (Arabidopsis thaliana) plants responding to Spodoptera litura larvae, HAC1 and HDA6, a histone acetyltransferase and a histone deacetylase, respectively, were found here to be involved in histone H3 (Lys9; H3K9) acetylation/deacetylation at the promoter region of the plant defensin gene PDF1.2 and the gene body of ethylene response factor 13 (ERF13) as early as 2 h after the onset of herbivore attack. The H3K9 acetylation was responsible for the robust upregulation of PDF1.2 later, at 24 h, and ERF13 even earlier, at 1 h. TOPLESS (TPL) and TOPLESS-related (TPR) corepressors interacted with HDA6 to deacetylate H3K9 at PDF1.2 and ERF13, while negatively regulating the expression of PDF1.2 but not ERF13. Furthermore, TPL also interacted with ERF13, resulting in ERF13-mediated regulation of PDF1.2. Taken together, these data suggest a model of promoter-restricted, TPL/TPR-directed histone deacetylation and transcription factor repression in healthy Arabidopsis plants for the feedback regulation of the antiherbivore response.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
- Department of BotanyFaculty of Science, Ain Shams UniversityCairoEgypt
| | - Kota Wakaya
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Takuya Sakamoto
- Department of ScienceFaculty of Science, Kanagawa UniversityYokohamaJapan
| | - Takuya Uemura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Koudai Okamura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Abdelaziz Ramadan
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| | - Akira Nozawa
- Proteo‐Science CenterEhime UniversityMatsuyamaJapan
| | - Takamasa Suzuki
- College of Bioscience and BiotechnologyChubu UniversityKasugaiJapan
| | - Yayoi Inui
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Sachihiro Matsunaga
- Department of Integrated BiosciencesGraduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | | | - Gen‐Ichiro Arimura
- Department of Biological Science and TechnologyFaculty of Advanced Engineering, Tokyo University of ScienceTokyoJapan
| |
Collapse
|
4
|
Fragkostefanakis S, Schleiff E, Scharf KD. Back to the basics: the molecular blueprint of plant heat stress transcription factors. Biol Chem 2025:hsz-2025-0115. [PMID: 40223542 DOI: 10.1515/hsz-2025-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Heat stress transcription factors (HSFs) play a pivotal role in regulating plant responses to heat and other environmental stresses, as well as developmental processes. HSFs possess conserved domains responsible for DNA binding, oligomerization, and transcriptional regulation, which collectively enable precise and dynamic control of cellular responses to environmental stimuli. Functional diversification of HSFs has been demonstrated through genetic studies in model plants such as Arabidopsis thaliana and economically important crops like tomato, rice, and wheat. However, the underlying molecular mechanisms that govern HSF function remain only partially understood, and for a handful of HSFs. Advancements in structural biology, biochemistry, molecular biology, and genomics shed light into how HSFs mediate stress responses at the molecular level. These insights offer exciting opportunities to leverage HSF biology for gene editing and crop improvement, enabling the customization of stress tolerance traits via regulation of HSF-dependent regulatory networks to enhance thermotolerance. This review synthesizes current knowledge on HSF structure and function, providing a perspective on their roles in plant adaptation to a changing climate.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| |
Collapse
|
5
|
Wang Q, Gong Z, Zhu Z. High temperature-responsive DEAR4 condensation confers thermotolerance through recruiting TOPLESS in Arabidopsis nucleus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70172. [PMID: 40265976 DOI: 10.1111/tpj.70172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
Global warming is harmful to plants and threatens crop yields in the world. In contrast to other abiotic stresses, the molecular mechanisms for plant high temperature perception and signaling are still not fully understood. Here, we report that transcription factor DREB AND EAR MOTIF PROTEIN 4 (DEAR4) positively regulates heat tolerance in Arabidopsis thaliana. We further reveal that DEAR4 proteins undergo liquid-liquid phase separation (LLPS) and high temperature could induce DEAR4 condensate formation in the nucleus. Moreover, DEAR4 recruits the transcriptional co-repressor TOPLESS (TPL) into the nuclear speckles under high temperature. The high temperature triggered DEAR4-TPL co-condensates enhance their transcriptional repression activity through modulating histone deacetylation levels of GASA5, which is a reported negative regulator of HEAT SHOCK PROTEINs (HSPs). A genome-wide transcriptional landscape study confirms that DEAR4 induces the expression of multiple HSPs. Taken together, we illustrate a transcriptional repression mechanism mediated by DEAR4 through LLPS to confer plants thermotolerance and open a new avenue for translating this knowledge into crops for improving their heat resistance.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
6
|
Yang Z, Bai W, Guo G, Huang S, Wang Y, Zhou Y, Zhang Y, Sun J. The Q-interacted protein QIP3 recruits TaTPL to regulate spike architecture in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70149. [PMID: 40275435 DOI: 10.1111/tpj.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Spike architecture is a critical determinant of grain yield in wheat; yet the regulatory mechanisms remain poorly understood. Here, we demonstrate that the AP2 transcription factor Q directly represses the expression of TaMYB30-6A, a gene associated with spike length in wheat. We further identify QIP3 as a Q-interacting protein harboring an N-terminal EAR motif. Simultaneously, we reveal that QIP3 exhibits transcriptional repression activity, dependent on the EAR motif, and physically interacts with the transcriptional corepressor TaTPL. Importantly, the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-generated qip3-aabbdd mutants exhibit reduced plant height and increased spike length phenotypes. Furthermore, RNA-seq and RT-qPCR assays show that QIP3 negatively regulates the expression of the Q target gene TaMYB30-6A in wheat. Collectively, we propose that the EAR motif-containing QIP3 interacts with Q to regulate spike architecture by recruiting the transcriptional corepressor TaTPL in wheat.
Collapse
Affiliation(s)
- Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Shuxian Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yufan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
7
|
Furihata H, Zhu Z, Nishida K, Sakuraba Y, Tsuji A, Yamashita H, Nosaki S, Tachibana R, Yamagami A, Ikeda Y, Abe M, Sawasaki T, Nakano T, Yanagisawa S, Tanokura M, Miyakawa T. Structural insights into CDF1 accumulation on the CONSTANS promoter via a plant-specific DNA-binding domain. NATURE PLANTS 2025; 11:836-848. [PMID: 40263610 DOI: 10.1038/s41477-025-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/21/2025] [Indexed: 04/24/2025]
Abstract
DNA-binding with one-finger (Dof) proteins are a family of plant-specific transcription factors distinguished by the highly conserved Dof DNA-binding domain. Various members play crucial roles in diverse plant biological processes. However, it remains unclear how the Dof domain recognizes a restricted set of promoters for gene regulation by binding to just four nucleotides, AAAG/CTTT. Here we present the crystal structure of the Dof domain of CYCLING DOF FACTOR 1 (CDF1), a well-characterized Dof protein acting as a transcriptional repressor by binding to the CONSTANS promoter to regulate photoperiodic flowering, in complex with DNA containing two cis elements. The data reveal that the Dof domain exhibits a unique zinc ribbon fold that includes a three-stranded antiparallel β-sheet and a carboxy-terminal loop, enabling DNA recognition accompanied by directional expansion of the major groove. These features facilitate binding to contiguous target cis elements in a proper arrangement to effectively regulate gene expression.
Collapse
Affiliation(s)
- Hirotake Furihata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Zhangliang Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kaisei Nishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuhito Sakuraba
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akihiro Tsuji
- Graduate School of Engineering Science, The University of Osaka, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, The University of Osaka, Osaka, Japan
| | - Shohei Nosaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Ikeda
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, The University of Osaka, Osaka, Japan
| | | | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Prigge MJ, Morffy N, de Neve A, Szutu W, Abraham-Juárez MJ, McAllister T, Jones H, Johnson K, Do N, Lavy M, Hake S, Strader LC, Estelle M, Richardson AE. Comparative mutant analyses reveal a novel mechanism of ARF regulation in land plants. NATURE PLANTS 2025; 11:821-835. [PMID: 40216984 PMCID: PMC12014491 DOI: 10.1038/s41477-025-01973-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025]
Abstract
The plant hormone auxin regulates a wide variety of transcriptional responses depending on the cell type, environment and species. How this diversity is achieved may be related to the specific complement of auxin-signalling components in each cell. The levels of activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) are particularly important. Tight regulation of ARF protein levels is probably key in determining this balance. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens, we have discovered a ~500-million-year-old mechanism of class-B ARF protein-level regulation mediated by proteasome degradation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.
Collapse
Affiliation(s)
- Michael J Prigge
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Amber de Neve
- USDA Plant Gene Expression Center, Albany, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Whitnie Szutu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Mexico
| | - Trisha McAllister
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather Jones
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kjel Johnson
- USDA Plant Gene Expression Center, Albany, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Nicole Do
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Meirav Lavy
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sarah Hake
- USDA Plant Gene Expression Center, Albany, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Mark Estelle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Annis E Richardson
- USDA Plant Gene Expression Center, Albany, CA, USA.
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Downing B, Leydon AR, Nemhauser JL. The TPX family of co-repressors: a hub amidst the hubbub. PHYSIOLOGIA PLANTARUM 2025; 177:e70185. [PMID: 40139956 PMCID: PMC11978398 DOI: 10.1111/ppl.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
The phytohormone auxin affects a wide range of plant responses through global shifts in gene expression. The TOPLESS/TOPLESS RELATED (TPL/TPR) co-repressors (here collectively called the TPX family for simplicity) play a central role in this transcriptional regulation, acting through a variety of mechanisms, including modifying chromatin accessibility and assembling the machinery needed for transcription initiation. Structure-function analysis has mapped multiple repression domains within the founding TPL protein, and uncovered several forms of post-translational modifications that alter the function of TPL or other TPX proteins. Recent examination of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins suggests that differential affinity for TPXs can set the threshold for auxin sensitivity and subsequent growth dynamics. Beyond well-established roles in development, the TPX family has also emerged as a hub in plant immunity with effectors from diverse pathogens directly targeting TPX proteins. In one particularly striking case, a species of insect reduces the fitness of its competitors by manipulating TPX activity in the shared host plant to increase a selective suite of plant defenses. The subtle and effective reprogramming of critical developmental and immunity networks via modification of the pool of available TPX proteins could guide engineering strategies to optimize growth-defense trade-offs in crops. In this review, we will summarize recent studies highlighting how modifying the available pool of TPX family members results in subtle and effective reprogramming of critical developmental and immunity networks, and how this mode of regulation could provide a blueprint for optimizing growth-defense trade-offs in crops.
Collapse
Affiliation(s)
- Benjamin Downing
- Department of Biology, University of Washington, Seattle, United States
| | | | | |
Collapse
|
10
|
Liu X, Zhang F, Xun Z, Shao J, Luo W, Jiang X, Wang J, Wang J, Li S, Lin Q, Ren Y, Zhao H, Cheng Z, Wan J. The OsNL1-OsTOPLESS2-OsMOC1/3 pathway regulates high-order tiller outgrowth in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:900-910. [PMID: 39676575 PMCID: PMC11869174 DOI: 10.1111/pbi.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Tiller is an important factor in determining rice yield. Currently, researches mainly focus on the outgrowth of low-order tiller (LOT), while the regulation mechanism of high-order tiller (HOT) outgrowth has remained unknown. In this study, we detected one OsNL1 mutant, nl1, exhibiting HOT numbers increase, and found that OsNL1 interacts with OsTOPLESS2, which was mediated by the core motif of nine amino acids VDCTLSLGT within the HAN domain of OsNL1. The topless2 mutant exhibits similar HOT number increase as in the nl1. Through ChIP-seq analysis, we revealed that OsNL1 recruits OsTOPLESS2 to conduct histone deacetylation in the promoters of OsMOC1 and OsMOC3 to regulate HOT outgrowth. Moreover, we showed that the HAN domain is essential for OsNL1 function as a repressor. In summary, our study reveals partial mechanism of HOT outgrowth in rice and deciphers the molecular biology function of the HAN domain. This will contribute to the comprehensive understanding of tiller outgrowth and the role of HAN-domain-containing genes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- College of Life SciencesNorthwest A & F UniversityYanglingChina
| | - Feng Zhang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Ziqi Xun
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jiale Shao
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Xiaokang Jiang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jiachang Wang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Jian Wang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Shuai Li
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
| | - Huixian Zhao
- College of Life SciencesNorthwest A & F UniversityYanglingChina
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Nanfan Research InstituteCAASSanyaHainaChina
| | - Jianmin Wan
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop SciencesChinese Academy of Agricultural SciencesBeijing100081P. R. China
- Nanfan Research InstituteCAASSanyaHainaChina
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationNanjing Agricultural UniversityNanjing210095P. R. China
| |
Collapse
|
11
|
Low PM, Kong Q, Blaschek L, Ma Z, Lim PK, Yang Y, Quek T, Lim CJR, Singh SK, Crocoll C, Engquist E, Thorsen JS, Pattanaik S, Tee WT, Mutwil M, Miao Y, Yuan L, Xu D, Persson S, Ma W. ZINC FINGER PROTEIN2 suppresses funiculus lignification to ensure seed loading efficiency in Arabidopsis. Dev Cell 2025:S1534-5807(25)00062-0. [PMID: 39999844 DOI: 10.1016/j.devcel.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
The plant funiculus anchors the developing seed to the placenta within the inner dorsal pod strands of the silique wall and directly transports nutrients to the seeds. The lignified vasculature critically supports nutrient transport through the funiculus. However, molecular mechanisms underlying lignified secondary cell wall (SCW) biosynthesis in the funiculus remain elusive. Here, we show that the transcription factor ZINC FINGER PROTEIN2 (ZFP2) represses SCW formation in the cortex cells that surround the vasculature. This function is essential for efficient nutrient loading into the seeds. Notably, ZFP2 directly acts on the SCW transcription factor NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1) to repress cortex cell lignification, providing a mechanism of how SCW biosynthesis is restricted to the vasculature of the funiculus to ensure proper seed loading in Arabidopsis.
Collapse
Affiliation(s)
- Pui Man Low
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Leonard Blaschek
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuzhou Yang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Trisha Quek
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Cuithbert J R Lim
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Christoph Crocoll
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ellen Engquist
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jakob S Thorsen
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Wan Ting Tee
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Deyang Xu
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Staffan Persson
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
12
|
Leydon AR, Downing B, Solano Sanchez J, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer AJ, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A function of TPL/TBL1-type corepressors is to nucleate the assembly of the preinitiation complex. J Cell Biol 2025; 224:e202404103. [PMID: 39652081 PMCID: PMC11627113 DOI: 10.1083/jcb.202404103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole-genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5, and SPT6 as necessary for repression with SPT4 acting as a bridge connecting TPL to SPT5 and SPT6. We discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved early in transcription initiation. These findings were validated in yeast and plants, including a novel method to analyze the conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate the rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Andrew J. Bauer
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, ON, USA
| | | |
Collapse
|
13
|
Arimura GI, Uemura T. Cracking the plant VOC sensing code and its practical applications. TRENDS IN PLANT SCIENCE 2025; 30:105-115. [PMID: 39395880 DOI: 10.1016/j.tplants.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Volatile organic compounds (VOCs) are essential airborne mediators of interactions between plants. These plant-plant interactions require sophisticated VOC-sensing mechanisms that enable plants to regulate their defenses against pests. However, these interactions are not limited to specific plants or even conspecifics, and can function in very flexible interactions between plants. Sensing and responding to VOCs in plants is finely controlled by their uptake and transport systems as well as by cellular signaling via, for example, chromatin remodeling system-based transcriptional regulation for defense gene activation. Based on the accumulated knowledge about the interactions between plants and their major VOCs, companion plants and biostimulants are being developed for practical applications in agricultural and horticultural pest control, providing a sustainable alternative to harmful chemicals.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan.
| | - Takuya Uemura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
14
|
Gregory J, Liu X, Chen Z, Gallardo C, Punskovsky J, Koslow G, Galli M, Gallavotti A. Transcriptional corepressors in maize maintain meristem development. PLANT PHYSIOLOGY 2024; 197:kiae476. [PMID: 39255069 PMCID: PMC11663565 DOI: 10.1093/plphys/kiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
The formation of the plant body proceeds in a sequential postembryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize (Zea mays), the RAMOSA1 ENHANCER LOCUS2 (REL2) family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen for rel2 enhancers, we identified shorter double mutants with enlarged ear inflorescence meristems (IMs) carrying mutations in RELK1. Expression and genetic analysis indicated that REL2 and RELK1 cooperatively regulate ear IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of the ZmWUSCHEL1 gene, which encodes a key stem-cell promoting transcription factor. We further demonstrated that RELK genes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size in rel2 heterozygous plants, we also showed that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.
Collapse
Affiliation(s)
- Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Cecilia Gallardo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Jason Punskovsky
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Gabriel Koslow
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Lu S, Liu L, Lei W, Wang D, Zhu H, Lai Q, Ma L, Ru D. Cryptic divergence in and evolutionary dynamics of endangered hybrid Picea brachytyla sensu stricto in the Qinghai-Tibet Plateau. BMC PLANT BIOLOGY 2024; 24:1202. [PMID: 39701948 DOI: 10.1186/s12870-024-05851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The visual similarities observed across various plant groups often conceal underlying genetic distinctions. This occurrence, known as cryptic diversity, underscores the key importance of identifying and understanding cryptic intraspecific evolutionary lineages in evolutionary ecology and conservation biology. RESULTS In this study, we conducted transcriptome analysis of 81 individuals from 18 natural populations of a northern lineage of Picea brachytyla sensu stricto that is endemic to the Qinghai-Tibet Plateau. Our analysis revealed the presence of two distinct local lineages, emerging approximately 444.8 thousand years ago (kya), within this endangered species. The divergence event aligns well with the geographic and climatic oscillations that occurred across the distributional range during the Mid-Pleistocene epoch. Additionally, we identified numerous environmentally correlated gene variants, as well as many other genes showing signals of positive selection across the genome. These factors likely contributed to the persistence and adaptation of the two distinct local lineages. CONCLUSIONS Our findings shed light on the highly dynamic evolutionary processes underlying the remarkably similar phenotypes of the two lineages of this endangered species. Importantly, these results enhance our understanding of the evolutionary past for this and for other endangered species with similar histories, and also provide guidance for the development of conservation plans.
Collapse
Affiliation(s)
- Shengming Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Weixiao Lei
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Donglei Wang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hui Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Qing Lai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Liru Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Dafu Ru
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Roessner C, Griep S, Becker A. A land plant phylogenetic framework for GLABROUS INFLORESCENCE STEMS (GIS), SUPERMAN, JAGGED and allies plus their TOPLESS co-repressor. Mol Phylogenet Evol 2024; 201:108195. [PMID: 39260627 DOI: 10.1016/j.ympev.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Members of the plant specific family of C1-1i zincfinger transcriptionfactors (ZF-TFs), such as SUPERMAN, JAGGED, KNUCKLES or GIS,regulatediversedevelopmental processes including sexual reproduction. C1-1is consist of one zinc-finger and one to two EAR domains, connected by large intrinsically disordered regions (IDR). While the role of C1-i1 ZF-TFs in development processes is well known for some genes in Arabidopsis, rice or tomatoa comprehensive and broadphylogenetic background is lacking, yet knowledge of orthology is a requirement for a better understanding of C1-1i-Zf-TFs diverse roles in plants. Here, we provide a fine-grained and land plant wide classification of C1-1i sub-families and their known co-repressors TOPLESS and TOPLESS RELATED. Our work combines the identification of orthologous groups with Maximum-Likelihood phylogeny reconstructions and digital gene expression analyses mining high quality land plant genomes and transcriptomes to generate a comprehensive framework of C1-1i ZF-TF evolution. We show that C1-1i's are low to moderate copy genesand that orthologous genesonly partiallyhaveconserved sub-family and life cycle stage dependent expression pattern across land plants while others are highly diverged. Our workprovides the phylogenetic framework for C1-1i ZF-TFs, s and strengthen C1-1 ZF-TFs as a potential model for IDR-research in plants.
Collapse
Affiliation(s)
| | - Sven Griep
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
17
|
Tang Q, Wei S, Zheng X, Tu P, Tao F. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Crit Rev Biotechnol 2024; 44:1533-1551. [PMID: 38267262 DOI: 10.1080/07388551.2023.2299769] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
Collapse
Affiliation(s)
- Qiong Tang
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Sishan Wei
- College of Standardization, China Jiliang University, Hangzhou, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Pengcheng Tu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fei Tao
- College of Standardization, China Jiliang University, Hangzhou, China
| |
Collapse
|
18
|
Liu L, Hu B, Guo S, Xue Z, Wang T, Zhang C. miR394 and LCR cooperate with TPL to regulate AM initiation. Nat Commun 2024; 15:10156. [PMID: 39578457 PMCID: PMC11584774 DOI: 10.1038/s41467-024-54494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/09/2024] [Indexed: 11/24/2024] Open
Abstract
Plant architecture is a main determinate of crop yield, and lateral branching significantly influences the number of inflorescences and seeds. The mechanism of axillary bud initiation remains unclear. This work aimed to examine how miRNAs regulate axillary bud initiation. By constructing a small RNA library and screening a mutant population, we revealed the initiation of axillary buds is specifically induced by miR394 and repressed by its target, LEAF CURLING RESPONSIVENESS (LCR). Using promoter-driven fluorescent tags and in situ hybridization, we showed that miR394 is localized in the center of the leaf axil where AMs are initiated. Through molecular and genetic research, we revealed that miR394/LCR may regulate REVOLUTA (REV) and SHOOT MERISTEMLESS (STM) to establish the axillary meristem. Immunoprecipitation-mass spectrometry studies revealed that LCR, as an F-box protein, may interact with TOPLESS (TPL) proteins and participate in ubiquitinated protein degradation. Our results reveal an important mechanism by which the miR394-regulated LCR accelerates the degradation of TPL to precisely modulate axillary bud initiation.
Collapse
Affiliation(s)
- Liya Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihui Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Tao Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
19
|
Khan M, Uhse S, Bindics J, Kogelmann B, Nagarajan N, Tabassum R, Ingole KD, Djamei A. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. THE NEW PHYTOLOGIST 2024; 244:949-961. [PMID: 39021059 DOI: 10.1111/nph.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors. Here, we screened 297 U. maydis effector candidates for their ability to interact with maize TPL protein RAMOSA 1 ENHANCER LOCUS 2 LIKE 2 (RELK2) and their ability to induce auxin signaling and thereby identified three novel TPL-interacting protein effectors (Tip6, Tip7, and Tip8). Structural modeling and mutational analysis allowed the identification of TPL-interaction motifs of Tip6 and Tip7. In planta interaction between Tip6 and Tip7 with RELK2 occurs mainly in nuclear compartments, whereas Tip8 colocalizes with RELK2 in a compartment outside the nucleus. Overexpression of Tip8 in nonhost plants leads to cell death, indicating recognition of the effector or its activity. By performing infection assays with single and multideletion mutants of U. maydis, we demonstrate a positive role of Tip6 and Tip7 in U. maydis virulence. Transcriptional profiling of maize leaves infected with Tip effector mutants in comparison with SG200 strain suggests Tip effector activities are not merely redundant.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Nithya Nagarajan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Riaz Tabassum
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| |
Collapse
|
20
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
21
|
Cho HT, Lee M, Choi HS, Maeng KH, Lee K, Lee HY, Ganguly A, Park H, Ho CH. A dose-dependent bimodal switch by homologous Aux/IAA transcriptional repressors. MOLECULAR PLANT 2024; 17:1407-1422. [PMID: 39095993 DOI: 10.1016/j.molp.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Combinatorial interactions between different regulators diversify and enrich the chance of transcriptional regulation in eukaryotic cells. However, a dose-dependent functional switch of homologous transcriptional repressors has rarely been reported. Here, we show that SHY2, an auxin/indole-3-acetic acid (Aux/IAA) repressor, exhibits a dose-dependent bimodal role in auxin-sensitive root-hair growth and gene transcription in Arabidopsis, whereas other Aux/IAA homologs consistently repress the auxin responses. The co-repressor (TOPLESS [TPL])-binding affinity of a bimodal Aux/IAA was lower than that of a consistently repressing Aux/IAA. The switch of a single amino acid residue in the TPL-binding motif between the bimodal form and the consistently repressing form switched their TPL-binding affinity and transcriptional and biological roles in auxin responses. Based on these data, we propose a model whereby competition between homologous repressors with different co-repressor-binding affinities could generate a bimodal output at the transcriptional and developmental levels.
Collapse
Affiliation(s)
- Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea.
| | - Minsu Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kwang-Ho Maeng
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyeonghoon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ha-Yeon Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Anindya Ganguly
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hoonyoung Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
| | - Chang-Hoi Ho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea; Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
22
|
Du Q, Yuan B, Thapa Chhetri G, Wang T, Qi L, Wang H. A transcriptional repressor HVA regulates vascular bundle formation through auxin transport in Arabidopsis stem. THE NEW PHYTOLOGIST 2024; 243:1681-1697. [PMID: 39014537 DOI: 10.1111/nph.19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.
Collapse
Affiliation(s)
- Qian Du
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Bingjian Yuan
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Gaurav Thapa Chhetri
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Tong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Liying Qi
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd, Storrs, CT, 06269, USA
- Institute for System Genomics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
23
|
Zhang X, Chen Y, Chen H, Guo C, Su X, Mu T, Feng B, Wang Y, Liu Z, Zhang B, Li Y, Zhang H, Yuan W, Li H. Genome-wide analysis of TOPLESS/TOPLESS-RELATED co-repressors and functional characterization of BnaA9.TPL regulating the embryogenesis and leaf morphology in rapeseed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112149. [PMID: 38851591 DOI: 10.1016/j.plantsci.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins belong to the Groucho (Gro)/Tup1 family co-repressors and act as broad co-repressors that modulate multiple phytohormone signalling pathways and various developmental processes in plant. However, TPL/TPR co-repressors so far are poorly understood in the rapeseed, one of the world-wide important oilseed crops. In this study, we comprehensively characterized eighteen TPL/TPR genes into five groups in the rapeseed genome. Members of TPL/TPR1/TPR4 and TPR2/TPR3 had close evolutionary relationship, respectively. All TPL/TPRs had similar expression patterns and encode conserved protein domain. In addition, we demonstrated that BnaA9.TPL interacted with all known plant repression domain (RD) sequences, which were distributed in non-redundant 24,238 (22.6 %) genes and significantly enriched in transcription factors in the rapeseed genome. These transcription factors were largely co-expressed with the TPL/TPR genes and involved in diverse pathway, including phytohormone signal transduction, protein kinases and circadian rhythm. Furthermore, BnaA9.TPL was revealed to regulate apical embryonic fate by interaction with Bna.IAA12 and suppression of PLETHORA1/2. BnaA9.TPL was also identified to regulate leaf morphology by interaction with Bna.AS1 (Asymmetric leaves 1) and suppression of KNOTTED-like homeobox genes and YABBY5. These data not only suggest the rapeseed TPL/TPRs play broad roles in different processes, but also provide useful information to uncover more TPL/TPR-mediated control of plant development in rapeseed.
Collapse
Affiliation(s)
- Xiaolong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yingying Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hongyu Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaocheng Guo
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Tingting Mu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Bin Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhixin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
24
|
Zeng L, Guo J, Palayam M, Rodriguez C, Gomez Mendez MF, Wang Y, van de Ven W, Pruneda-Paz J, Shabek N, Dehesh K. Integrated Dual-Channel Retrograde Signaling Directs Stress Responses by Degrading the HAT1/TPL/IMPα-9 Suppressor Complex and Activating CAMTA3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610327. [PMID: 39257742 PMCID: PMC11384019 DOI: 10.1101/2024.08.29.610327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The intricate communication between plastids and the nucleus, shaping stress-responsive gene expression, has long intrigued researchers. This study combines genetics, biochemical analysis, cellular biology, and protein modeling to uncover how the plastidial metabolite MEcPP activates the stress-response regulatory hub known as the Rapid Stress Response Element (RSRE). Specifically, we identify the HAT1/TPL/IMPα- 9 suppressor complex, where HAT1 directly binds to RSRE and its activator, CAMTA3, masking RSRE and sequestering the activator. Stress-induced MEcPP disrupts this complex, exposing RSRE and releasing CAMTA3, while enhancing Ca 2+ influx and raising nuclear Ca 2+ levels crucial for CAMTA3 activation and the initiation of RSRE- containing gene transcription. This coordinated breakdown of the suppressor complex and activation of the activator highlights the dual-channel role of MEcPP in plastid-to- nucleus signaling. It further signifies how this metabolite transcends its expected biochemical role, emerging as a crucial initiator of harmonious signaling cascades essential for maintaining cellular homeostasis under stress. Summary This study uncovers how the stress-induced signaling metabolite MEcPP disrupts the HAT1/TPL/IMPα-9 suppressor complex, liberating the activator CAMTA3 and enabling Ca 2+ influx essential for CAMTA3 activation, thus orchestrating stress responses via repressor degradation and activator induction.
Collapse
|
25
|
Anjum N, Maiti MK. OsNAC121 regulates root development, tillering, panicle morphology, and grain filling in rice plant. PLANT MOLECULAR BIOLOGY 2024; 114:82. [PMID: 38954114 DOI: 10.1007/s11103-024-01476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Transcription factors in coordination with phytohormones form an intricate regulatory network modulating vital cellular mechanisms like development, growth and senescence in plants. In this study, we have functionally characterized the transcription factor OsNAC121 by developing gene silencing and overexpressing transgenic rice plants, followed by detailed analyses of the plant architecture. Transgenic lines exhibited remodelling in crown root development, lateral root structure and density, tiller height and number, panicle and grain morphologies, underpinning the imbalanced auxin: cytokinin ratio due to perturbed auxin transportation. Application of cytokinin, auxin and abscisic acid increased OsNAC121 gene expression nearly 17-, 6- and 91-folds, respectively. qRT-PCR results showed differential expressions of auxin and cytokinin pathway genes, implying their altered levels. A 47-fold higher expression level of OsNAC121 during milky stage in untransformed rice, compared to 14-day old shoot tissue, suggests its crucial role in grain filling; as evidenced by a large number of undeveloped grains produced by the gene silenced lines. Crippled gravitropic response by the transgenic plants indicates their impaired auxin transport. Bioinformatics revealed that OsNAC121 interacts with co-repressor (TOPLESS) proteins and forms a part of the inhibitor complex OsIAA10, an essential core component of auxin signalling pathway. Therefore, OsNAC121 emerges as an important regulator of various aspects of plant architecture through modulation of crosstalk between auxin and cytokinin, altering their concentration gradient in the meristematic zones, and consequently modifying different plant organogenesis processes.
Collapse
Affiliation(s)
- Nazma Anjum
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mrinal K Maiti
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
26
|
Williams J, Regedanz E, Lucinda N, Nava Fereira AR, Lacatus G, Berger M, O’Connell N, Coursey T, Ruan J, Bisaro DM, Sunter G. Mutation of the conserved late element in geminivirus CP promoters abolishes Arabidopsis TCP24 transcription factor binding and decreases H3K27me3 levels on viral chromatin. PLoS Pathog 2024; 20:e1012399. [PMID: 39024402 PMCID: PMC11288445 DOI: 10.1371/journal.ppat.1012399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 07/30/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
In geminiviruses belonging to the genus Begomovirus, coat protein (CP) expression depends on viral AL2 protein, which derepresses and activates the CP promoter through sequence elements that lie within the viral intergenic region (IR). However, AL2 does not exhibit sequence-specific DNA binding activity but is instead directed to responsive promoters through interactions with host factors, most likely transcriptional activators and/or repressors. In this study, we describe a repressive plant-specific transcription factor, Arabidopsis thaliana TCP24 (AtTCP24), that interacts with AL2 and recognizes a class II TCP binding site in the CP promoter (GTGGTCCC). This motif corresponds to the previously identified conserved late element (CLE). We also report that histone 3 lysine 27 trimethylation (H3K27me3), an epigenetic mark associated with facultative repression, is enriched over the viral IR. H3K27me3 is deposited by Polycomb Repressive Complex 2 (PRC2), a critical regulator of gene expression and development in plants and animals. Remarkably, mutation of the TCP24 binding site (the CLE) in tomato golden mosaic virus (TGMV) and cabbage leaf curl virus (CaLCuV) CP promoters greatly diminishes H3K27me3 levels on viral chromatin and causes a dramatic delay and attenuation of disease symptoms in infected Arabidopsis and Nicotiana benthamiana plants. Symptom remission is accompanied by decreased viral DNA levels in systemically infected tissue. Nevertheless, in transient replication assays CLE mutation delays but does not limit the accumulation of viral double-stranded DNA, although single-stranded DNA and CP mRNA levels are decreased. These findings suggest that TCP24 binding to the CLE leads to CP promoter repression and H3K27me3 deposition, while TCP24-AL2 interaction may recruit AL2 to derepress and activate the promoter. Thus, a repressive host transcription factor may be repurposed to target a viral factor essential for promoter activity. The presence of the CLE in many begomoviruses suggests a common scheme for late promoter regulation.
Collapse
Affiliation(s)
- Jacqueline Williams
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Natalia Lucinda
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Alba Ruth Nava Fereira
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Gabriela Lacatus
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mary Berger
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Nels O’Connell
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Tami Coursey
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Garry Sunter
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| |
Collapse
|
27
|
Liu L, Yahaya BS, Li J, Wu F. Enigmatic role of auxin response factors in plant growth and stress tolerance. FRONTIERS IN PLANT SCIENCE 2024; 15:1398818. [PMID: 38903418 PMCID: PMC11188990 DOI: 10.3389/fpls.2024.1398818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Abiotic and biotic stresses globally constrain plant growth and impede the optimization of crop productivity. The phytohormone auxin is involved in nearly every aspect of plant development. Auxin acts as a chemical messenger that influences gene expression through a short nuclear pathway, mediated by a family of specific DNA-binding transcription factors known as Auxin Response Factors (ARFs). ARFs thus act as effectors of auxin response and translate chemical signals into the regulation of auxin responsive genes. Since the initial discovery of the first ARF in Arabidopsis, advancements in genetics, biochemistry, genomics, and structural biology have facilitated the development of models elucidating ARF action and their contributions to generating specific auxin responses. Yet, significant gaps persist in our understanding of ARF transcription factors despite these endeavors. Unraveling the functional roles of ARFs in regulating stress response, alongside elucidating their genetic and molecular mechanisms, is still in its nascent phase. Here, we review recent research outcomes on ARFs, detailing their involvement in regulating leaf, flower, and root organogenesis and development, as well as stress responses and their corresponding regulatory mechanisms: including gene expression patterns, functional characterization, transcriptional, post-transcriptional and post- translational regulation across diverse stress conditions. Furthermore, we delineate unresolved questions and forthcoming challenges in ARF research.
Collapse
Affiliation(s)
- Ling Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Baba Salifu Yahaya
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Wenjiang, Sichuan, China
| |
Collapse
|
28
|
Zeng L, Gomez Mendez MF, Guo J, Jiang J, Zhang B, Chen H, Le B, Ke H, Dehesh K. Activation of stress-response genes by retrograde signaling-mediated destabilization of nuclear importin IMPα-9 and its interactor TPR2. MOLECULAR PLANT 2024; 17:884-899. [PMID: 38693693 DOI: 10.1016/j.molp.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Stress-induced retrograde signal transmission from the plastids to the nucleus has long puzzled plant biologists. To address this, we performed a suppressor screen of the ceh1 mutant, which contains elevated 2-C-methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) levels, and identified the gain-of-function mutant impα-9, which shows reversed dwarfism and suppressed expression of stress-response genes in the ceh1 background despite heightened MEcPP. Subsequent genetic and biochemical analyses established that the accumulation of MEcPP initiates an upsurge in Arabidopsis SKP1-like 1 (ASK1) abundance, a pivotal component in the proteasome degradation pathway. This increase in ASK1 prompts the degradation of IMPα-9. Moreover, we uncovered a protein-protein interaction between IMPα-9 and TPR2, a transcriptional co-suppressor and found that a reduction in IMPα-9 levels coincides with a decrease in TPR2 abundance. Significantly, the interaction between IMPα-9 and TPR2 was disrupted in impα-9 mutants, highlighting the critical role of a single amino acid alteration in maintaining their association. Disruption of their interaction results in the reversal of MEcPP-associated phenotypes. Chromatin immunoprecipitation coupled with sequencing analyses revealed that TPR2 binds globally to stress-response genes and suggested that IMPα-9 associates with the chromatin. They function together to suppress the expression of stress-response genes under normal conditions, but this suppression is alleviated in response to stress through the degradation of the suppressing machinery. The biological relevance of our discoveries was validated under high light stress, marked by MEcPP accumulation, elevated ASK1 levels, IMPα-9 degredation, reduced TPR2 abundance, and subsequent activation of a network of stress-response genes. In summary, our study collectively unveils fresh insights into plant adaptive mechanisms, highlighting intricate interactions among retrograde signaling, the proteasome, and nuclear transport machinery.
Collapse
Affiliation(s)
- Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Maria Fernanda Gomez Mendez
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jingzhe Guo
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jishan Jiang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Bailong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA; School of Medicine, University of California, Riverside, Riverside, CA 92521, USA
| | - Hao Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Haiyan Ke
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Katayoon Dehesh
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
29
|
Zhang F, Pan Z, Han C, Dong H, Lin L, Qiao Q, Zhao K, Wu J, Tao S, Zhang S, Huang X. Pyrus betulaefolia ERF3 interacts with HsfC1a to coordinately regulate aquaporin PIP1;4 and NCED4 for drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae090. [PMID: 38799129 PMCID: PMC11116902 DOI: 10.1093/hr/uhae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Environmental disasters like drought reduce agricultural output and plant growth. Redox management significantly affects plant stress responses. An earlier study found that PbPIP1;4 transports H2O2 and promotes H2O2 downstream cascade signaling to restore redox equilibrium. However, this regulatory mechanism requires additional investigation. In this search, the AP2 domain-containing transcription factor was isolated by screening Y1H from the wild pear (Pyrus betulaefolia) cDNA library, named PbERF3. The overexpression of PbERF3 in pear callus and Arabidopsis enhanced plant resistance to drought and re-established redox balance. The transcripts of the NCEDs gene were upregulated under drought stress. The drought stress-related abscisic acid (ABA) signaling pathway modulates PbERF3. PbERF3 silencing lowered drought tolerance. Furthermore, yeast 2-hybrid, luciferase, bimolecular fluorescence complementation, and co-immunoprecipitation assays verified that PbERF3 physically interacted with PbHsfC1a. The PbERF3-PbHsfC1a heterodimer coordinately bound to PbPIP1;4 and PbNCED4 promoter, therefore activating both the H2O2 and the ABA signaling pathway. This work revealed a novel PbERF3-PbHsfC1a-PbNCED4-PbPIP1;4 regulatory module, in which PbERF3 interacts with PbHsfC1a to trigger the expression of target genes. This module establishes an interaction between the H2O2 signaling component PbPIP1;4 and the ABA pathways component PbNCED4, enabling a response to drought.
Collapse
Affiliation(s)
- Feng Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Zhijian Pan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Chenyang Han
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Huizhen Dong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Likun Lin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Qinghai Qiao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Keke Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| |
Collapse
|
30
|
Bohn L, Huang J, Weidig S, Yang Z, Heidersberger C, Genty B, Falter-Braun P, Christmann A, Grill E. The temperature sensor TWA1 is required for thermotolerance in Arabidopsis. Nature 2024; 629:1126-1132. [PMID: 38750356 PMCID: PMC11136664 DOI: 10.1038/s41586-024-07424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Plants exposed to incidences of excessive temperatures activate heat-stress responses to cope with the physiological challenge and stimulate long-term acclimation1,2. The mechanism that senses cellular temperature for inducing thermotolerance is still unclear3. Here we show that TWA1 is a temperature-sensing transcriptional co-regulator that is needed for basal and acquired thermotolerance in Arabidopsis thaliana. At elevated temperatures, TWA1 changes its conformation and allows physical interaction with JASMONATE-ASSOCIATED MYC-LIKE (JAM) transcription factors and TOPLESS (TPL) and TOPLESS-RELATED (TPR) proteins for repressor complex assembly. TWA1 is a predicted intrinsically disordered protein that has a key thermosensory role functioning through an amino-terminal highly variable region. At elevated temperatures, TWA1 accumulates in nuclear subdomains, and physical interactions with JAM2 and TPL appear to be restricted to these nuclear subdomains. The transcriptional upregulation of the heat shock transcription factor A2 (HSFA2) and heat shock proteins depended on TWA1, and TWA1 orthologues provided different temperature thresholds, consistent with the sensor function in early signalling of heat stress. The identification of the plant thermosensors offers a molecular tool for adjusting thermal acclimation responses of crops by breeding and biotechnology, and a sensitive temperature switch for thermogenetics.
Collapse
Affiliation(s)
- Lisa Bohn
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Jin Huang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
- Chengdu Newsun Crop Science, Chengdu, China
| | - Susan Weidig
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Zhenyu Yang
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Christoph Heidersberger
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany
| | - Bernard Genty
- Aix-Marseille University, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biosciences et Biotechnologies Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
- Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexander Christmann
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| | - Erwin Grill
- Chair of Botany, TUM School of Life Sciences Weihenstephan, Technische Universität München (TUM), Freising, Germany.
| |
Collapse
|
31
|
Rosati VC, Quinn AA, Gleadow RM, Blomstedt CK. The Putative GATA Transcription Factor SbGATA22 as a Novel Regulator of Dhurrin Biosynthesis. Life (Basel) 2024; 14:470. [PMID: 38672741 PMCID: PMC11051066 DOI: 10.3390/life14040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Cyanogenic glucosides are specialized metabolites produced by over 3000 species of higher plants from more than 130 families. The deployment of cyanogenic glucosides is influenced by biotic and abiotic factors in addition to being developmentally regulated, consistent with their roles in plant defense and stress mitigation. Despite their ubiquity, very little is known regarding the molecular mechanisms that regulate their biosynthesis. The biosynthetic pathway of dhurrin, the cyanogenic glucoside found in the important cereal crop sorghum (Sorghum bicolor (L.) Moench), was described over 20 years ago, and yet no direct regulator of the biosynthetic genes has been identified. To isolate regulatory proteins that bind to the promoter region of the key dhurrin biosynthetic gene of sorghum, SbCYP79A1, yeast one-hybrid screens were performed. A bait fragment containing 1204 base pairs of the SbCYP79A1 5' regulatory region was cloned upstream of a reporter gene and introduced into Saccharomyces cerevisiae. Subsequently, the yeast was transformed with library cDNA representing RNA from two different sorghum developmental stages. From these screens, we identified SbGATA22, an LLM domain B-GATA transcription factor that binds to the putative GATA transcription factor binding motifs in the SbCYP79A1 promoter region. Transient assays in Nicotiana benthamiana show that SbGATA22 localizes to the nucleus. The expression of SbGATA22, in comparison with SbCYP79A1 expression and dhurrin concentration, was analyzed over 14 days of sorghum development and in response to nitrogen application, as these conditions are known to affect dhurrin levels. Collectively, these findings suggest that SbGATA22 may act as a negative regulator of SbCYP79A1 expression and provide a preliminary insight into the molecular regulation of dhurrin biosynthesis in sorghum.
Collapse
Affiliation(s)
- Viviana C. Rosati
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Alicia A. Quinn
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| | - Roslyn M. Gleadow
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Cecilia K. Blomstedt
- School of Biological Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (V.C.R.); (A.A.Q.); (R.M.G.)
| |
Collapse
|
32
|
Leydon AR, Downing B, Sanchez JS, Loll-Krippleber R, Belliveau NM, Rodriguez-Mias RA, Bauer A, Watson IJ, Bae L, Villén J, Brown GW, Nemhauser JL. A conserved function of corepressors is to nucleate assembly of the transcriptional preinitiation complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587599. [PMID: 38617365 PMCID: PMC11014602 DOI: 10.1101/2024.04.01.587599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The plant corepressor TPL is recruited to diverse chromatin contexts, yet its mechanism of repression remains unclear. Previously, we have leveraged the fact that TPL retains its function in a synthetic transcriptional circuit in the yeast model Saccharomyces cerevisiae to localize repressive function to two distinct domains. Here, we employed two unbiased whole genome approaches to map the physical and genetic interactions of TPL at a repressed locus. We identified SPT4, SPT5 and SPT6 as necessary for repression with the SPT4 subunit acting as a bridge connecting TPL to SPT5 and SPT6. We also discovered the association of multiple additional constituents of the transcriptional preinitiation complex at TPL-repressed promoters, specifically those involved in early transcription initiation events. These findings were validated in yeast and plants through multiple assays, including a novel method to analyze conditional loss of function of essential genes in plants. Our findings support a model where TPL nucleates preassembly of the transcription activation machinery to facilitate rapid onset of transcription once repression is relieved.
Collapse
Affiliation(s)
| | - Benjamin Downing
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | | | | | | | - Andrew Bauer
- Department of Biology, University of Washington, Seattle, 98195, USA
| | | | - Lena Bae
- Department of Biology, University of Washington, Seattle, 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, 98195, USA
| | - Grant W. Brown
- Department of Biochemistry and Donnelly Centre, University of Toronto, Toronto, Ontario, CA
| | | |
Collapse
|
33
|
Li Q, Yu H, Chang W, Chang S, Guzmán M, Faure L, Wallner ES, Yan H, Greb T, Wang L, Yao R, Nelson DC. SMXL5 attenuates strigolactone signaling in Arabidopsis thaliana by inhibiting SMXL7 degradation. MOLECULAR PLANT 2024; 17:631-647. [PMID: 38475994 DOI: 10.1016/j.molp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/10/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Hormone-activated proteolysis is a recurring theme of plant hormone signaling mechanisms. In strigolactone signaling, the enzyme receptor DWARF14 (D14) and an F-box protein, MORE AXILLARY GROWTH2 (MAX2), mark SUPPRESSOR OF MAX2 1-LIKE (SMXL) family proteins SMXL6, SMXL7, and SMXL8 for rapid degradation. Removal of these transcriptional corepressors initiates downstream growth responses. The homologous proteins SMXL3, SMXL4, and SMXL5, however, are resistant to MAX2-mediated degradation. We discovered that the smxl4 smxl5 mutant has enhanced responses to strigolactone. SMXL5 attenuates strigolactone signaling by interfering with AtD14-SMXL7 interactions. SMXL5 interacts with AtD14 and SMXL7, providing two possible ways to inhibit SMXL7 degradation. SMXL5 function is partially dependent on an ethylene-responsive-element binding-factor-associated amphiphilic repression (EAR) motif, which typically mediates interactions with the TOPLESS family of transcriptional corepressors. However, we found that loss of the EAR motif reduces SMXL5-SMXL7 interactions and the attenuation of strigolactone signaling by SMXL5. We hypothesize that integration of SMXL5 into heteromeric SMXL complexes reduces the susceptibility of SMXL6/7/8 proteins to strigolactone-activated degradation and that the EAR motif promotes the formation or stability of these complexes. This mechanism may provide a way to spatially or temporally fine-tune strigolactone signaling through the regulation of SMXL5 expression or translation.
Collapse
Affiliation(s)
- Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA; Yazhouwan National Laboratory, Sanya 572025, China; Hainan Seed Industry Laboratory, Sanya 57205, China.
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
| | - Wenwen Chang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sunhyun Chang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Michael Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Lionel Faure
- School of the Sciences, Biology Division, Texas Woman's University, Denton, TX 76204, USA
| | - Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Heqin Yan
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Lei Wang
- Key Laboratory of Seed Innovation, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China.
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
34
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
35
|
Wang H, Zhao X, Ye Z, Zhu B, Gu L, Du X, Zhu X, Wang H. Topless-related 2 conferred cadmium accumulation in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108469. [PMID: 38437752 DOI: 10.1016/j.plaphy.2024.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Wheat is a vital food crop that faces threats from various abiotic and biotic stresses. Understanding the molecular mechanism of cadmium (Cd) resistance can provide valuable insights into the tolerance of wheat. Plant proteins known as Topless/Topless-Related (TPL/TPR) play a role in growth, development, defense regulation, and stress response. In this study, we identified TaTPR2 as being induced by Cd stress treatment. Upon Cd treatment, wheat plants overexpressing TaTPR2 exhibited better growth compared to wild-type (WT) plants. Moreover, the transgenic lines showed reduced accumulation of reactive oxygen species (ROS), along with significantly higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) compared to WT plants. Additionally, the transgenic lines exhibited lower levels of malondialdehyde (MDA) and electrolyte leakage compared to WT plants. Further analysis revealed that TabHLH41 directly binds to the E-box motif of the TaTPR2 promoter and positively regulates its expression. Overall, the overexpression of TaTPR2 in transgenic wheat resulted in reduced accumulation of Cd and ROS. These findings highlight the significance of the TabHLH41-TaTPR2 pathway as a crucial response to Cd stress in wheat.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Xiaosheng Zhao
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Zi Ye
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Xiu Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| | - Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| |
Collapse
|
36
|
Thiaw MRN, Gantet P. The emerging functions of mini zinc finger (MIF) microproteins in seed plants: A minireview. Biochimie 2024; 218:69-75. [PMID: 37722501 DOI: 10.1016/j.biochi.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Mini zinc fingers constitute a class of microproteins that appeared early in evolution and expanded in seeds plants. In this review, the phylogenetic history, the functions and the mode of action of Mini zinc fingers in plants are reported and discussed. It appears that mini zinc fingers play an important role in the control of plant development. They are involved in the control of cell division and expansion, in the switch between the determinate/indeterminate state of the meristems and in the regulation of vegetative growth and floral organ development. Their biochemical mode of action seems to be diverse. In some studies, it has been reported that mini zinc fingers can directly bind to DNA and activate target gene expression, whereas other studies have shown that they can interact with and inhibit the activity of specific zinc finger homeodomain transcription factors or act as adaptor proteins necessary to aggregate polymeric protein complexes corresponding to chromatin remodelling factors negatively regulating the expression of specific genes. The diversity of mode of action for mini zinc finger microproteins suggests a wider range of biological functions than what has been that described in the literature thus far, and their involvement in the response to biotic and abiotic stresses should be further investigated in future studies.
Collapse
Affiliation(s)
- Marie Rose Ndella Thiaw
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 911 Avenue Agropolis, 34394, cedex 5, Montpellier, France.
| |
Collapse
|
37
|
Khan M, Djamei A. TOPLESS Corepressors as an Emerging Hub of Plant Pathogen Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:190-195. [PMID: 38205771 DOI: 10.1094/mpmi-10-23-0158-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Transcriptional corepressors form an ancient and essential layer of gene expression control in eukaryotes. TOPLESS and TOPLESS-RELATED (TPL/TPR) proteins constitute a conserved family of Groucho (Gro)/thymidine uptake 1 (Tup1)-type transcriptional corepressors and control diverse growth, developmental, and stress signaling responses in plants. Because of their central and versatile regulatory roles, they act as a signaling hub to integrate various input signaling pathways in the transcriptional responses. Recently, increasing pieces of evidence indicate the roles of TPL/TPR family proteins in the modulation of plant immunity. This is supported by studies on effectors of distantly related pathogens that target TPL/TPR proteins in planta. In this short review, we will summarize the latest findings concerning pathogens targeting plant TPL/TPR proteins to manipulate plant signaling responses for the successful invasion of their hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Huang L, Ökmen B, Stolze SC, Kastl M, Khan M, Hilbig D, Nakagami H, Djamei A, Doehlemann G. The fungal pathogen Ustilago maydis targets the maize corepressor RELK2 to modulate host transcription for tumorigenesis. THE NEW PHYTOLOGIST 2024; 241:1747-1762. [PMID: 38037456 DOI: 10.1111/nph.19448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.
Collapse
Affiliation(s)
- Luyao Huang
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Bilal Ökmen
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, 72076, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Melanie Kastl
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, 53127, Germany
| | - Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
| | - Daniel Hilbig
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, 53127, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, 53115, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
39
|
Aalders TR, de Sain M, Gawehns F, Oudejans N, Jak YD, Dekker HL, Rep M, van den Burg HA, Takken FL. Specific members of the TOPLESS family are susceptibility genes for Fusarium wilt in tomato and Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:248-261. [PMID: 37822043 PMCID: PMC10754003 DOI: 10.1111/pbi.14183] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Vascular wilt diseases caused by Fusarium oxysporum are a major threat to many agriculturally important crops. Genetic resistance is rare and inevitably overcome by the emergence of new races. To identify potentially durable and non-race-specific genetic resistance against Fusarium wilt diseases, we set out to identify effector targets in tomato that mediate susceptibility to the fungus. For this purpose, we used the SIX8 effector protein, an important and conserved virulence factor present in many pathogenic F. oxysporum isolates. Using protein pull-downs and yeast two-hybrid assays, SIX8 was found to interact specifically with two members of the tomato TOPLESS family: TPL1 and TPL2. Loss-of-function mutations in TPL1 strongly reduced disease susceptibility to Fusarium wilt and a tpl1;tpl2 double mutant exerted an even higher level of resistance. Similarly, Arabidopsis tpl;tpr1 mutants became significantly less diseased upon F. oxysporum inoculation as compared to wildtype plants. We conclude that TPLs encode susceptibility genes whose mutation can confer resistance to F. oxysporum.
Collapse
Affiliation(s)
- Thomas R. Aalders
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Mara de Sain
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Fleur Gawehns
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Nina Oudejans
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Yoran D. Jak
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Henk L. Dekker
- Mass Spectrometry of BiomoleculesSwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Martijn Rep
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Harrold A. van den Burg
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| | - Frank L.W. Takken
- Molecular Plant PathologySwammerdam Institute for Life Sciences (SILS), University of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
40
|
Xie B, Luo M, Li Q, Shao J, Chen D, Somers DE, Tang D, Shi H. NUA positively regulates plant immunity by coordination with ESD4 to deSUMOylate TPR1 in Arabidopsis. THE NEW PHYTOLOGIST 2024; 241:363-377. [PMID: 37786257 PMCID: PMC10843230 DOI: 10.1111/nph.19287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023]
Abstract
Nuclear pore complex (NPC) is composed of multiple nucleoporins (Nups). A plethora of studies have highlighted the significance of NPC in plant immunity. However, the specific roles of individual Nups are poorly understood. NUCLEAR PORE ANCHOR (NUA) is a component of NPC. Loss of NUA leads to an increase in SUMO conjugates and pleiotropic developmental defects in Arabidopsis thaliana. Herein, we revealed that NUA is required for plant defense against multiple pathogens. NUCLEAR PORE ANCHOR associates with the transcriptional corepressor TOPLESS-RELATED1 (TPR1) and contributes to TPR1 deSUMOylation. Significantly, NUA-interacting protein EARLY IN SHORT DAYS 4 (ESD4), a SUMO protease, specifically deSUMOylates TPR1. It has been previously established that the SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE 1 (SIZ1)-mediated SUMOylation of TPR1 represses the immune-related function of TPR1. Consistent with this notion, the hyper-SUMOylated TPR1 in nua-3 leads to upregulated expression of TPR1 target genes and compromised TPR1-mediated disease resistance. Taken together, our work uncovers a mechanism by which NUA positively regulates plant defense responses by coordination with ESD4 to deSUMOylate TPR1. Our findings, together with previous studies, reveal a regulatory module in which SIZ1 and NUA/ESD4 control the homeostasis of TPR1 SUMOylation to maintain proper immune output.
Collapse
Affiliation(s)
- Bao Xie
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyu Luo
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiuyi Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Shao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Desheng Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus 43210, USA
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Shi
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
41
|
Cheng H, Wang Q, Zhang Z, Cheng P, Song A, Zhou L, Wang L, Chen S, Chen F, Jiang J. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1652-1666. [PMID: 37696505 DOI: 10.1111/tpj.16453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingguo Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
42
|
Joshi S, Hill K, Chakrabarti M, Perry SE. Regulatory mechanisms of the LBD40 transcription factor in Arabidopsis thaliana somatic embryogenesis. PLANT DIRECT 2023; 7:e547. [PMID: 38075399 PMCID: PMC10699890 DOI: 10.1002/pld3.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 10/24/2023] [Indexed: 10/16/2024]
Abstract
Somatic embryogenesis (SE) is a process by which an embryo is derived from somatic tissue. Transcription factors (TFs) have been identified that control this process. One such TF that promotes SE is AGAMOUS-like 15 (AGL15). Prior work has shown that AGL15 can both induce and repress gene expression. One way this type of dual function TF works is via protein interactions, so a yeast 2-hybrid (Y2H) screen was undertaken. One intriguing protein with which AGL15 interacted in Y2H was LBD40. LBD40 encodes a LATERAL ORGAN BOUNDARIES (LOB)-domain TF that is unique to plants and is primarily expressed during seed development. Here, we confirm the AGL15-LBD40 interaction by quantitative assays and in planta co-immunoprecipation. We also document a role for LBD40, and the closely related protein LBD41, in supporting SE. To determine downstream genes potentially controlled by LBD40, chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) was used. More than 400 binding regions for LBD40 were consistently found genome-wide. To determine genes responsive to LBD40/41 accumulation, RNA-seq analysis of transcriptomes of wild-type control and loss-of-function lbd40/lbd41 was performed. Combining these datasets provides insight into genes directly and indirectly controlled by these LOB domain TFs. The gene ontology (GO) enrichment analysis of these regulated genes showed an overrepresentation of biological processes that are associated with SE, further indicating the importance of LBD40 in SE. This work provides insight into SE, a poorly understood, but essential process to generate transgenic plants to meet agricultural demands or test gene function. This manuscript reports on experiments to understand the role that LDB40, a TF, plays in support of SE by investigating genes directly and indirectly controlled by LBD40 and examining physical and genetic interactions with other TFs active in SE. We uncover targets of LBD40 and an interacting TF of the MADS family and investigate targets involvement in SE.
Collapse
Affiliation(s)
- Sanjay Joshi
- Kentucky Tobacco Research and Development Center, 1401 University Dr.University of KentuckyLexingtonKYUSA
| | - Kristine Hill
- Sociology, Philosophy and Anthropology DepartmentUniversity of ExeterExeterUK
| | - Manohar Chakrabarti
- School for Integrative Biological and Chemical SciencesUniversity of Texas Rio Grande ValleyEdinburgTXUSA
| | - Sharyn E. Perry
- Dept. of Plant and Soil Sciences, 1405 Veterans Dr., Plant Science BuildingUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
43
|
Liu F, Cai S, Ma Z, Yue H, Xing L, Wang Y, Feng S, Wang L, Dai L, Wan H, Gao J, Chen M, Rahman M, Zhou B. RVE2, a new regulatory factor in jasmonic acid pathway, orchestrates resistance to Verticillium wilt. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2507-2524. [PMID: 37553251 PMCID: PMC10651145 DOI: 10.1111/pbi.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Verticillium dahliae, one of the most destructive fungal pathogens of several crops, challenges the sustainability of cotton productivity worldwide because very few widely-cultivated Upland cotton varieties are resistant to Verticillium wilt (VW). Here, we report that REVEILLE2 (RVE2), the Myb-like transcription factor, confers the novel function in resistance to VW by regulating the jasmonic acid (JA) pathway in cotton. RVE2 expression was essentially required for the activation of JA-mediated disease-resistance response. RVE2 physically interacted with TPL/TPRs and disturbed JAZ proteins to recruit TPL and TPR1 in NINJA-dependent manner, which regulated JA response by relieving inhibited-MYC2 activity. The MYC2 then bound to RVE2 promoter for the activation of its transcription, forming feedback loop. Interestingly, a unique truncated RVE2 widely existing in D-subgenome (GhRVE2D) of natural Upland cotton represses the ability of the MYC2 to activate GhRVE2A promoter but not GausRVE2 or GbRVE2. The result could partially explain why Gossypium barbadense popularly shows higher resistance than Gossypium hirsutum. Furthermore, disturbing the JA-signalling pathway resulted into the loss of RVE2-mediated disease-resistance in various plants (Arabidopsis, tobacco and cotton). RVE2 overexpression significantly enhanced the resistance to VW. Collectively, we conclude that RVE2, a new regulatory factor, plays a pivotal role in fine-tuning JA-signalling, which would improve our understanding the mechanisms underlying the resistance to VW.
Collapse
Affiliation(s)
- Fujie Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Sheng Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Zhifeng Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Haoran Yue
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liangshuai Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Yingying Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Shouli Feng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Lingjun Dai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Hui Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianbo Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mengfei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| | - Mehboob‐ur‐ Rahman
- Plant Genomics & Mol. Breeding LabNational Institute for Biotechnology & Genetic Engineering (NIBGE)FaisalabadPakistan
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Collaborative Innovation Center for Modern Crop Production co‐sponsored by Jiangsu Province and Ministry of Education, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education)Nanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
44
|
Zhang Z, Hu Q, Gao Z, Zhu Y, Yin M, Shang E, Liu G, Liu W, Hu R, Cheng H, Chong X, Guan Z, Fang W, Chen S, Sun B, He Y, Chen F, Jiang J. Flowering repressor CmSVP recruits the TOPLESS corepressor to control flowering in chrysanthemum. PLANT PHYSIOLOGY 2023; 193:2413-2429. [PMID: 37647542 DOI: 10.1093/plphys/kiad476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 09/01/2023]
Abstract
Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.
Collapse
Affiliation(s)
- Zixin Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zheng Gao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Yuqing Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengru Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Erlei Shang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Gaofeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weixin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - RongQian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinran Chong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuehui He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
45
|
López-Fernández M, García-Abadillo J, Uauy C, Ruiz M, Giraldo P, Pascual L. Genome wide association in Spanish bread wheat landraces identifies six key genomic regions that constitute potential targets for improving grain yield related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:244. [PMID: 37957405 PMCID: PMC10643358 DOI: 10.1007/s00122-023-04492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
KEY MESSAGE Association mapping conducted in 189 Spanish bread wheat landraces revealed six key genomic regions that constitute stable QTLs for yield and include 15 candidate genes. Genetically diverse landraces provide an ideal population to conduct association analysis. In this study, association mapping was conducted in a collection of 189 Spanish bread wheat landraces whose genomic diversity had been previously assessed. These genomic data were combined with characterization for yield-related traits, including grain size and shape, and phenological traits screened across five seasons. The association analysis revealed a total of 881 significant marker trait associations, involving 434 markers across the genome, that could be grouped in 366 QTLs based on linkage disequilibrium. After accounting for days to heading, we defined 33 high density QTL genomic regions associated to at least four traits. Considering the importance of detecting stable QTLs, 6 regions associated to several grain traits and thousand kernel weight in at least three environments were selected as the most promising ones to harbour targets for breeding. To dissect the genetic cause of the observed associations, we studied the function and in silico expression of the 413 genes located inside these six regions. This identified 15 candidate genes that provide a starting point for future analysis aimed at the identification and validation of wheat yield related genes.
Collapse
Affiliation(s)
- Matilde López-Fernández
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Julián García-Abadillo
- Department of Biotechnology and Plant Biology, Centre for Biotechnology and Plant Genomics (CBGP), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Magdalena Ruiz
- Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), CSIC, Autovía A2, Km. 36.2. Finca La Canaleja, 28805, Alcalá de Henares, Madrid, Spain
| | - Patricia Giraldo
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Laura Pascual
- Department of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering (ETSIAAB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
46
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
47
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
48
|
Pramanik D, Becker A, Roessner C, Rupp O, Bogarín D, Pérez-Escobar OA, Dirks-Mulder A, Droppert K, Kocyan A, Smets E, Gravendeel B. Evolution and development of fruits of Erycina pusilla and other orchid species. PLoS One 2023; 18:e0286846. [PMID: 37815982 PMCID: PMC10564159 DOI: 10.1371/journal.pone.0286846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/24/2023] [Indexed: 10/12/2023] Open
Abstract
Fruits play a crucial role in seed dispersal. They open along dehiscence zones. Fruit dehiscence zone formation has been intensively studied in Arabidopsis thaliana. However, little is known about the mechanisms and genes involved in the formation of fruit dehiscence zones in species outside the Brassicaceae. The dehiscence zone of A. thaliana contains a lignified layer, while dehiscence zone tissues of the emerging orchid model Erycina pusilla include a lipid layer. Here we present an analysis of evolution and development of fruit dehiscence zones in orchids. We performed ancestral state reconstructions across the five orchid subfamilies to study the evolution of selected fruit traits and explored dehiscence zone developmental genes using RNA-seq and qPCR. We found that erect dehiscent fruits with non-lignified dehiscence zones and a short ripening period are ancestral characters in orchids. Lignified dehiscence zones in orchid fruits evolved multiple times from non-lignified zones. Furthermore, we carried out gene expression analysis of tissues from different developmental stages of E. pusilla fruits. We found that fruit dehiscence genes from the MADS-box gene family and other important regulators in E. pusilla differed in their expression pattern from their homologs in A. thaliana. This suggests that the current A. thaliana fruit dehiscence model requires adjustment for orchids. Additionally, we discovered that homologs of A. thaliana genes involved in the development of carpel, gynoecium and ovules, and genes involved in lipid biosynthesis were expressed in the fruit valves of E. pusilla, implying that these genes may play a novel role in formation of dehiscence zone tissues in orchids. Future functional analysis of developmental regulators, lipid identification and quantification can shed more light on lipid-layer based dehiscence of orchid fruits.
Collapse
Affiliation(s)
- Dewi Pramanik
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- National Research and Innovation Agency Republic of Indonesia (BRIN), Central Jakarta, Indonesia
| | - Annette Becker
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Roessner
- Development Biology of Plants, Institute for Botany, Justus-Liebig-University Giessen, Giessen, Germany
| | - Oliver Rupp
- Department of Bioinformatics and Systems Biology, Justus Liebig University, Giessen, Germany
| | - Diego Bogarín
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | | | - Anita Dirks-Mulder
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Kevin Droppert
- Faculty of Science and Technology, University of Applied Sciences Leiden, Leiden, The Netherlands
| | - Alexander Kocyan
- Botanical Museum, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Erik Smets
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Heverlee, Belgium
| | - Barbara Gravendeel
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Hong L, Fletcher JC. Stem Cells: Engines of Plant Growth and Development. Int J Mol Sci 2023; 24:14889. [PMID: 37834339 PMCID: PMC10573764 DOI: 10.3390/ijms241914889] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The development of both animals and plants relies on populations of pluripotent stem cells that provide the cellular raw materials for organ and tissue formation. Plant stem cell reservoirs are housed at the shoot and root tips in structures called meristems, with the shoot apical meristem (SAM) continuously producing aerial leaf, stem, and flower organs throughout the life cycle. Thus, the SAM acts as the engine of plant development and has unique structural and molecular features that allow it to balance self-renewal with differentiation and act as a constant source of new cells for organogenesis while simultaneously maintaining a stem cell reservoir for future organ formation. Studies have identified key roles for intercellular regulatory networks that establish and maintain meristem activity, including the KNOX transcription factor pathway and the CLV-WUS stem cell feedback loop. In addition, the plant hormones cytokinin and auxin act through their downstream signaling pathways in the SAM to integrate stem cell activity and organ initiation. This review discusses how the various regulatory pathways collectively orchestrate SAM function and touches on how their manipulation can alter stem cell activity to improve crop yield.
Collapse
Affiliation(s)
- Liu Hong
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, United States Department of Agriculture—Agricultural Research Service, Albany, CA 94710, USA;
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Ting NC, Chan PL, Buntjer J, Ordway JM, Wischmeyer C, Ooi LCL, Low ETL, Marjuni M, Sambanthamurthi R, Singh R. High-resolution genetic linkage map and height-related QTLs in an oil palm ( Elaeis guineensis) family planted across multiple sites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1301-1318. [PMID: 38024957 PMCID: PMC10678900 DOI: 10.1007/s12298-023-01360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
A refined SNP array containing 92,459 probes was developed and applied for chromosome scanning, construction of a high-density genetic linkage map and QTL analysis in a selfed Nigerian oil palm family (T128). Genotyping of the T128 mapping family generated 76,447 good quality SNPs for detailed scanning of aberration and homozygosity in the individual pseudo-chromosomes. Of them, 25,364 polymorphic SNPs were used for linkage analysis resulting in an 84.4% mapping rate. A total of 21,413 SNPs were mapped into 16 linkage groups (LGs), covering a total map length of 1364.5 cM. This genetic map is 16X denser than the previous version used to establish pseudo-chromosomes of the oil palm reference genome published in 2013. The QTLs associated with height, height increment and rachis length were identified in LGs TT05, 06, 08, 15 and 16. The present QTLs as well as those published previously were tagged to the reference genome to determine their chromosomal locations. Almost all the QTLs identified in this study were either close to or co-located with those reported in other populations. Determining the QTL position on chromosomes was also helpful in mining for the underlying candidate genes. In total, 55 putative genes and transcription factors involved in the biosynthesis, conjugation and signalling of the major phytohormones, especially for gibberellins and cell wall morphogenesis were found to be present in the identified genomic QTL regions, and their potential roles in plant dwarfism are discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01360-2.
Collapse
Affiliation(s)
- Ngoot-Chin Ting
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Pek-Lan Chan
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | | | | | | | - Leslie Cheng-Li Ooi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Eng Ti Leslie Low
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Marhalil Marjuni
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Rajinder Singh
- Malaysian Palm Oil Board (MPOB), Advanced Biotechnology and Breeding Centre, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|