1
|
Zhao S, Lu W, Yuan G, Liu Y, Yang C, Lu S, Liu J, Wang Q, Liu P. Associations between seminal plasma metal mixture and semen quality: A metabolome-mediated case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118257. [PMID: 40319704 DOI: 10.1016/j.ecoenv.2025.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/16/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Metal exposure constitutes a global public health concern associated with male infertility. This matched case-control study advances mechanistic understanding of how environmental pollutants interact with biological systems to impair human reproduction by investigating multi-metal exposure and seminal plasma metabolic responses. Based on this matched case-control study among 522 males, we assessed the role of untargeted metabolomic profiling of 265 seminal plasma metabolites in the relationship between seminal metals and abnormal semen quality (ASQ). The relationship between metals and ASQ was analyzed using single-exposure models (single-metal and multi-metal logistic regression) and mixed-exposure models including Quantile Gaps-Cumulated (QG-C), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR). The findings revealed that metal mixture exposure collectively increased ASQ risk, with seminal plasma Cu demonstrating a significant risk-enhancing effect in both single- and mixed-exposure models, while Fe and Se consistently exhibited protective trends. These associations were robustly supported by sensitivity analyses. In addition, orthogonal partial least squares discriminant analysis (OPLS-DA) identified 74 significant differential metabolites out of a total of 265 metabolites. Among these, 22, 21, and 12 differential metabolites were found to mediate the association between iron, selenium, copper, and the risk of ASQ, respectively. Moreover, 16-glucuronide-estriol, Aspartyl-Valine, Dihydrocoumarin, L-(-)-3-Phenyllactic acid, and trans-cinnamate were significant mediators in the association between iron, selenium, copper and ASQ. This study provides the evidence that seminal plasma metals disrupt male fertility through metabolite-specific pathways, with copper driving damage while iron and selenium exert protection. These findings highlight candidate biomarkers warranting validation in environmental reproductive epidemiology, while suggesting biologically plausible pathways for future intervention studies.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Wenrui Lu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China; School of Public Health, Zunyi Medical University, 563000, China
| | - Guanxiang Yuan
- Physical Testing & Chemical Analysis Laboratory, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Yu Liu
- Shenzhen People's Hospital, 1017 Dongmen North Rd, Shenzhen, Guangdong 518020, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China; Shenzhen Maternity & Child Healthcare Hospital, No. 3012 Fuqiang Road, Futian District, Shenzhen 518028, China.
| |
Collapse
|
2
|
Sultan E, Pati D, Kumar S, Sahu BB. Arabidopsis METHYLENETETRAHYDROFOLATE REDUCTASE 2 functions independently of PENETRATION 2 during primary immunity against rice blast. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1032-1048. [PMID: 39450434 DOI: 10.1093/jxb/erae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Non-host resistance (NHR) is the most durable and robust form of innate immunity, with a surge of interest in its role in crop improvement. Of the NHR genes identified against rice blast, a devastating disease caused by Magnaporthe oryzae, Arabidopsis PEN2 is indispensable for pre-penetration resistance to M. oryzae, while a consortium of genes orchestrates post-penetration resistance via lesser known mechanisms. We identified M. oryzae-susceptible mosA (mthfr2 pen2-3) from a randomly mutagenized Arabidopsis pen2-3 population using forward genetics. Analysis of T-DNA-inserted mthfr2 lines and pen2-3-complemented mosA lines revealed that MTHFR2-dependent resistance to M. oryzae is independent of PEN2. MTHFR2-defective plants exhibited higher accumulation of reactive oxygen species and expression of salicylic acid-dependent defense markers. MTHFR2-ligand docking revealed that A55V non-synonymous substitution in mosA altered ligand binding efficiency. This further affected the metabolomic profile of mosA, effectively allowing in vitro germination and development of M. oryzae conidia. Moreover, the loss-of-function mutation in mthfr2 (involved in the 1C metabolic pathway) potentiated mosA immunity against Pst DC3000. In conclusion, our findings showed that MTHFR2 is a positive modulator of NHR against M. oryzae. This work documents another layer of conserved yet divergent metabolomic defense in Arabidopsis regulated by folate-mediated 1C metabolism that has the potential to revolutionize crop improvement.
Collapse
Affiliation(s)
- Eram Sultan
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasish Pati
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sanjeev Kumar
- Indian Agricultural Statistics Research Institute (ICAR-IASRI), Library Avenue, Pusa, New Delhi 110012, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Liu F, Sui X, Li Y, Zhang Y, Zhao L, Liu J, Shan S, Li F, Chen X, Zhang L, Huang K, Ma Y, Chen Q, Song Z. The nicotine demethylase CYP82E4 is essential for the formation of red dapples on flue-cured leaves of cherry-red tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112174. [PMID: 38960071 DOI: 10.1016/j.plantsci.2024.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Common flue-cured tobacco (Nicotiana tabacum L.) primarily accumulates nicotine, and its flue-cured leaves exhibit a lemon appearance. In contrast, a spontaneous cherry-red variant (CR60) primarily accumulates nornicotine, accompanied by distinctive red dapples on the cured leaves. In this study, suppression of conversion of nicotine to nornicotine by genome editing resulted in decreased nornicotine and N-acyl nornicotines (NacNNs), and the subsequent disappearance of red dapples in CR60. Conversely, overexpression of CYP82E4 increased nornicotine and NacNNs accumulation, inducing a red dapple phenotype in common tobacco. Notably, nicotine conversion triggered significant alterations in leaf total sugars, alkaloids, and nitrogens. Metabolome analyses using 1352 identified compounds indicated nicotine conversion dramatically affected the entire metabolic network and induced unique metabolic responses across diverse genetic backgrounds. Further WGCNA analysis revealed that nicotine conversion caused substantial contents variation of alkaloids, flavonoids and amino acids and derivatives in cured leaves. Overall, this research provides valuable insights into the mechanisms underlying red dapple formation in cherry-red tobacco, elucidating profound influence of nicotine conversion on entire metabolic network.
Collapse
Affiliation(s)
- Fei Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China; Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming 650504, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Yong Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Yihan Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jiahong Liu
- Qujing Tobacco Company of Yunnan, Qujing 655000, China
| | - Shuanglü Shan
- Honghe Tobacco Company of Yunnan, Honghe 652300, China
| | - Feng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xiaolong Chen
- China Tobacco Henan Industiral Co., Ltd., Zhengzhou 450016, China
| | - Long Zhang
- China National Tobacco Corporation Yunnan Company, Kunming 650011, China
| | - Kun Huang
- Honghe Tobacco Company of Yunnan, Honghe 652300, China
| | - Yuping Ma
- China Tobacco Henan Industiral Co., Ltd., Zhengzhou 450016, China
| | - Qi Chen
- Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming 650504, China
| | - Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China.
| |
Collapse
|
4
|
Saeheng S, Bailes C, Bao H, Gashu K, Morency M, Arlynn T, Smertenko A, Walker BJ, Roje S. Formate-tetrahydrofolate ligase: supplying the cytosolic one-carbon network in roots with one-carbon units originating from glycolate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2464-2483. [PMID: 39010784 DOI: 10.1111/tpj.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The metabolism of tetrahydrofolate (H4PteGlun)-bound one-carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10-methylene-H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-H4PteGlun, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.
Collapse
Affiliation(s)
- Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Thailand
- Plant Cell and Physiology for Sustainable Agriculture Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Clayton Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Han Bao
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Kelem Gashu
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Matt Morency
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Tana Arlynn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Berkley James Walker
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Su X, Zhang L, Meng H, Wang H, Zhao J, Sun X, Song X, Zhang X, Mao L. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO 2 fixation pathways in coastal saline soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120743. [PMID: 38626484 DOI: 10.1016/j.jenvman.2024.120743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Coastal saline soil is an important reserve resource for arable land globally. Data from 10 years of continuous stubble return and subsoiling experiments have revealed that these two conservation tillage measures significantly improve cotton rhizosphere soil organic carbon sequestration in coastal saline soil. However, the contribution of microbial fixation of atmospheric carbon dioxide (CO2) has remained unclear. Here, metagenomics and metabolomics analyses were used to deeply explore the microbial CO2 fixation process in rhizosphere soil of coastal saline cotton fields under long-term stubble return and subsoiling. Metagenomics analysis showed that stubble return and subsoiling mainly optimized CO2 fixing microorganism (CFM) communities by increasing the abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi, and improving composition diversity. Conjoint metagenomics and metabolomics analyses investigated the effects of stubble return and subsoiling on the reverse tricarboxylic acid (rTCA) cycle. The conversion of citrate to oxaloacetate was inhibited in the citrate cleavage reaction of the rTCA cycle. More citrate was converted to acetyl-CoA, which enhanced the subsequent CO2 fixation process of acetyl-CoA conversion to pyruvate. In the rTCA cycle reductive carboxylation reaction from 2-oxoglutarate to isocitrate, synthesis of the oxalosuccinate intermediate product was inhibited, with strengthened CO2 fixation involving the direct conversion of 2-oxoglutarate to isocitrate. The collective results demonstrate that stubble return and subsoiling optimizes rhizosphere CFM communities by increasing microbial diversity, in turn increasing CO2 fixation by enhancing the utilization of rTCA and 3-hydroxypropionate/4-hydroxybutyrate cycles by CFMs. These events increase the microbial CO2 fixation in the cotton rhizosphere, thereby promoting the accumulation of microbial biomass, and ultimately improving rhizosphere soil organic carbon. This study clarifies the impact of conservation tillage measures on microbial CO2 fixation in cotton rhizosphere of coastal saline soil, and provides fundamental data for the improvement of carbon sequestration in saline soil in agricultural ecosystems.
Collapse
Affiliation(s)
- Xunya Su
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Le Zhang
- China Agricultural University, Agronomy College, Beijing, 100193, China.
| | - Hao Meng
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Han Wang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Jiaxue Zhao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xuezhen Sun
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xianliang Song
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Xiaopei Zhang
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| | - Lili Mao
- Shandong Agricultural University, Agronomy College, Taian, Shandong, 271018, China.
| |
Collapse
|
6
|
Shoji T, Hashimoto T, Saito K. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1741-1753. [PMID: 37647764 PMCID: PMC10938045 DOI: 10.1093/jxb/erad341] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a widely cultivated crop of the genus Nicotiana. Due to the highly addictive nature of tobacco products, tobacco smoking remains the leading cause of preventable death and disease. There is therefore a critical need to develop tobacco varieties with reduced or non-addictive nicotine levels. Nicotine and related pyridine alkaloids biosynthesized in the roots of tobacco plants are transported to the leaves, where they are stored in vacuoles as a defense against predators. Jasmonate, a defense-related plant hormone, plays a crucial signaling role in activating transcriptional regulators that coordinate the expression of downstream metabolic and transport genes involved in nicotine production. In recent years, substantial progress has been made in molecular and genomics research, revealing many metabolic and regulatory genes involved in nicotine biosynthesis. These advances have enabled us to develop tobacco plants with low or ultra-low nicotine levels through various methodologies, such as mutational breeding, genetic engineering, and genome editing. We review the recent progress on genetic manipulation of nicotine production in tobacco, which serves as an excellent example of plant metabolic engineering with profound social implications.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Instutute of Natural Medicine, University of Toyama, Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Hashimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
7
|
Rosa-Téllez S, Alcántara-Enguídanos A, Martínez-Seidel F, Casatejada-Anchel R, Saeheng S, Bailes CL, Erban A, Barbosa-Medeiros D, Alepúz P, Matus JT, Kopka J, Muñoz-Bertomeu J, Krueger S, Roje S, Fernie AR, Ros R. The serine-glycine-one-carbon metabolic network orchestrates changes in nitrogen and sulfur metabolism and shapes plant development. THE PLANT CELL 2024; 36:404-426. [PMID: 37804096 PMCID: PMC10827325 DOI: 10.1093/plcell/koad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.
Collapse
Affiliation(s)
- Sara Rosa-Téllez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Andrea Alcántara-Enguídanos
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | | | - Ruben Casatejada-Anchel
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Clayton L Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Paula Alepúz
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Bioquímica y Biologia Molecular, Facultat de Biologia, Universitat de València, 46100 Burjassot, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology, I²SysBio, Universitat de València—CSIC, 46908 Paterna, Spain
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| | - Stephan Krueger
- Institute for Plant Sciences, University of Cologne, Zülpicherstraße 47b, 50674 Cologne, Germany
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Roc Ros
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
8
|
Bao H, Morency M, Rianti W, Saeheng S, Roje S, Weber APM, Walker BJ. Catalase protects against nonenzymatic decarboxylations during photorespiration in Arabidopsis thaliana. PLANT DIRECT 2021; 5:e366. [PMID: 34977450 PMCID: PMC8688901 DOI: 10.1002/pld3.366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 05/16/2023]
Abstract
Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important role in this process by disproportionating H2O2 resulting from glycolate oxidation into O2 and water. We hypothesize that catalase in the peroxisome also protects against nonenzymatic decarboxylations between hydrogen peroxide and photorespiratory intermediates (glyoxylate and/or hydroxypyruvate). We test this hypothesis by detailed gas exchange and biochemical analysis of Arabidopsis thaliana mutants lacking peroxisomal catalase. Our results strongly support this hypothesis, with catalase mutants showing gas exchange evidence for an increased stoichiometry of CO2 release from photorespiration, specifically an increase in the CO2 compensation point, a photorespiratory-dependent decrease in the quantum efficiency of CO2 assimilation, increase in the 12CO2 released in a 13CO2 background, and an increase in the postillumination CO2 burst. Further metabolic evidence suggests this excess CO2 release occurred via the nonenzymatic decarboxylation of hydroxypyruvate. Specifically, the catalase mutant showed an accumulation of photorespiratory intermediates during a transient increase in rubisco oxygenation consistent with this hypothesis. Additionally, end products of alternative hypotheses explaining this excess release were similar between wild type and catalase mutants. Furthermore, the calculated rate of hydroxypyruvate decarboxylation in catalase mutant is much higher than that of glyoxylate decarboxylation. This work provides evidence that these nonenzymatic decarboxylation reactions, predominately hydroxypyruvate decarboxylation, can occur in vivo when photorespiratory metabolism is genetically disrupted.
Collapse
Affiliation(s)
- Han Bao
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Matt Morency
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Winda Rianti
- Faculty of AgricultureUniversitas Singaperbangsa KarawangKarawangIndonesia
- Department of Plant ScienceWageningen UniversityWageningenThe Netherlands
| | - Sompop Saeheng
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Sanja Roje
- Institute of Biological ChemistryWashington State UniversityPullmanWAUSA
| | - Andreas P. M. Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant SciencesHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Berkley James Walker
- Department of Energy‐Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Institute of Plant Biochemistry, Cluster of Excellence on Plant SciencesHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
9
|
Song Z, Sui X, Li M, Gao Y, Li W, Zhao L, Li F, Yao X, Liu C, Wang B. Development of a nornicotine-reduced flue-cured tobacco line via EMS mutagenesis of nicotine N-demethylase genes. PLANT SIGNALING & BEHAVIOR 2020; 15:1710053. [PMID: 31900036 PMCID: PMC7053972 DOI: 10.1080/15592324.2019.1710053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Substantial progress had been made in reducing nornicotine accumulation in burley tobacco, as nornicotine is a precursor of the carcinogen N-nitrosonornicotine (NNN). Three members of the CYP82E2 family encoding nicotine N-demethylase (NND) have been reported to be responsible for the majority of nicotine demethylation that forms nornicotine in burley tobacco. We had obtained a nonsense mutant of each NND member in flue-cured tobacco from an ethyl methanesulfonate (EMS)-mutagenized population. In this study, we developed dCAPS markers for each nonsense mutation. Using marker-assisted selection, NND mutants were crossed with each other to generate a triple mutant GP449. In line with previous reports, the triple knockout caused significantly decreased levels of nornicotine and NNN in flue-cured tobacco. With the decreased nornicotine, the nicotine level was expected to accumulate. However, the nicotine level in GP449 was significantly decreased to 72.80% of wild type. Realtime RT-PCR analysis showed that the nicotine reduction was correlated with inhibited expression of nicotine biosynthetic pathway genes. The triple mutant and dCAPS markers can be utilized to develop new flue-cured tobacco varieties with lower levels of nornicotine and NNN.
Collapse
Affiliation(s)
- Zhongbang Song
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Meiyun Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Yulong Gao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Wenzheng Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xuefeng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- The University of Chinese Academy of Sciences, Beijing, China
| | - Chunming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, China
- Institute of crop sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- National Center for Tobacco Gene Engineering, Kunming, Yunnan, China
| |
Collapse
|
10
|
Chen H, Wang B, Geng S, Arellano C, Chen S, Qu R. Effects of overexpression of jasmonic acid biosynthesis genes on nicotine accumulation in tobacco. PLANT DIRECT 2018; 2:e00036. [PMID: 31245684 PMCID: PMC6508566 DOI: 10.1002/pld3.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 05/26/2023]
Abstract
Nicotine is naturally synthesized in tobacco roots and accumulates in leaves as a defense compound against herbivory attack. Nicotine biosynthesis pathway has been extensively studied with major genes and enzymes being isolated and functionally characterized. However, the molecular regulation of nicotine synthesis has not been fully understood. The phytohormone jasmonic acid (JA) mediates many aspects of plant defense responses including nicotine biosynthesis. In this study, five key genes (AtLOX2, AtAOS, AtAOC2, AtOPR3, AtJAR1) involved in JA biosynthesis from Arabidopsis were individually overexpressed, and a JA-Ile hydrolysis-related gene, NtJIH1, was suppressed by RNAi approach, to understand their effects on nicotine accumulation in tobacco. Interestingly, while transgene expression was high, levels of JA-Ile (the biologically active form of JA) were often significantly reduced. Meanwhile, nicotine content in these transgenic plants did not increase. The research revealed a tightly controlled JA signaling pathway and a complicated regulatory network for nicotine biosynthesis by JA signaling.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Bingwu Wang
- Yunnan Academy of Tobacco Agricultural SciencesKunmingChina
| | - Sisi Geng
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | | | - Sixue Chen
- Department of BiologyUniversity of FloridaGainesvilleFLUSA
| | - Rongda Qu
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
11
|
Liu S, Fu C, Gou J, Sun L, Huhman D, Zhang Y, Wang ZY. Simultaneous Downregulation of MTHFR and COMT in Switchgrass Affects Plant Performance and Induces Lesion-Mimic Cell Death. FRONTIERS IN PLANT SCIENCE 2017; 8:982. [PMID: 28676804 PMCID: PMC5476930 DOI: 10.3389/fpls.2017.00982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/24/2017] [Indexed: 05/11/2023]
Abstract
Switchgrass (Panicum virgatum) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT), a key enzyme in lignin biosynthesis, has been shown to alter lignification and increase biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediates C1 metabolism and provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would impact lignification even more than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding was that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes related to oxidative and defense responses. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergistic effects on agronomic performance.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Grassland Science, China Agricultural University, National Energy R&D Center for BiomassBeijing, China
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - Chunxiang Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Jiqing Gou
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
- BioEnergy Science Center, Oak Ridge National Laboratory (DOE), Oak RidgeTN, United States
| | - Liang Sun
- Computing Services, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - David Huhman
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
| | - Yunwei Zhang
- Department of Grassland Science, China Agricultural University, National Energy R&D Center for BiomassBeijing, China
| | - Zeng-Yu Wang
- Forage Improvement Division, The Samuel Roberts Noble Foundation, ArdmoreOK, United States
- BioEnergy Science Center, Oak Ridge National Laboratory (DOE), Oak RidgeTN, United States
| |
Collapse
|
12
|
Evidence for a hexaheteromeric methylenetetrahydrofolate reductase in Moorella thermoacetica. J Bacteriol 2014; 196:3303-14. [PMID: 25002540 DOI: 10.1128/jb.01839-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Moorella thermoacetica can grow with H₂ and CO₂, forming acetic acid from 2 CO₂ via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown.
Collapse
|
13
|
Kittur FS, Bah M, Archer-Hartmann S, Hung CY, Azadi P, Ishihara M, Sane DC, Xie J. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants. PLoS One 2013; 8:e76468. [PMID: 24124563 PMCID: PMC3790672 DOI: 10.1371/journal.pone.0076468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M)) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P)) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P) bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P) (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M) (21%). The cytoprotective effect of the asialo-rhuEPO(P) was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.
Collapse
Affiliation(s)
- Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Mamudou Bah
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - David C. Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| |
Collapse
|
14
|
Dewey RE, Xie J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. PHYTOCHEMISTRY 2013; 94:10-27. [PMID: 23953973 DOI: 10.1016/j.phytochem.2013.06.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/28/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Alkaloids represent an extensive group of nitrogen-containing secondary metabolites that are widely distributed throughout the plant kingdom. The pyridine alkaloids of tobacco (Nicotiana tabacum L.) have been the subject of particularly intensive investigation, driven largely due to the widespread use of tobacco products by society and the role that nicotine (16) (see Fig. 1) plays as the primary compound responsible for making the consumption of these products both pleasurable and addictive. In a typical commercial tobacco plant, nicotine (16) comprises about 90% of the total alkaloid pool, with the alkaloids nornicotine (17) (a demethylated derivative of nicotine), anatabine (15) and anabasine (5) making up most of the remainder. Advances in molecular biology have led to the characterization of the majority of the genes encoding the enzymes directly responsible the biosynthesis of nicotine (16) and nornicotine (17), while notable gaps remain within the anatabine (15) and anabasine (5) biosynthetic pathways. Several of the genes involved in the transcriptional regulation and transport of nicotine (16) have also been elucidated. Investigations of the molecular genetics of tobacco alkaloids have not only provided plant biologists with insights into the mechanisms underlying the synthesis and accumulation of this important class of plant alkaloids, they have also yielded tools and strategies for modifying the tobacco alkaloid composition in a manner that can result in changing the levels of nicotine (16) within the leaf, or reducing the levels of a potent carcinogenic tobacco-specific nitrosamine (TSNA). This review summarizes recent advances in our understanding of the molecular genetics of alkaloid biosynthesis in tobacco, and discusses the potential for applying information accrued from these studies toward efforts designed to help mitigate some of the negative health consequences associated with the use of tobacco products.
Collapse
Affiliation(s)
- Ralph E Dewey
- Department of Crop Science, North Carolina State University, Box 8009, Raleigh, NC 27695, USA.
| | | |
Collapse
|