1
|
Liu X, Cheng L, Cai Y, Liu Y, Yan X, Liu J, Li R, Ge S, Wang S, Liu X, Meng S, Qi M, Jiang CZ, Li T, Xu T. A KNOTTED1-LIKE HOMEOBOX PROTEIN1-interacting transcription factor SlGATA6 maintains the auxin-response gradient to inhibit abscission. SCIENCE ADVANCES 2025; 11:eadt1891. [PMID: 40106541 PMCID: PMC11922032 DOI: 10.1126/sciadv.adt1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (SlKD1) is a master abscission regulator in tomato (Solanum lycopersicum). Here, we identified an SlKD1-interacting transcription factor GATA transcription factor 6 (SlGATA6), which is required for maintaining the auxin-response gradient and preventing abscission. SlGATA6 up-regulates the expression of SlLAX2 and SlIAA3. The AUXIN RESISTANT/LIKE AUXIN RESISTANT (AUX/LAX) proteins SlLAX2-dependent asymmetric auxin distribution causes differential accumulation of Auxin/Indole-3-Acetic Acid 3 (SlIAA3) and its homolog SlIAA32 across different abscission zone cells. It is also required for SUMOylation of AUXIN RESPONSE FACTOR 2a (SlARF2a), a key suppressor of auxin signaling and abscission initiator. Moreover, SlIAA3 and SlIAA32 depress SUMOylated SlARF2a, thus suppressing SlARF2a function. The interaction between SlKD1 and SlGATA6 suppresses SlGATA6 binding to the promoters of SlLAX2 and SlIAA3, thereby disrupting the auxin-response gradient and triggering abscission. This regulatory mechanism is conserved under low light-induced abscission in diverse Solanaceae plants. Our findings reveal a critical role of SlKD1 in modulating the auxin-response gradient and abscission initiation.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Xuemei Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiayun Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Xingan Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning, China
- Modern Protected Horticulture Engineering and Technology Center, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Tranbarger TJ, Tadeo FR. Abscission zone metabolism impacts pre- and post-harvest fruit quality: a very attaching story. FRONTIERS IN PLANT SCIENCE 2025; 15:1524893. [PMID: 39980759 PMCID: PMC11841436 DOI: 10.3389/fpls.2024.1524893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
The function of abscission zones (AZs) determines the timing of fleshy fruit abscission, with important consequences not only for the optimal fruit harvest, but also on the overall final fruit quality. In this context, chemical treatments are commonly used at different stages of fruit development to control fruit abscission, which can also have positive or negative effects on fruit quality. In the current review, we examine commonly used chemicals that affect the metabolic activity in the AZs of fleshy fruit, in addition to their effects on fruit quality characteristics. The main hormone metabolism and signaling in the AZ include that of ethylene, auxin, abscisic acid and jasmonates, and the molecular components that are involved are covered and discussed, in addition to how these hormones work together to regulate AZ activity and hence, affect fruit quality. We focus on studies that have provided new insight into possible protein complexes that function in the AZ, including multiple MADS-box transcription factors, with potential overlapping regulatory roles which exist between AZ development, ethylene production, AZ activation, fruit ripening and overall fruit quality. The view of the AZ as a cross roads where multiple pathways and signals are integrated is discussed.
Collapse
Affiliation(s)
- Timothy J. Tranbarger
- UMR DIADE, IRD Centre de Montpellier, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, France
| | - Francisco R. Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| |
Collapse
|
3
|
Liu Q, Zhao Y, Yang J, Xiao F, Wang X. Study on the physiological mechanism and transcriptional regulatory network of early fruit development in Gleditsia sinensis Lam. (Fabaceae). BMC PLANT BIOLOGY 2024; 24:1213. [PMID: 39701956 DOI: 10.1186/s12870-024-05895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization. A comprehensive understanding of the cellular events, physiological and biochemical processes, and molecular regulatory mechanisms underlying fruit initiation and early fruit development is essential for enhancing yield. However, such information for G. sinensis remains largely unexplored. RESULTS In this study, we identified that the early fruit development process in G. sinensis can be categorized into three distinct stages: pollination, the critical period of fertilization, and the initial fruit development followed by subsequent growth. The dynamic changes in non-structural carbohydrates and endogenous plant hormones within the ovary were found to play a significant role during fruit set and the early stages of fruit development. Additionally, the high activity of gibberellin, cytokinin, and sucrose-metabolizing enzymes in the ovary was conducive to early fruit development. Furthermore, we generated high-resolution spatiotemporal gene expression profiles in the ovary from the stage of efflorescence to early fruit development. Comparative transcriptomics and weighted gene co-expression network analysis revealed specific genes and gene modules predominant at distinct developmental stages, thereby highlighting unique genetic programming. Overall, we identified the potential regulatory network governing fruit initiation and subsequent development, as well as the sets of candidate genes involved, based on the aforementioned results. CONCLUSIONS The results offer a valuable reference and resource for the application of exogenous substances, such as hormones and sugars, during critical fruit development periods, and for the development of molecular tools aimed at improving yield.
Collapse
Affiliation(s)
- Qiao Liu
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yang Zhao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Ju Yang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China.
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Lv Y, Yun L, Jia M, Mu Y, Zhang Z. Exploring the mechanism of seed shattering in Psathyrostachys juncea through histological analysis and comparative transcriptomics. BMC PLANT BIOLOGY 2024; 24:1179. [PMID: 39695364 DOI: 10.1186/s12870-024-05881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Seed shattering (SS) negatively impacts seed yield in Psathyrostachys juncea. Understanding and improving the SS trait requires elucidating the regulatory mechanisms of SS and identifying the key genes involved. RESULTS This study presents a comprehensive analysis of the abscission zone (AZ) structures at four developmental stages in two P. juncea genotypes. High-SS P. juncea (H) exhibited a significantly higher SS rate than low-SS P. juncea (L) at all four developmental stages. Anatomical analysis revealed that the degree of lignification in the AZ cell walls is related to the integrity of the abscission structure. The degradation of the AZ in H occurred earlier and was more severe compared to L. At different developmental stages of the AZ, H exhibited higher cellulase and polygalacturonase activities and higher abscisic acid contents compared to L. Conversely, L showed higher lignin, cytokinin, auxin, and gibberellin contents than H. Transcriptomic analysis identified key metabolic pathways related to SS in P. juncea, such as phenylpropanoid biosynthesis, fructose and mannose metabolism, galactose metabolism, and pentose and glucuronate interconversions. The integration of morphological, histological, physiochemical, and metabolic data led to the identification of critical genes, including AUX1, CKX, ABF, GH3, 4CL, CCoAOMT, BGAL, Gal, and PG. The roles of these genes were involved in the regulation of plant hormones and in the synthesis and degradation of cell walls within the AZ. CONCLUSIONS This study provides an in-depth understanding of the regulatory mechanisms of SS in P. juncea through comparative transcriptomic analysis. The SS in P. juncea may result from the degradation of the cell wall regulated by cell wall hydrolases genes. The genes identified in this study provide a basis for the genetic improvement of SS traits and serve as a reference for research on other grass species.
Collapse
Affiliation(s)
- Yuru Lv
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lan Yun
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China.
| | - Miaomiao Jia
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yixin Mu
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiqiang Zhang
- College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Grassland Resources of the Ministry of Education and Processing and High Efficient Utilization of the Ministry of Agriculture, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Li J, Su S. Abscission in plants: from mechanism to applications. ADVANCED BIOTECHNOLOGY 2024; 2:27. [PMID: 39883313 PMCID: PMC11740850 DOI: 10.1007/s44307-024-00033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 01/31/2025]
Abstract
Abscission refers to the natural separation of plant structures from their parent plants, regulated by external environmental signals or internal factors such as stress and aging. It is an advantageous process as it enables plants to shed unwanted organs, thereby regulating nutrient allocation and ensuring the dispersal of fruits and seeds from the parent. However, in agriculture and horticulture, abscission can severely reduce crop quality and yield. In this review, we summarize the recent advances in plant abscission from the perspectives of developmental and molecular biology, emphasizing the diverse regulatory networks across different plant lineages, from model plants to crops. The sophisticated process of plant abscission involves several overlapping steps, including the differentiation of the abscission zone, activation of abscission, tissue detachment, and formation of a protective layer. Finally, we discuss the potential applications of physiological modifications and genetic manipulations of plant abscission in sustainable agriculture in the future.
Collapse
Affiliation(s)
- Jiahuizi Li
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shihao Su
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Wang F, Liang Z, Ma X, He Z, Li J, Zhao M. LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi. MOLECULAR HORTICULTURE 2024; 4:29. [PMID: 39103914 DOI: 10.1186/s43897-024-00109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi. Ectopic expression of LcMPK3 or LcMPK6 in Arabidopsis mpk3 mpk6 mutant rescued the deficiency in floral organ abscission, while silencing of LcMPK3 or LcMPK6 in litchi significantly decreased fruitlet abscission. Importantly, a total of 49 proteins interacting with LcMPK3 were identified through yeast two-hybrid screening, including two components of the MAPK signaling cascade, five transcription factors, and two aquaporins. Furthermore, the interaction between LcMPK3/6 with LcBZR1/2, core components in brassinosteroids signaling that suppress litchi fruitlet abscission, was confirmed using in vitro and in vivo assays. Moreover, phos-tag assays demonstrated that LcMPK3/6 could phosphorylate LcBZR1/2, with several phosphorylation residues identified. Together, our findings suggest that LcMPK3 and LcMPK6 play a positive regulatory role in fruitlet abscission in litchi, and offer crucial information for the investigation of mechanisms underlying MPK3/6-mediated organ abscission in plants.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zidi He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Farooq S, Lone ML, Ul Haq A, Parveen S, Altaf F, Tahir I. Signalling cascades choreographing petal cell death: implications for postharvest quality. PLANT MOLECULAR BIOLOGY 2024; 114:63. [PMID: 38805152 DOI: 10.1007/s11103-024-01449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
Senescence is a multifaceted and dynamic developmental phase pivotal in the plant's lifecycle, exerting significant influence and involving intricate regulatory mechanisms marked by a variety of structural, biochemical and molecular alterations. Biochemical changes, including reactive oxygen species (ROS) generation, membrane deterioration, nucleic acid degradation and protein degradation, characterize flower senescence. The progression of senescence entails a meticulously orchestrated network of interconnected molecular mechanisms and signalling pathways, ensuring its synchronized and efficient execution. Within flowering plants, petal senescence emerges as a crucial aspect significantly impacting flower longevity and postharvest quality, emphasizing the pressing necessity of unravelling the underlying signalling cascades orchestrating this process. Understanding the complex signalling pathways regulating petal senescence holds paramount importance, not only shedding light on the broader phenomenon of plant senescence but also paving the way for the development of targeted strategies to enhance the postharvest longevity of cut flowers. Various signalling pathways participate in petal senescence, encompassing hormone signalling, calcium signalling, protein kinase signalling and ROS signalling. Among these, the ethylene signalling pathway is extensively studied, and the manipulation of genes associated with ethylene biosynthesis or signal transduction has demonstrated the potential to enhance flower longevity. A thorough understanding of these complex pathways is critical for effectively delaying flower senescence, thereby enhancing postharvest quality and ornamental value. Therefore, this review adopts a viewpoint that combines fundamental research into the molecular intricacies of senescence with a practical orientation towards developing strategies for improving the postharvest quality of cut flowers. The innovation of this review is to shed light on the pivotal signalling cascades underpinning flower senescence and offer insights into potential approaches for modulating these pathways to postpone petal senescence in ornamental plants.
Collapse
Affiliation(s)
- Sumira Farooq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Mohammad Lateef Lone
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Aehsan Ul Haq
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Shazia Parveen
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Foziya Altaf
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Plant Physiology and Biochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
8
|
Dong X, Liu X, Cheng L, Li R, Ge S, Wang S, Cai Y, Liu Y, Meng S, Jiang CZ, Shi CL, Li T, Fu D, Qi M, Xu T. SlBEL11 regulates flavonoid biosynthesis, thus fine-tuning auxin efflux to prevent premature fruit drop in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:749-770. [PMID: 38420861 DOI: 10.1111/jipb.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
Auxin regulates flower and fruit abscission, but how developmental signals mediate auxin transport in abscission remains unclear. Here, we reveal the role of the transcription factor BEL1-LIKE HOMEODOMAIN11 (SlBEL11) in regulating auxin transport during abscission in tomato (Solanum lycopersicum). SlBEL11 is highly expressed in the fruit abscission zone, and its expression increases during fruit development. Knockdown of SlBEL11 expression by RNA interference (RNAi) caused premature fruit drop at the breaker (Br) and 3 d post-breaker (Br+3) stages of fruit development. Transcriptome and metabolome analysis of SlBEL11-RNAi lines revealed impaired flavonoid biosynthesis and decreased levels of most flavonoids, especially quercetin, which functions as an auxin transport inhibitor. This suggested that SlBEL11 prevents premature fruit abscission by modulating auxin efflux from fruits, which is crucial for the formation of an auxin response gradient. Indeed, quercetin treatment suppressed premature fruit drop in SlBEL11-RNAi plants. DNA affinity purification sequencing (DAP-seq) analysis indicated that SlBEL11 induced expression of the transcription factor gene SlMYB111 by directly binding to its promoter. Chromatin immunoprecipitation-quantitative polymerase chain reaction and electrophoretic mobility shift assay showed that S. lycopersicum MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG111 (SlMYB111) induces the expression of the core flavonoid biosynthesis genes SlCHS1, SlCHI, SlF3H, and SlFLS by directly binding to their promoters. Our findings suggest that the SlBEL11-SlMYB111 module modulates flavonoid biosynthesis to fine-tune auxin efflux from fruits and thus maintain an auxin response gradient in the pedicel, thereby preventing premature fruit drop.
Collapse
Affiliation(s)
- Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Yang Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Washington, DC, 20250, USA
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, 110866, China
| |
Collapse
|
9
|
Gao S, Xu J, Song W, Dong J, Xie L, Xu B. Overexpression of BnMYBL2-1 improves plant drought tolerance via the ABA-dependent pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108293. [PMID: 38181638 DOI: 10.1016/j.plaphy.2023.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Drought stress is a major environmental challenge that poses considerable threats to crop survival and growth. Previous research has indicated anthocyanins play a crucial role in alleviating oxidative damage, photoprotection, membrane stabilization, and water retention under drought stress. However, the presence of MYBL2 (MYELOBBLASTOSIS LIKE 2), an R3-MYB transcription factor (TF) which known to suppress anthocyanin biosynthesis. In this study, four BnMYBL2 members were cloned from Brassica napus L, and BnMYBL2-1 was overexpressed in Triticum aestivum L (No BnMYBL2 homologous gene was detected in wheat). Subsequently, the transgenic wheat lines were treated with drought, ABA and anthocyanin. Results showed that transgenic lines exhibited greater drought tolerance compared to the wild-type (WT), characterized by improved leaf water content (LWC), elevated levels of soluble sugars and chlorophyll, and increased antioxidant enzyme activity. Notably, transgenic lines also exhibited significant upregulation in abscisic acid (ABA) content, along with the transcriptional levels of key enzymes involved in ABA signalling under drought. Results also demonstrated that BnMYBL2-1 promoted the accumulation of ABA and anthocyanins in wheat. Overall, the study highlights the positive role of BnMYBL2-1 in enhancing crop drought tolerance through ABA signalling and establishes its close association with anthocyanin biosynthesis. These findings offer valuable insights for the development of drought-resistant crop varieties and enhance the understanding of the molecular mechanisms underlying plant responses to drought stress.
Collapse
Affiliation(s)
- Shaofan Gao
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China
| | - Jinsong Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China
| | - Wei Song
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Henan, 467036, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, 430072, China
| | - Lingli Xie
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China.
| | - Benbo Xu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Hubei, 434022, China; College of Agriculture, Yangtze University, Hubei, 434022, China.
| |
Collapse
|
10
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
11
|
Li J, Chen Y, Zhou G, Li M. Phytohormones and candidate genes synergistically regulate fruitlet abscission in Areca catechu L. BMC PLANT BIOLOGY 2023; 23:537. [PMID: 37919647 PMCID: PMC10623784 DOI: 10.1186/s12870-023-04562-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The fruit population of most plants is under the control of a process named "physiological drop" to selectively abort some developing fruitlets. However, frequent fruitlet abscission severely restricts the yield of Areca catechu. To reveal the physiological and molecular variations in this process, we detected the variation of phytohormone levels in abscised and non-abscised fruitlets in A. catechu. RESULTS The levels of gibberellin acid, jasmonic acid, salicylic acid, abscisic acid and zeatin were elevated, while the indole-3-acetic acid and indole-3-carboxaldehyde levels were declined in the "about-to-abscise" part (AB) of abscission zone (AZ) compared to the "non-abscised" part (CK). Then the differentially expressed genes (DEGs) between AB and CK were screened based on transcriptome data. DEGs involved in phytohormone synthesis, response and transportation were identified as key genes. Genes related to cell wall biosynthesis, degradation, loosening and modification, and critical processes during fruit abscission were identified as role players. In addition, genes encoding transcription factors, such as NAC, ERF, WRKY, MADS and Zinc Finger proteins, showed differentially expressed patterns between AB and CK, were also identified as candidates. CONCLUSIONS These results unraveled a phytohormone signaling cross talk and key genes involved in the fruitlet abscission process in A. catechu. This study not only provides a theoretical basis for fruitlet abscission in A. catechu, but also identified many candidate genes or potential molecular markers for further breeding of fruit trees.
Collapse
Affiliation(s)
- Jia Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, 571339, Hainan, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China.
| |
Collapse
|
12
|
Ezura K, Nomura Y, Ariizumi T. Molecular, hormonal, and metabolic mechanisms of fruit set, the ovary-to-fruit transition, in horticultural crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6254-6268. [PMID: 37279328 DOI: 10.1093/jxb/erad214] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.
Collapse
Affiliation(s)
- Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo 102-0083, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
| | - Yukako Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
13
|
Li G, Manzoor MA, Wang G, Chen C, Song C. Comparative analysis of KNOX genes and their expression patterns under various treatments in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2023; 14:1258533. [PMID: 37860241 PMCID: PMC10582715 DOI: 10.3389/fpls.2023.1258533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Introduction KNOX plays a pivotal role in governing plant growth, development, and responses to diverse abiotic and biotic stresses. However, information on the relationship between the KNOX gene family and expression levels under different treatments in Dendrobium is still limited. Methods To address this problem, we first used bioinformatics methods and revealed the presence of 19 KNOX genes distributed among 13 chromosomes in the Dendrobium huoshanense genome. Through an analysis of phylogenetic relationships, these genes were classified into three distinct clades: class I, class II, and class M. Our investigation included promoter analysis, revealing various cis-acting elements associated with hormones, growth and development, and abiotic stress responses. Additionally, qRT-PCR experiments were conducted to assess the expression patterns of DhKNOX genes under different treatments, including ABA, MeJA, SA, and drought. Results The results demonstrated differential expression of DhKNOX genes in response to these treatments, thereby highlighting their potential roles in stress adaptation. Discussion Overall, our results contribute important insights for further investigations into the functional characterization of the Dendrobium KNOX gene family, shedding light on their roles in plant development and stress responses.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Guoyu Wang
- College of pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Cunwu Chen
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Cheng Song
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Anhui Dabieshan Academy of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
14
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. PLANTS (BASEL, SWITZERLAND) 2023; 12:185. [PMID: 36616314 PMCID: PMC9823658 DOI: 10.3390/plants12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The unwanted detachment of organs such as flowers, leaves, and fruits from the main body of a plant (abscission) has significant effects on agricultural practice. Both timely and precise regulation of organ abscission from a plant is crucial as it influences the agricultural yield. The tomato (Solanum lycopersicum) has become a model system for research on organ abscission. Here, we characterized four tomato natural abscission variants named jointless (j), functionally impaired jointless (fij), functionally impaired jointless like (fij like), and normal joint (NJ), based on their cellular features within the flower abscission zones (AZ). Using eight INFLORESCENCE DEFICIENT IN ABSCISSION (SlIDA) genes and eight HAESA genes (SlHAE) identified in the genome sequence of tomato, we analyzed the pattern of gene expression during flower abscission. The AZ-specific expression for three tomato abscission polygalacturonases (SlTAPGs) in the development of flower AZ, and the progression of abscission validated our natural abscission system. Compared to that of j, fij, and fij like variants, the AZ-specific expression for SlIDA, SlIDL2, SlIDL3, SlIDL4, and SlIDL5 in the NJ largely corelated and increased with the process of abscission. Of eight SlHAE genes examined, the expression for SlHSL6 and SlHSL7 were found to be AZ-specific and increased as abscission progressed in the NJ variant. Unlike the result of gene expression obtained from natural abscission system, an in silico analysis of transcriptional binding sites uncovered that SlIDA genes (SlIDA, SlIDL6, and SlIDL7) are predominantly under the control of environmental stress, while most of the SlHSL genes are affiliated with the broader context in developmental processes and stress responses. Our result presents the potential bimodal transcriptional regulation of the tomato IDA-HAE module associated with flower abscission in tomatoes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Samiah Arif
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - June Woo Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
- Quality Assurance Team, Quality Assurance Department, Nongwoobio Co., Ltd., Yeoju 12655, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Mark Leo Tucker
- Soybean Genomics and Improvement Lab, Agriculture Research Service, United States Department of Agriculture, Building 006, BARC-West, Beltsville, MD 20705, USA
| | - Joonyup Kim
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Jiang C, Liang Y, Deng S, Liu Y, Zhao H, Li S, Jiang CZ, Gao J, Ma C. The RhLOL1-RhILR3 module mediates cytokinin-induced petal abscission in rose. THE NEW PHYTOLOGIST 2023; 237:483-496. [PMID: 36263705 DOI: 10.1111/nph.18556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
In many plant species, petal abscission can be considered the final step of petal senescence. Cytokinins (CKs) are powerful suppressors of petal senescence; however, their role in petal abscission is ambiguous. Here, we observed that, in rose (Rosa hybrida), biologically active CK is accumulated during petal abscission and acts as an accelerator of the abscission process. Using a combination of reverse genetics, and molecular and biochemical techniques, we explored the roles of a LESION SIMULATING DISEASE1 (LSD1) family member RhLOL1 interacting with a bHLH transcription factor RhILR3 in CK-induced petal abscission. Silencing RhLOL1 delays rose petal abscission, while the overexpression of its ortholog SlLOL1 in tomato (Solanum lycopersicum) promotes pedicel abscission, indicating the conserved function of LOL1 in activating plant floral organ abscission. In addition, we identify a bHLH transcription factor, RhILR3, that interacts with RhLOL1. We show that RhILR3 binds to the promoters of the auxin signaling repressor auxin/indole-3-acetic acid (Aux/IAA) genes to inhibit their expression; however, the interaction of RhLOL1 with RhILR3 activates the expression of the Aux/IAA genes including RhIAA4-1. Silencing RhIAA4-1 delays rose petal abscission. Our results thus reveal a RhLOL1-RhILR3 regulatory module involved in CK-induced petal abscission via the regulation of the expression of the Aux/IAA genes.
Collapse
Affiliation(s)
- Chuyan Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yue Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shuning Deng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haohao Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Susu Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, 95616, USA
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Ou X, Wang Y, Li J, Zhang J, Xie Z, He B, Jiang Z, Wang Y, Su W, Song S, Hao Y, Chen R. Genome-wide identification of the KNOTTED HOMEOBOX gene family and their involvement in stalk development in flowering Chinese cabbage. FRONTIERS IN PLANT SCIENCE 2022; 13:1019884. [PMID: 36438132 PMCID: PMC9686407 DOI: 10.3389/fpls.2022.1019884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin and cytokinin synergistically regulate the stalk development in flowering Chinese cabbage. KNOX proteins were reported to function as important regulators of the shoot apex to promote meristem activity by synchronously inducing CTK and suppressing GA biosynthesis, while their regulatory mechanism in the bolting and flowering is unknown. In this study, 9 BcKNOX genes were identified and mapped unevenly on 6 out of 10 flowering Chinese cabbage chromosomes. The BcKNOXs were divided into three subfamilies on the basis of sequences and gene structure. The proteins contain four conserved domains except for BcKNATM. Three BcKNOX TFs (BcKNOX1, BcKNOX3, and BcKNOX5) displayed high transcription levels on tested tissues at various stages. The major part of BcKNOX genes showed preferential expression patterns in response to low-temperature, zeatin (ZT), and GA3 treatment, indicating that they were involved in bud differentiation and bolting. BcKNOX1 and BcKNOX5 showed high correlation level with gibberellins synthetase, and CTK metabolic genes. BcKONX1 also showed high correlation coefficients within BcRGA1 and BcRGL1 which are negative regulators of GA signaling. In addition, BcKNOX1 interacted with BcRGA1 and BcRGL1, as confirmed by yeast two-hybrid (Y2H) and biomolecular fluorescence complementation assay (BiFC). This analysis has provided useful foundation for the future functional roles' analysis of flowering Chinese cabbage KNOX genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yanwei Hao
- *Correspondence: Yanwei Hao, ; Riyuan Chen,
| | | |
Collapse
|
17
|
Li JC, Wang Y, Dai HF, Sun Q. Global transcriptome dissection of pollen-pistil interactions induced self-incompatibility in dragon fruit ( Selenicereus spp.). PeerJ 2022; 10:e14165. [PMID: 36340195 PMCID: PMC9635355 DOI: 10.7717/peerj.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Self-incompatibility (SI) is a major issue in dragon fruit (Selenicereus spp.) breeding and production. Therefore, a better understanding of the dragon fruit SI mechanism is needed to improve breeding efficiency and ultimate production costs. To reveal the underlying mechanisms of SI in dragon fruit, plant anatomy, de novo RNA sequencing-based transcriptomic analysis, and multiple bioinformatic approaches were used to analyze gene expression in the pistils of the self-pollinated and cross-pollinated dragon fruit flowers at different intervals of time after pollination. Using fluorescence microscopy, we observed that the pollen of 'Hongshuijing', a self-incompatible dragon fruit variety (S. monacanthus), germinated on its own stigma. However, the pollen tube elongation has ceased at 1/2 of the style, confirming that dragon fruit experiences gametophyte self-incompatibility (GSI). We found that the pollen tube elongation in vitro was inhibited by self-style glycoproteins in the SI variety, indicating that glycoproteins were involved in SI. That is to say the female S factor should be homologous of S-RNase or PrsS (P. rhoeas stigma S factor), both of which are glycoproteins and are the female S factors of the two known GSI mechanism respectively. Bioinformatics analyses indicated that among the 43,954 assembled unigenes from pistil, there were six S-RNase genes, while 158 F-box genes were identified from a pollen transcriptomic dataset. There were no P. rhoeas type S genes discovered. Thus, the identified S-RNase and F-box represent the candidate female and male S genes, respectively. Analysis of differentially expressed genes (DEGs) between the self and cross-pollinated pistils at different time intervals led to the identification of 6,353 genes. We then used a weighted gene co-expression network analysis (WGCNA) to find some non-S locus genes in SI responses in dragon fruit. Additionally, 13 transcription factors (TFs) (YABBY4, ANL2, ERF43, ARF2, BLH7, KNAT6, PIF3, two OBF1, two HY5 and two LHY/CCA) were identified to be involved in dragon fruit GSI. Thus, we uncovered candidate S and non-S genes and predicted more SI-related genes for a more detailed investigation of the molecular mechanism of dragon fruit SI. Our findings suggest that dragon fruit possesses a GSI system and involves some unique regulators. This study lays the groundwork for future research into SI mechanisms in dragon fruit and other plant species.
Collapse
Affiliation(s)
- Jun-cheng Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Yulin Wang
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Hong-fen Dai
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Qingming Sun
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Cheng L, Li R, Wang X, Ge S, Wang S, Liu X, He J, Jiang CZ, Qi M, Xu T, Li T. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. THE PLANT CELL 2022; 34:4388-4408. [PMID: 35972422 PMCID: PMC9614458 DOI: 10.1093/plcell/koac254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 06/12/2023]
Abstract
Premature abscission of flowers and fruits triggered by low light stress can severely reduce crop yields. However, the underlying molecular mechanism of this organ abscission is not fully understood. Here, we show that a gene (SlCLV3) encoding CLAVATA3 (CLV3), a peptide hormone that regulates stem cell fate in meristems, is highly expressed in the pedicel abscission zone (AZ) in response to low light in tomato (Solanum lycopersicum). SlCLV3 knockdown and knockout lines exhibit delayed low light-induced flower drop. The receptor kinases SlCLV1 and BARELY ANY MERISTEM1 function in the SlCLV3 peptide-induced low light response in the AZ to decrease expression of the transcription factor gene WUSCHEL (SlWUS). DNA affinity purification sequencing identified the transcription factor genes KNOX-LIKE HOMEDOMAIN PROTEIN1 (SlKD1) and FRUITFULL2 (SlFUL2) as SlWUS target genes. Our data reveal that low light reduces SlWUS expression, resulting in higher SlKD1 and SlFUL2 expression in the AZ, thereby perturbing the auxin response gradient and causing increased ethylene production, eventually leading to the initiation of abscission. These results demonstrate that the SlCLV3-SlWUS signaling pathway plays a central role in low light-induced abscission by affecting auxin and ethylene homeostasis.
Collapse
Affiliation(s)
- Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Jing He
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Albany, California 95616, USA
- Department of Plant Sciences, University of California, Los Angeles, California 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| |
Collapse
|
19
|
Liu X, Cheng L, Li R, Cai Y, Wang X, Fu X, Dong X, Qi M, Jiang CZ, Xu T, Li T. The HD-Zip transcription factor SlHB15A regulates abscission by modulating jasmonoyl-isoleucine biosynthesis. PLANT PHYSIOLOGY 2022; 189:2396-2412. [PMID: 35522030 PMCID: PMC9342995 DOI: 10.1093/plphys/kiac212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Plant organ abscission, a process that is important for development and reproductive success, is inhibited by the phytohormone auxin and promoted by another phytohormone, jasmonic acid (JA). However, the molecular mechanisms underlying the antagonistic effects of auxin and JA in organ abscission are unknown. We identified a tomato (Solanum lycopersicum) class III homeodomain-leucine zipper transcription factor, HOMEOBOX15A (SlHB15A), which was highly expressed in the flower pedicel abscission zone and induced by auxin. Knocking out SlHB15A using clustered regularly interspaced short palindromic repeats-associated protein 9 technology significantly accelerated abscission. In contrast, overexpression of microRNA166-resistant SlHB15A (mSlHB15A) delayed abscission. RNA sequencing and reverse transcription-quantitative PCR analyses showed that knocking out SlHB15A altered the expression of genes related to JA biosynthesis and signaling. Furthermore, functional analysis indicated that SlHB15A regulates abscission by depressing JA-isoleucine (JA-Ile) levels through inhabiting the expression of JASMONATE-RESISTANT1 (SlJAR1), a gene involved in JA-Ile biosynthesis, which could induce abscission-dependent and abscission-independent ethylene signaling. SlHB15A bound directly to the SlJAR1 promoter to silence SlJAR1, thus delaying abscission. We also found that flower removal enhanced JA-Ile content and that application of JA-Ile severely impaired the inhibitory effects of auxin on abscission. These results indicated that SlHB15A mediates the antagonistic effect of auxin and JA-Ile during tomato pedicel abscission, while auxin inhibits abscission through the SlHB15A-SlJAR1 module.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang 110866, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California at Davis, Davis, California 95616, USA
- Crops Pathology and Genetic Research Unit, USDA-ARS, Davis, California 95616, USA
| | - Tao Xu
- Author for correspondence: (T.L.), (T.X.)
| | - Tianlai Li
- Author for correspondence: (T.L.), (T.X.)
| |
Collapse
|
20
|
Liu D, Guo T, Li J, Hao Y, Zhao D, Wang L, Liu Z, Zhang L, Jin Z, Pei Y. Hydrogen sulfide inhibits the abscission of tomato pedicel through reconstruction of a basipetal auxin gradient. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111219. [PMID: 35351302 DOI: 10.1016/j.plantsci.2022.111219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Abscission is an important developmental process and an essential agricultural trait. Auxin and ethylene are two phytohormones with important roles in the complex, but still elusive signaling network of abscission. Here, we found that hydrogen sulfide (H2S), a newly identified gasotransmitter, inhibits the initiation of tomato pedicel abscission. The underlying mechanism was explored through transcriptome profile analysis in various pedicel tissues with or without H2S treatment in the early abscission stage. The data suggested that H2S strongly influences the global transcription of pedicel tissues, exerts differential expression regulation along the pedicel, and markedly influences both the auxin and ethylene signaling pathways. Computational analysis revealed that H2S reconstructs a basipetal auxin gradient along the pedicel at 4 h after treatment; this finding was further substantiated by the GUS-staining results of DR5::GUS pedicels. The inhibitory effect of H2S to the ethylene signaling pathway might be an indirect action. Moreover, the subtilisin-like proteinase family members involved in the release of peptide signal molecules are critical components of the abscission signaling network downstream of auxin and ethylene.
Collapse
Affiliation(s)
- Danmei Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Ting Guo
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Jianing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Yuan Hao
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Dan Zhao
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Longdan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Zhiqiang Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Liping Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030006, China.
| |
Collapse
|
21
|
Identification of TALE Transcription Factor Family and Expression Patterns Related to Fruit Chloroplast Development in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:ijms23094507. [PMID: 35562896 PMCID: PMC9104321 DOI: 10.3390/ijms23094507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The TALE gene family is an important transcription factor family that regulates meristem formation, organ morphogenesis, signal transduction, and fruit development. A total of 24 genes of the TALE family were identified and analyzed in tomato. The 24 SlTALE family members could be classified into five BELL subfamilies and four KNOX subfamilies. SlTALE genes were unevenly distributed on every tomato chromosome, lacked syntenic gene pairs, and had conserved structures but diverse regulatory functions. Promoter activity analysis showed that cis-elements responsive to light, phytohormone, developmental regulation, and environmental stress were enriched in the promoter of SlTALE genes, and the light response elements were the most abundant. An abundance of TF binding sites was also enriched in the promoter of SlTALE genes. Phenotype identification revealed that the green shoulder (GS) mutant fruits showed significantly enhanced chloroplast development and chlorophyll accumulation, and a significant increase of chlorophyll fluorescence parameters in the fruit shoulder region. Analysis of gene expression patterns indicated that six SlTALE genes were highly expressed in the GS fruit shoulder region, and four SlTALE genes were highly expressed in the parts with less-developed chloroplasts. The protein-protein interaction networks predicted interaction combinations among these SlTALE genes, especially between the BELL subfamilies and the KNOX subfamilies, indicating a complex regulatory network of these SlTALE genes in chloroplast development and green fruit shoulder formation. In conclusion, our result provides detailed knowledge of the SlTALE gene for functional research and the utilization of the TALE gene family in fruit quality improvement.
Collapse
|
22
|
Lu S, Wang P, Nai G, Li Y, Su Y, Liang G, Chen B, Mao J. Insight into VvGH3 genes evolutional relationship from monocotyledons and dicotyledons reveals that VvGH3-9 negatively regulates the drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:70-86. [PMID: 35033858 DOI: 10.1016/j.plaphy.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The Gretchen Hagen3 (GH3) gene family is necessary for growth and development in plants and is regulated by osmotic stress and various hormones. Although it has been reported in many plants, the evolutionary relationship of GH3 in grape has not been systematically analyzed from the perspective of monocotyledonous and dicotyledonous. This study identified and analyzed 188 GH3 genes, which were distinctly divided into 9 subgroups, and found these subgroups have obviously been clustered between monocotyledonous and dicotyledonous. VvGH3-x genes had higher synteny with apple and Arabidopsis than that of rice, and the average Ka/Ks value in monocotyledons was higher than that of dicotyledons. The codon usage index showed that monocotyledons preferred to use G3s, C3s, and GC3s, while dicotyledons preferred to use A3s and T3s. The GH3 genes of grape exhibited different expression patterns in various tissues, different abiotic stresses, and hormonal treatments. The subcellular localization showed that VvGH3-9 was expressed in the nucleus and cytoplasm. Additionally, under 20% PEG treatment, the IAA and ABA contents, relative expression levels of VvGH3-9, relative electrical conductivity (REC), as well as MDA were obviously increased in VvGH3-9 overexpression lines at 72 h. In contrast, compared to WT, the contents of proline and H2O2, the activities of POD, SOD, and CAT, and the relative expression levels of drought responsive genes were significantly decreased in overexpressing lines. Collectively, this study provided helpful insight for the evolution of GH3 genes and presented some possibilities to study the functions of GH3 genes in monocotyledons and dicotyledons.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yanli Su
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
23
|
Sundaresan S, Philosoph-Hadas S, Ma C, Jiang CZ, Riov J, Kochanek B, Salim S, Reid MS, Meir S. Role of the KNOTTED1-LIKE HOMEOBOX protein (KD1) in regulating abscission of tomato flower pedicels at early and late stages of the process. PHYSIOLOGIA PLANTARUM 2021; 173:2103-2118. [PMID: 34545591 DOI: 10.1111/ppl.13560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) gene is highly expressed in flower and leaf abscission zones (AZs), and KD1 was reported to regulate tomato flower pedicel abscission via alteration of the auxin gradient and response in the flower AZ (FAZ). The present work was aimed to further examine how KD1 regulates signaling factors and regulatory genes involved in pedicel abscission, by using silenced KD1 lines and performing a large-scale transcriptome profiling of the FAZ before and after flower removal, using a customized AZ-specific microarray. The results highlighted a differential expression of regulatory genes in the FAZ of KD1-silenced plants compared to the wild-type. In the TAPG4::antisense KD1-silenced plants, KD1 gene expression decreased before flower removal, resulting in altered expression of regulatory genes, such as epigenetic modifiers, transcription factors, posttranslational regulators, and antioxidative defense factors occurring at zero time and before affecting auxin levels in the FAZ detected at 4 h after flower removal. The expression of additional regulatory genes was altered in the FAZ of KD1-silenced plants at 4-20 h after flower removal, thereby leading to an inhibited abscission phenotype, and downregulation of genes involved in abscission execution and defense processes. Our data suggest that KD1 is a master regulator of the abscission process, which promotes abscission of tomato flower pedicels. This suggestion is based on the inhibitory effect of KD1 silencing on flower pedicel abscission that operates via alteration of various regulatory pathways, which delay the competence acquisition of the FAZ cells to respond to ethylene signaling.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZiyon, Israel
- Department of Horticulture, Neelakudi Campus, School of Life Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, India
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZiyon, Israel
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, USDA-ARS, Davis, California, USA
- Department of Plant Sciences, University of California at Davis, Davis, California, USA
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Betina Kochanek
- Department of Postharvest Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZiyon, Israel
| | - Shoshana Salim
- Department of Postharvest Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZiyon, Israel
| | - Michael S Reid
- Department of Plant Sciences, University of California at Davis, Davis, California, USA
| | - Shimon Meir
- Department of Postharvest Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZiyon, Israel
| |
Collapse
|
24
|
Dong X, Ma C, Xu T, Reid MS, Jiang CZ, Li T. Auxin response and transport during induction of pedicel abscission in tomato. HORTICULTURE RESEARCH 2021; 8:192. [PMID: 34465773 PMCID: PMC8408206 DOI: 10.1038/s41438-021-00626-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 05/05/2023]
Abstract
Auxin plays a central role in control of organ abscission, and it is thought that changes in the auxin gradient across the abscission zone are the primary determinant of the onset of abscission. The nature of this gradient, whether in concentration, flow, or perhaps in the response system has not conclusively been determined. We employed a DR5::GUS auxin response reporter system to examine the temporal and spatial distribution of the auxin response activity in response to developmental and environmental cues during pedicel abscission in tomato. In pedicels of young and fully open flowers, auxin response, as indicated by GUS activity, was predominantly detected in the vascular tissues and was almost entirely confined to the abscission zone (AZ) and to the distal portion of the pedicel, with a striking reduction in the proximal tissues below the AZ-a 'step', rather than a gradient. Following pollination and during early fruit development, auxin response increased substantially throughout the pedicel. Changes in GUS activity following treatments that caused pedicel abscission (flower removal, high temperature, darkness, ethylene, or N-1-naphthylphthalamic acid (NPA) treatment) were relatively minor, with reduced auxin response in the AZ and some reduction above and below it. Expression of genes encoding some auxin efflux carriers (PIN) and influx carriers (AUX⁄LAX) was substantially reduced in the abscission zone of NPA-treated pedicels, and in pedicels stimulated to abscise by flower removal. Our results suggest that changes in auxin flow distribution through the abscission zone are likely more important than the auxin response system in the regulation of abscission.
Collapse
Affiliation(s)
- Xiufen Dong
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Chao Ma
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tao Xu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Michael S Reid
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Crops Pathology & Genetic Research Unit, USDA-ARS, Davis, CA, 95616, USA.
| | - Tianlai Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
25
|
Wang R, Li R, Cheng L, Wang X, Fu X, Dong X, Qi M, Jiang C, Xu T, Li T. SlERF52 regulates SlTIP1;1 expression to accelerate tomato pedicel abscission. PLANT PHYSIOLOGY 2021; 185:1829-1846. [PMID: 33638643 PMCID: PMC8133580 DOI: 10.1093/plphys/kiab026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 05/05/2023]
Abstract
Abscission of plant organs is induced by developmental signals and diverse environmental stimuli and involves multiple regulatory networks, including biotic or abiotic stress-impaired auxin flux in the abscission zone (AZ). Depletion of auxin activates AZ ethylene (ETH) production and triggers acceleration of abscission, a process that requires hydrogen peroxide (H2O2). However, the interaction between these networks and the underlying mechanisms that control abscission are poorly understood. Here, we found that expression of tonoplast intrinsic proteins, which belong to the aquaporin (AQP) family in the AZ was important for tomato (Solanum lycopersicum) pedicel abscission. Liquid chromatography-tandem mass spectrometry and in situ hybridization revealed that SlTIP1;1 was most abundant and specifically present in the tomato pedicel AZ. SlTIP1;1 localized in the plasma membrane and tonoplast. Knockout of SlTIP1;1 resulted in delayed abscission, whereas overexpression of SlTIP1;1 accelerated abscission. Further analysis indicated that SlTIP1;1 mediated abscission via gating of cytoplasmic H2O2 concentrations and osmotic water permeability (Pf). Elevated cytoplasmic levels of H2O2 caused a suppressed auxin signal in the early abscission stage and enhanced ETH production during abscission. Furthermore, we found that increasing Pf was required to enhance the turgor pressure to supply the break force for AZ cell separation. Moreover, we observed that SlERF52 bound directly to the SlTIP1;1 promoter to regulate its expression, demonstrating a positive loop in which cytoplasmic H2O2 activates ETH production, which activates SlERF52. This, in turn, induces SlTIP1;1, which leads to elevated cytoplasmic H2O2 and water influx.
Collapse
Affiliation(s)
- Rong Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xiufen Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Caizhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Research Service, California, USA
- Department of Plant Sciences, University of California, California, USA
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Author for communication:
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, People’s Republic of China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
26
|
Gupta SK, Barg R, Arazi T. Tomato agamous-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. PLANT PHYSIOLOGY 2021; 185:969-984. [PMID: 33793903 PMCID: PMC8133625 DOI: 10.1093/plphys/kiaa078] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 05/07/2023]
Abstract
Fruit set is established during and soon after fertilization of the ovules inside the quiescent ovary, but the signaling pathways involved remain obscure. The tomato (Solanum lycopersicum) CRISPR loss-of-function mutant of the transcription factor gene AGAMOUS-like6 (SlAGL6; slagl6CR-sg1) is capable of fertilization-independent setting of normal, yet seedless (parthenocarpic), fruit. To gain insight into the mechanism of fleshy fruit set, in this study, we investigated how slagl6CR-sg1 uncouples fruit set from fertilization. We found that mutant ovules were enlarged due to integument over-proliferation and failed to differentiate an endothelium, the integument's innermost layer, upon maturation. A causal relationship between slagl6 loss-of-function and these abnormal phenotypes is inferred from the observation that SlAGL6 is predominantly expressed in the immature ovule integument, and upon ovule maturation, its expression shifts to the endothelium. The transcriptome of unfertilized mutant ovules profoundly differs from that of wild-type and exhibits substantial overlap with the transcriptomes of fertilized ovules sporophytic tissues. One prominent upregulated gene was the fertilization-induced cytochrome P450 cell proliferation regulator SlKLUH. Indeed, ectopic overexpression of SlKLUH stimulated both integument growth in unfertilized ovules and parthenocarpy, suggesting that its suppression by SlAGL6 is paramount for preventing fertilization-independent fruit set. Taken together, our study informs on the transcriptional programs that are regulated by SlAGL6 and demonstrates that it acts from within the ovule integument to inhibit ovary growth beyond anthesis. That by suppressing components of the fertilization-induced ovule reprogramming underlying fruit set.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Rivka Barg
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
| | - Tzahi Arazi
- ARO, Volcani Center, Institute of Plant Sciences, HaMaccabbim Road 68, Rishon LeZion 7505101, Israel
- Author for communication:
| |
Collapse
|
27
|
Yan F, Gong Z, Hu G, Ma X, Bai R, Yu R, Zhang Q, Deng W, Li Z, Wuriyanghan H. Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. HORTICULTURE RESEARCH 2021; 8:78. [PMID: 33790250 PMCID: PMC8012377 DOI: 10.1038/s41438-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/21/2023]
Abstract
Abscission, a cell separation process, is an important trait that influences grain and fruit yield. We previously reported that BEL1-LIKE HOMEODOMAIN 4 (SlBL4) is involved in chloroplast development and cell wall metabolism in tomato fruit. In the present study, we showed that silencing SlBL4 resulted in the enlargement and pre-abscission of the tomato (Solanum lycopersicum cv. Micro-TOM) fruit pedicel. The anatomic analysis showed the presence of more epidermal cell layers and no obvious abscission zone (AZ) in the SlBL4 RNAi lines compared with the wild-type plants. RNA-seq analysis indicated that the regulation of abscission by SlBL4 was associated with the altered abundance of genes related to key meristems, auxin transporters, signaling components, and cell wall metabolism. Furthermore, SlBL4 positively affected the auxin concentration in the abscission zone. A dual-luciferase reporter assay revealed that SlBL4 activated the transcription of the JOINTLESS, OVATE, PIN1, and LAX3 genes. We reported a novel function of SlBL4, which plays key roles in fruit pedicel organogenesis and abscission in tomatoes.
Collapse
Affiliation(s)
- Fang Yan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Xuesong Ma
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Runyao Bai
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Ruonan Yu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Hada Wuriyanghan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
28
|
Du J, Lu S, Chai M, Zhou C, Sun L, Tang Y, Nakashima J, Kolape J, Wen Z, Behzadirad M, Zhong T, Sun J, Zhang Y, Wang Z. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:351-364. [PMID: 32816361 PMCID: PMC7868985 DOI: 10.1111/pbi.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.
Collapse
Affiliation(s)
- Juan Du
- Noble Research InstituteArdmoreOKUSA
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaoyun Lu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Maofeng Chai
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Chuanen Zhou
- School of Life ScienceShandong UniversityQingdaoChina
| | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | | | | | - Jaydeep Kolape
- Noble Research InstituteArdmoreOKUSA
- Morrison Microscopy Core Research FacilityCenter for BiotechnologyUniversity of Nebraska‐LincolnNEUSA
| | - Zhaozhu Wen
- Noble Research InstituteArdmoreOKUSA
- College of AgricultureHunan Agricultural UniversityHunanChina
| | - Marjan Behzadirad
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
| | - Tianxiu Zhong
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Juan Sun
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Yunwei Zhang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
29
|
Jia P, Xing L, Zhang C, Zhang D, Ma J, Zhao C, Han M, Ren X, An N. MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110701. [PMID: 33288014 DOI: 10.1016/j.plantsci.2020.110701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
30
|
Liang Y, Jiang C, Liu Y, Gao Y, Lu J, Aiwaili P, Fei Z, Jiang CZ, Hong B, Ma C, Gao J. Auxin Regulates Sucrose Transport to Repress Petal Abscission in Rose ( Rosa hybrida). THE PLANT CELL 2020; 32:3485-3499. [PMID: 32843436 PMCID: PMC7610287 DOI: 10.1105/tpc.19.00695] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 07/09/2020] [Accepted: 08/23/2020] [Indexed: 05/21/2023]
Abstract
Developmental transitions in plants require adequate carbon resources, and organ abscission often occurs due to competition for carbohydrates/assimilates. Physiological studies have indicated that organ abscission may be activated by Suc deprivation; however, an underlying regulatory mechanism that links Suc transport to organ shedding has yet to be identified. Here, we report that transport of Suc and the phytohormone auxin to petals through the phloem of the abscission zone (AZ) decreases during petal abscission in rose (Rosa hybrida), and that auxin regulates Suc transport into the petals. Expression of the Suc transporter RhSUC2 decreased in the AZ during rose petal abscission. Similarly, silencing of RhSUC2 reduced the Suc content in the petals and promotes petal abscission. We established that the auxin signaling protein RhARF7 binds to the promoter of RhSUC2, and that silencing of RhARF7 reduces petal Suc contents and promotes petal abscission. Overexpression of RhSUC2 in the petal AZ restored accelerated petal abscission caused by RhARF7 silencing. Moreover, treatment of rose petals with auxin and Suc delayed ethylene-induced abscission, whereas silencing of RhARF7 and RhSUC2 accelerated ethylene-induced petal abscission. Our results demonstrate that auxin modulates Suc transport during petal abscission, and that this process is regulated by a RhARF7-RhSUC2 module in the AZ.
Collapse
Affiliation(s)
- Yue Liang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chuyan Jiang
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yuerong Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingyun Lu
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Palinuer Aiwaili
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Agricultural Research Service, Ithaca, New York 14853
- Boyce Thompson Institute, Ithaca, New York 14853
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California 95616
- Department of Plant Sciences, University of California at Davis, Davis, California 95616
| | - Bo Hong
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chao Ma
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Junping Gao
- State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Zhao M, Li C, Ma X, Xia R, Chen J, Liu X, Ying P, Peng M, Wang J, Shi CL, Li J. KNOX protein KNAT1 regulates fruitlet abscission in litchi by repressing ethylene biosynthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4069-4082. [PMID: 32227110 DOI: 10.1093/jxb/eraa162] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown. Here, we identified LcKNAT1, a KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1)-like protein from litchi, which regulates abscission by modulating ethylene biosynthesis. LcKNAT1 is expressed in the fruit abscission zone and its expression decreases during fruitlet abscission. Furthermore, the expression of the ethylene biosynthetic genes LcACS1, LcACS7, and LcACO2 increases in the fruit abscission zone, in parallel with the emission of ethylene in fruitlets. In vitro and in vivo assays revealed that LcKNAT1 inhibits the expression of LcACS/ACO genes by directly binding to their promoters. Moreover, ectopic expression of LcKNAT1 represses flower abscission in tomatoes. Transgenic plants expressing LcKNAT1 also showed consistently decreased expression of ACS/ACO genes. Collectively, these results indicate that LcKNAT1 represses abscission via the negative regulation of ethylene biosynthesis.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingshuai Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jianye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Manjun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chun-Lin Shi
- Section of Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Genome-wide identification and functional analysis of ARF transcription factors in Brassica juncea var. tumida. PLoS One 2020; 15:e0232039. [PMID: 32320456 PMCID: PMC7176091 DOI: 10.1371/journal.pone.0232039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 12/26/2022] Open
Abstract
Auxin signalling is vital for plant growth and development, from embryogenesis to senescence. Recent studies have shown that auxin regulates biological processes by mediating gene expression through a family of functionally original DNA-binding auxin response factors, which exist in a large multi-gene family in plants. However, to date, no information has been available about characteristics of the ARF gene family in Brassica juncea var. tumida. In this study, 65 B. juncea genes that encode ARF proteins were identified in the B. juncea whole-genome, classified into three phylogenetical groups and found to be widely and randomly distributed in the A-and B-genome. Highly conserved proteins were also found within each ortholog based on gene structure and conserved motifs, as well as clustering level. Furthermore, promoter cis-element analysis of BjARFs demonstrated that these genes affect the levels of plant hormones, such as auxin, salicylic, gibberellin acid, MeJA, abscisic acid, and ethylene. Expression analysis showed that differentially expressed BjARF genes were detected during the seedling stage, tumor stem development and the flowering period of B. juncea. Interestingly, we found that BjARF2b_A, BjARF3b_A, BjARF6b_A, and BjARF17a_B were significantly expressed in tumor stem, and an exogenous auxin assay indicated that these genes were sensitive to auxin and IAA signaling. Moreover, eight of the nine BjARF10/16/17 genes and all of the BjARF6/8 genes were involved in post-transcriptional regulation, targeted by Bj-miR160 and Bj-miR167c, respectively. This analysis provides deeper insight of diversification for ARFs and will facilitate further dissection of ARF gene function in B. juncea.
Collapse
|
33
|
Xie L, Chen F, Du H, Zhang X, Wang X, Yao G, Xu B. Graphene oxide and indole-3-acetic acid cotreatment regulates the root growth of Brassica napus L. via multiple phytohormone pathways. BMC PLANT BIOLOGY 2020; 20:101. [PMID: 32138661 PMCID: PMC7059361 DOI: 10.1186/s12870-020-2308-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/24/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Studies have indicated that graphene oxide (GO) could regulated Brassica napus L. root growth via abscisic acid (ABA) and indole-3-acetic acid (IAA). To study the mechanism and interaction between GO and IAA further, B. napus L (Zhongshuang No. 9) seedlings were treated with GO and IAA accordance with a two factor completely randomized design. RESULTS GO and IAA cotreatment significantly regulated the root length, number of adventitious roots, and contents of IAA, cytokinin (CTK) and ABA. Treatment with 25 mg/L GO alone or IAA (> 0.5 mg/L) inhibited root development. IAA cotreatment enhanced the inhibitory role of GO, and the inhibition was strengthened with increased in IAA concentration. GO treatments caused oxidative stress in the plants. The ABA and CTK contents decreased; however, the IAA and gibberellin (GA) contents first increased but then decreased with increasing IAA concentration when IAA was combined with GO compared with GO alone. The 9-cis-epoxycarotenoid dioxygenase (NCED) transcript level strongly increased when the plants were treated with GO. However, the NCED transcript level and ABA concentration gradually decreased with increasing IAA concentration under GO and IAA cotreatment. GO treatments decreased the transcript abundance of steroid 5-alpha-reductase (DET2) and isochorismate synthase 1 (ICS), which are associated with brassinolide (BR) and salicylic acid (SA) biosynthesis, but increased the transcript abundance of brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1), cam-binding protein 60-like G (CBP60) and calmodulin binding protein-like protein 1, which are associated with BR and SA biosynthesis. Last, GO treatment increased the transcript abundance of 1-aminocyclopropane-1-carboxylic acid synthase 2 (ACS2), which is associated with the ethylene (ETH) pathway. CONCLUSIONS Treatment with 25 mg/L GO or IAA (> 0.5 mg/L) inhibited root development. However, IAA and GO cotreatment enhanced the inhibitory role of GO, and this inhibition was strengthened with increased IAA concentration. IAA is a key factor in the response of B. napus L to GO and the responses of B. napus to GO and IAA cotreatment involved in multiple pathways, including those involving ABA, IAA, GA, CTK, BR, SA. Specifically, GO and IAA cotreatment affected the GA content in the modulation of B. napus root growth.
Collapse
Affiliation(s)
- Lingli Xie
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Fan Chen
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Hewei Du
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China
| | - Xuekun Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, P.R. China
| | - Xingang Wang
- Hubei Provincial Seed Management Bureau, Wuhan, Hubei, 430070, P.R. China
| | - Guoxin Yao
- School of Life and Science Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, P.R. China
| | - Benbo Xu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P.R. China.
| |
Collapse
|
34
|
Jia P, Zhang C, Xing L, Li Y, Shah K, Zuo X, Zhang D, An N, Han M, Ren X. Genome-Wide Identification of the MdKNOX Gene Family and Characterization of Its Transcriptional Regulation in Malus domestica. FRONTIERS IN PLANT SCIENCE 2020; 11:128. [PMID: 32153621 PMCID: PMC7047289 DOI: 10.3389/fpls.2020.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/28/2020] [Indexed: 05/11/2023]
Abstract
Knotted1-like Homeobox (KNOX) proteins play important roles in regulating plant growth, development, and other biological processes. However, little information is available on the KNOX gene family in apple (Malus domestica Borkh.). In this study, 22 KNOX genes were identified in the apple genome. The gene structure, protein characteristics, and promoter region were characterized. The MdKNOX family members were divided into three classes based on their phylogenetic relationships. Quantitative real-time PCR analysis revealed that the majority of MdKNOX genes exhibited strongly preferential expression in buds and were significantly up-regulated during the flower induction period. The transcript levels of MdKNOX genes were responsive to treatments with flowering- and stress-related hormones. The putative upstream regulation factor MdGRF could directly bind to the promoter of MdKNOX15 and MdKNOX19, and inhibit their transcriptional activities, which were confirmed by yeast one-hybrid and dual-luciferase assays. The results provide an important foundation for future analysis of the regulation and functions of the MdKNOX gene family.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Youmei Li
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Kamran Shah
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiya Zuo
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, China
- *Correspondence: Mingyu Han, ; Xiaolin Ren,
| |
Collapse
|
35
|
Xie LL, Chen F, Zou XL, Shen SS, Wang XG, Yao GX, Xu BB. Graphene oxide and ABA cotreatment regulates root growth of Brassica napus L. by regulating IAA/ABA. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153007. [PMID: 31310905 DOI: 10.1016/j.jplph.2019.153007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Previous studies have proven that graphene oxide (GO) regulates abscisic acid (ABA) and indole-3-acetic acid (IAA) contents and modulates plant root growth. To better understand the mechanism of plant growth and development regulated by GO and crosstalk between ABA and GO, Zhongshuang No. 9 seedlings were treated with GO and ABA. The results indicated that GO and ABA significantly affected the morphological properties and endogenous phytohormone contents in seedlings, and there was significant crosstalk between GO and ABA. ABA treatments combined with GO led to a rapid decrease in triphenyltetrazolium chloride (TTC) reduction intensity, and the inhibitory effect was enhanced with increasing ABA concentration. The treatments significantly affected the transcriptional levels of some key genes involved in the ABA, IAA, cytokinin (CTK), salicylic acid (SA), and ethane (ETH) pathways and increased the ABA and gibberellin (GA) contents in rapeseed seedlings. The effects of the treatments on the IAA and CTK contents were complex, but, importantly, the treatments suppressed root elongation. Correlation analysis also indicated that the relationship between root length and IAA/ABA could be described by a polynomial function: y = 88.11x2 - 25.15x + 4.813(R² = 0.912). The treatments increased the ACS2 transcript abundance for ETH biosynthesis and the ICS1 transcriptional level of the key genes involved in salicylic acid (SA) biosynthesis, as well as the downstream signaling genes CBP60 and SARD1. This finding indicated that ABA is an important factor regulating the effects of GO on the growth and development of Brassica napus L., and that ETH and SA pathways may be potential pathways involved in the response of rape seedlings to GO treatment.
Collapse
Affiliation(s)
- Ling-Li Xie
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Fan Chen
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xi-Ling Zou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Si-Si Shen
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Xin-Gang Wang
- Hubei Provincial Seed Management Bureau, Wuhan, 430070, Hubei, China
| | - Guo-Xin Yao
- School of Life and Science Technology, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Ben-Bo Xu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
36
|
Fu X, Shi Z, Jiang Y, Jiang L, Qi M, Xu T, Li T. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC PLANT BIOLOGY 2019; 19:233. [PMID: 31159738 PMCID: PMC6547480 DOI: 10.1186/s12870-019-1840-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/20/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Auxin conjugates are hydrolyzed to release free auxin to ensure defined cellular auxin levels or gradients within tissues for proper development or response to environmental signals. The auxin concentration in the abscission zone (AZ) is thought to play an important role in mediating the abscission lag phase. RESULTS In this study, the full cDNA sequences of seven tomato ILR1-like SlILL genes were identified and characterized, All SlILLs were found to have auxin conjugate hydrolysis activity. The effects of different auxin conjugates on abscission identified IAA-Ile as a candidate to determine the auxin conjugate and auxin conjugate hydrolysis functions in abscission. Treatment of pedicel explants with IAA-Ile for different times showed that application before 6 h could effectively delay abscission. IAA-Ile pre-incubation for 2 h was sufficient to inhibit abscission. These results showed that there is not sufficient auxin conjugates in the AZ to inhibit abscission, and the optimal time to inhibit abscission by the application of exogenous auxin conjugates is before 6 h. Treatment with cycloheximide (CHX, a protein biosynthesis inhibitor) indicated that de novo synthesis of auxin conjugate hydrolases is also required to delay abscission. During abscission, SlILL1, 5, and 6 showed abscission-related gene expression patterns, and SlILL1, 3, 5, 6, and 7 showed increasing expression trends, which collectively might contribute to delay abscission. Silencing the expression of SlILL1, 3, 5, 6, and 7 using virus-induced gene silencing showed that SlILL1, 5, and 6 are major mediators of abscission in tomato. CONCLUSIONS In the process of abscission, auxin inhibition is concentration dependent, and the concentration of auxin in the AZ was regulated by hydrolyzed auxin conjugates. SlILR1, 5, and 6 play a key role in flower pedicel abscission.
Collapse
Affiliation(s)
- Xin Fu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Zihang Shi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Yun Jiang
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Lingling Jiang
- Shenyang Entry-exit Inspection and Quarantine Bureau, No.433 Danan street, Shenhe District, Shenyang, 110016, Liaoning, China
| | - Mingfang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
| | - Tao Xu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| | - Tianlai Li
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, No.120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
37
|
Zhao W, Baldwin EA, Bai J, Plotto A, Irey M. Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. HORTICULTURE RESEARCH 2019; 6:71. [PMID: 31231529 PMCID: PMC6544638 DOI: 10.1038/s41438-019-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 05/27/2023]
Abstract
Citrus greening disease or huanglongbing (HLB) is associated with excessive pre-harvest fruit drop. To understand the mechanisms of the HLB-associated fruit abscission, transcriptomes were analyzed by RNA sequencing of calyx abscission zones (AZ-C) of dropped "Hamlin" oranges from HLB-diseased trees upon shaking the trees (Dd), retained oranges on diseased trees (Rd), dropped oranges from healthy shaken trees (Dh), and retained oranges on healthy trees (Rh). Cluster analysis of transcripts indicated that Dd had the largest distances from all other groups. Comparisons of transcriptomes revealed 1047, 1599, 813, and 764 differentially expressed genes (DEGs) between Dd/Rd, Dd/Dh, Dh/Rh, and Rd/Rh. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated hormone signaling, defense response, and secondary metabolism were involved in HLB-associated fruit abscission. Ethylene (ET) and jasmonic acid (JA) synthesis/signaling-related genes were upregulated in Dd, while other phytohormone-related genes were generally downregulated. In addition, genes related to JA/ET-activated defense response were upregulated in Dd as well. Consistent with the phytohormone gene expression data, increased levels (p < 0.05) of ET and JA, and a decreased level (p < 0.05) of abscisic acid were found in Dd compared with Rd, Dh or Rh. Lasiodiploidia theobromae level in Dd AZ-C was higher than the other fruit types, confirmed by qPCR, indicating AZ-C secondary fungal infection of HLB fruit may exacerbate their abscission. This information will help formulate effective strategies to control HLB-related abscission.
Collapse
Affiliation(s)
- Wei Zhao
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Elizabeth A. Baldwin
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Jinhe Bai
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Anne Plotto
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Mike Irey
- Southern Gardens Citrus Nursery, 111 Ponce de Leon Avenue, Clewiston, FL 33440 USA
| |
Collapse
|
38
|
Jáquez-Gutiérrez M, Atarés A, Pineda B, Angarita P, Ribelles C, García-Sogo B, Sánchez-López J, Capel C, Yuste-Lisbona FJ, Lozano R, Moreno V. Phenotypic and genetic characterization of tomato mutants provides new insights into leaf development and its relationship to agronomic traits. BMC PLANT BIOLOGY 2019; 19:141. [PMID: 30987599 PMCID: PMC6466659 DOI: 10.1186/s12870-019-1735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/20/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.
Collapse
Affiliation(s)
- Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pilar Angarita
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad Ciencias de la Salud, Universidad Cooperativa de Colombia, Carrera 35#36-99, Barrio Barzal, Villavicencio, Colombia
| | - Carlos Ribelles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Km 17.5 Carretera Culiacán-El Dorado, C.P 80000 Culiacán, Sinaloa Mexico
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
39
|
Perrakis A, Bita CE, Arhondakis S, Krokida A, Mekkaoui K, Denic D, Blazakis KN, Kaloudas D, Kalaitzis P. Suppression of a Prolyl 4 Hydroxylase Results in Delayed Abscission of Overripe Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:348. [PMID: 30984217 PMCID: PMC6447859 DOI: 10.3389/fpls.2019.00348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/07/2019] [Indexed: 05/03/2023]
Abstract
The tomato pedicel abscission zone (AZ) is considered a model system for flower and fruit abscission development, activation, and progression. O-glycosylated proteins such as the Arabidopsis IDA (INFLORESCENCE DEFICIENT IN ABSCISSION) peptide and Arabinogalactan proteins (AGPs) which undergo proline hydroxylation were demonstrated to participate in abscission regulation. Considering that the frequency of occurrence of proline hydroxylation might determine the structure as well the function of such proteins, the expression of a tomato prolyl 4 hydroxylase, SlP4H3 (Solanum lycopersicum Prolyl 4 Hydroxylase 3) was suppressed in order to investigate the physiological significance of this post-translational modification in tomato abscission. Silencing of SlP4H3 resulted in the delay of abscission progression in overripe tomato fruits 90 days after the breaker stage. The cause of this delay was attributed to the downregulation of the expression of cell wall hydrolases such as SlTAPGs (tomato abscission polygalacturonases) and cellulases as well as expansins. In addition, minor changes were observed in the mRNA levels of two SlAGPs and one extensin. Moreover, structural changes were observed in the silenced SlP4H3AZs. The fracture plane of the AZ was curved and not along a line as in wild type and there was a lack of lignin deposition in the AZs of overripe fruits 30 days after breaker. These results suggest that proline hydroxylation might play a role in the regulation of tomato pedicel abscission.
Collapse
|
40
|
Kulkarni KP, Patil G, Valliyodan B, Vuong TD, Shannon JG, Nguyen HT, Lee JD. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome 2018; 61:217-222. [PMID: 29365289 DOI: 10.1139/gen-2017-0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The objective of this study was to determine the genetic relationship between the oleic acid and protein content. The genotypes having high oleic acid and elevated protein (HOEP) content were crossed with five elite lines having normal oleic acid and average protein (NOAP) content. The selected accessions were grown at six environments in three different locations and phenotyped for protein, oil, and fatty acid components. The mean protein content of parents, HOEP, and NOAP lines was 34.6%, 38%, and 34.9%, respectively. The oleic acid concentration of parents, HOEP, and NOAP lines was 21.7%, 80.5%, and 20.8%, respectively. The HOEP plants carried both FAD2-1A (S117N) and FAD2-1B (P137R) mutant alleles contributing to the high oleic acid phenotype. Comparative genome analysis using whole-genome resequencing data identified six genes having single nucleotide polymorphism (SNP) significantly associated with the traits analyzed. A single SNP in the putative gene Glyma.10G275800 was associated with the elevated protein content, and palmitic, oleic, and linoleic acids. The genes from the marker intervals of previously identified QTL did not carry SNPs associated with protein content and fatty acid composition in the lines used in this study, indicating that all the genes except Glyma.10G278000 may be the new genes associated with the respective traits.
Collapse
Affiliation(s)
- Krishnanand P Kulkarni
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gunvant Patil
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Babu Valliyodan
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Tri D Vuong
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - J Grover Shannon
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Henry T Nguyen
- b Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeong-Dong Lee
- a School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
41
|
Ma N, Ma C, Liu Y, Shahid MO, Wang C, Gao J. Petal senescence: a hormone view. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:719-732. [PMID: 29425359 DOI: 10.1093/jxb/ery009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Indexed: 05/20/2023]
Abstract
Flowers are highly complex organs that have evolved to enhance the reproductive success of angiosperms. As a key component of flowers, petals play a vital role in attracting pollinators and ensuring successful pollination. Having fulfilled this function, petals senesce through a process that involves many physiological and biochemical changes that also occur during leaf senescence. However, petal senescence is distinct, due to the abundance of secondary metabolites in petals and the fact that petal senescence is irreversible. Various phytohormones are involved in regulating petal senescence, and are thought to act both synergistically and antagonistically. In this regard, there appears to be developmental point during which such regulatory signals are sensed and senescence is initiated. Here, we review current understanding of petal senescence, and discuss associated regulatory mechanisms involving hormone interactions and epigenetic regulation.
Collapse
Affiliation(s)
- Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Yang Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Muhammad Owais Shahid
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
42
|
Qiao L, Zhang W, Li X, Zhang L, Zhang X, Li X, Guo H, Ren Y, Zheng J, Chang Z. Characterization and Expression Patterns of Auxin Response Factors in Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1395. [PMID: 30283490 PMCID: PMC6157421 DOI: 10.3389/fpls.2018.01395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 09/03/2018] [Indexed: 05/22/2023]
Abstract
Auxin response factors (ARFs) are important transcription factors involved in both the auxin signaling pathway and the regulatory development of various plant organs. In this study, 23 TaARF members encoded by a total of 68 homeoalleles were isolated from 18 wheat chromosomes (excluding chromosome 4). The TaARFs, including their conserved domains, exon/intron structures, related microRNAs, and alternative splicing (AS) variants, were then characterized. Phylogenetic analysis revealed that members of the TaARF family share close homology with ARFs in other grass species. qRT-PCR analyses revealed that 20 TaARF members were expressed in different organs and tissues and that the expression of some members significantly differed in the roots, stems, and leaves of wheat seedlings in response to exogenous auxin treatment. Moreover, protein network analyses and co-expression results showed that TaTIR1-TaARF15/18/19-TaIAA13 may interact at both the protein and genetic levels. The results of subsequent evolutionary analyses showed that three transcripts of TaARF15 in the A subgenome of wheat exhibited high evolutionary rate and underwent positive selection. Transgenic analyses indicated that TaARF15-A.1 promoted the growth of roots and leaves of Arabidopsis thaliana and was upregulated in the overexpression plants after auxin treatment. Our results will provide reference information for subsequent research and utilization of the TaARF gene family.
Collapse
Affiliation(s)
- Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenping Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Li
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated with the Capital Medical University, Beijing, China
| | - Lei Zhang
- Department of Plant Protection, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaojun Zhang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Xin Li
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Huijuan Guo
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Yuan Ren
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Jun Zheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| | - Zhijian Chang
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau of the Ministry of Agriculture, Institute of Crop Science, Shanxi Academy of Agricultural Sciences, Taiyuan, China
- *Correspondence: Jun Zheng, Zhijian Chang,
| |
Collapse
|
43
|
Sundaresan S, Philosoph-Hadas S, Ma C, Jiang CZ, Riov J, Mugasimangalam R, Kochanek B, Salim S, Reid MS, Meir S. The Tomato Hybrid Proline-rich Protein regulates the abscission zone competence to respond to ethylene signals. HORTICULTURE RESEARCH 2018; 5:28. [PMID: 29872533 PMCID: PMC5981600 DOI: 10.1038/s41438-018-0033-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/04/2023]
Abstract
The Tomato Hybrid Proline-rich Protein (THyPRP) gene was specifically expressed in the tomato (Solanum lycopersicum) flower abscission zone (FAZ), and its stable antisense silencing under the control of an abscission zone (AZ)-specific promoter, Tomato Abscission Polygalacturonase4, significantly inhibited tomato pedicel abscission following flower removal. For understanding the THyPRP role in regulating pedicel abscission, a transcriptomic analysis of the FAZ of THyPRP-silenced plants was performed, using a newly developed AZ-specific tomato microarray chip. Decreased expression of THyPRP in the silenced plants was already observed before abscission induction, resulting in FAZ-specific altered gene expression of transcription factors, epigenetic modifiers, post-translational regulators, and transporters. Our data demonstrate that the effect of THyPRP silencing on pedicel abscission was not mediated by its effect on auxin balance, but by decreased ethylene biosynthesis and response. Additionally, THyPRP silencing revealed new players, which were demonstrated for the first time to be involved in regulating pedicel abscission processes. These include: gibberellin perception, Ca2+-Calmodulin signaling, Serpins and Small Ubiquitin-related Modifier proteins involved in post-translational modifications, Synthaxin and SNARE-like proteins, which participate in exocytosis, a process necessary for cell separation. These changes, occurring in the silenced plants early after flower removal, inhibited and/or delayed the acquisition of the competence of the FAZ cells to respond to ethylene signaling. Our results suggest that THyPRP acts as a master regulator of flower abscission in tomato, predominantly by playing a role in the regulation of the FAZ cell competence to respond to ethylene signals.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Present Address: Department of Nano Science and Technology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Chao Ma
- Department of Plant Sciences, University of California, Davis, CA USA
- Present Address: Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, CA USA
- Crops Pathology & Genetic Research Unit, USDA-ARS, Davis, CA USA
| | - Joseph Riov
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. Ltd, Bangalore, India
| | - Betina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| | - Michael S. Reid
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Rishon LeZiyon, Israel
| |
Collapse
|
44
|
SlPIN1 regulates auxin efflux to affect flower abscission process. Sci Rep 2017; 7:14919. [PMID: 29097804 PMCID: PMC5668252 DOI: 10.1038/s41598-017-15072-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/19/2017] [Indexed: 11/11/2022] Open
Abstract
Solanum lycopersicum PIN-FORMED1 (SlPIN1), a major auxin efflux facilitator, contributes to the establishment of auxin maxima during organ initiation and development in tomato. However, the functions of SlPIN1 during organ abscission remain unclear. In our study, SlPIN1 expression decreased immediately after flower removal and increased following IAA treatment, indicating a high sensitivity to auxin depletion. 1-MCP (an ethylene inhibitor) delayed abscission and down-regulated SlPIN1, indicating that ethylene may positively regulate SlPIN1 and that low expression levels of SlPIN1 may delay abscission. The SlPIN1 protein levels were not consistent with the expression pattern, implying that in addition to transcription, protein degradation also affects SlPIN1 levels during abscission. The phosphorylation of SlPIN1 at Ser418, which significantly declined during abscission, was found to play roles in SlPIN1 localization and auxin transport. We also identified the interaction proteins of SlPIN1, which were involved in phosphorylation and ubiquitylation. Therefore, complex mechanisms mediate SlPIN1 auxin transport capability during abscission. The silencing of SlPIN1 expression accelerated abscission by increasing auxin accumulation in the ovary and decreasing the auxin content in the abscission zone (AZ), indicating that SlPIN1 plays a major role in mediating auxin source-sink transport and the establishment and maintenance of auxin maxima in the AZ.
Collapse
|
45
|
Su Y, Luo W, Chen X, Liu H, Hu Y, Lin W, Xiao L. Auxin Extraction and Purification Based on Recombinant Aux/IAA Proteins. Biol Proced Online 2017; 19:1. [PMID: 28100961 PMCID: PMC5237334 DOI: 10.1186/s12575-016-0050-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones. RESULTS Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli. CONCLUSION This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
Collapse
Affiliation(s)
- Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiaofei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Huizhen Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yueqing Hu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
46
|
Tranbarger TJ, Tucker ML, Roberts JA, Meir S. Editorial: Plant Organ Abscission: From Models to Crops. FRONTIERS IN PLANT SCIENCE 2017; 8:196. [PMID: 28261249 PMCID: PMC5306310 DOI: 10.3389/fpls.2017.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 05/11/2023]
Affiliation(s)
- Timothy J. Tranbarger
- UMR DIADE, Institut de Recherche pour le DéveloppementMontpellier, France
- *Correspondence: Timothy J. Tranbarger
| | - Mark L. Tucker
- Soybean Genomics and Improvement Lab, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Jeremy A. Roberts
- Division of Plant Sciences, School of Biosciences, University of NottinghamNottingham, UK
| | - Shimon Meir
- Deptartment of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| |
Collapse
|
47
|
Patterson SE, Bolivar-Medina JL, Falbel TG, Hedtcke JL, Nevarez-McBride D, Maule AF, Zalapa JE. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops? FRONTIERS IN PLANT SCIENCE 2016; 6:1268. [PMID: 26858730 PMCID: PMC4726918 DOI: 10.3389/fpls.2015.01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/28/2015] [Indexed: 05/24/2023]
Abstract
As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.
Collapse
Affiliation(s)
- Sara E. Patterson
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | - Jenny L. Bolivar-Medina
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research ServiceMadison, WI, USA
| | - Tanya G. Falbel
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | | | | | - Andrew F. Maule
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
| | - Juan E. Zalapa
- Department of Horticulture, University of Wisconsin–MadisonMadison, WI, USA
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research ServiceMadison, WI, USA
| |
Collapse
|
48
|
Couzigou JM, Magne K, Mondy S, Cosson V, Clements J, Ratet P. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops. THE NEW PHYTOLOGIST 2016; 209:228-40. [PMID: 26390061 DOI: 10.1111/nph.13634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/04/2015] [Indexed: 05/05/2023]
Abstract
Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Laboratoire de Recherche en Sciences Végétales, UMR5546, Université de Toulouse, CNRS, 31326, Castanet Tolosan, France
| | - Kevin Magne
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Samuel Mondy
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | - Viviane Cosson
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Diderot, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
| |
Collapse
|
49
|
Gao Y, Liu C, Li X, Xu H, Liang Y, Ma N, Fei Z, Gao J, Jiang CZ, Ma C. Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose. FRONTIERS IN PLANT SCIENCE 2016; 7:1375. [PMID: 27695465 PMCID: PMC5023668 DOI: 10.3389/fpls.2016.01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/29/2016] [Indexed: 05/18/2023]
Abstract
Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission.
Collapse
Affiliation(s)
- Yuerong Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Chun Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Xiaodong Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Haiqian Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Yue Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture–Agricultural Research ServiceIthaca, NY, USA
- Boyce Thompson InstituteIthaca, NY, USA
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research ServiceDavis, CA, USA
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
- *Correspondence: Chao Ma, Cai-Zhong Jiang,
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural UniversityBeijing, China
- *Correspondence: Chao Ma, Cai-Zhong Jiang,
| |
Collapse
|
50
|
Sundaresan S, Philosoph-Hadas S, Riov J, Mugasimangalam R, Kuravadi NA, Kochanek B, Salim S, Tucker ML, Meir S. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission. FRONTIERS IN PLANT SCIENCE 2015; 6:1258. [PMID: 26834766 PMCID: PMC4712312 DOI: 10.3389/fpls.2015.01258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/24/2015] [Indexed: 05/19/2023]
Abstract
Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Joseph Riov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Nagesh A. Kuravadi
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Bettina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- *Correspondence: Shimon Meir
| |
Collapse
|