1
|
Wu YY, Wang LL, Lin YL, Li X, Liu XF, Xu ZH, Fu BL, Wang WQ, Allan AC, Tu MY, Yin XR. AcHZP45 is a repressor of chlorophyll biosynthesis and activator of chlorophyll degradation in kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:204-218. [PMID: 37712824 DOI: 10.1093/jxb/erad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.
Collapse
Affiliation(s)
- Ying-Ying Wu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ling-Li Wang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Yi-Lai Lin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Fen Liu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hong Xu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Bei-Ling Fu
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Qiu Wang
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mei-Yan Tu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xue-Ren Yin
- Horticulture Department, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J. Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. PLANT MOLECULAR BIOLOGY 2017; 93:579-592. [PMID: 28108964 DOI: 10.1007/s11103-017-0583-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/09/2017] [Indexed: 05/08/2023]
Abstract
We previously described a Brassica napus chlorophyll-deficient mutant (ygl) with yellow-green seedling leaves and mapped the related gene, BnaC.YGL, to a 0.35 cM region. However, the molecular mechanisms involved in this chlorophyll defect are still unknown. In this study, the BnaC07.HO1 gene (equivalent to BnaC.YGL) was isolated by the candidate gene approach, and its function was confirmed by genetic complementation. Comparative sequencing analysis suggested that BnaC07.HO1 was lost in the mutant, while a long noncoding-RNA was inserted into the promoter of the homologous gene BnaA07.HO1. This insert was widely present in B. napus cultivars and down-regulated BnaA07.HO1 expression. BnaC07.HO1 was highly expressed in the seedling leaves and encoded heme oxygenase 1, which was localized in the chloroplast. Biochemical analysis showed that BnaC07.HO1 can catalyze heme conversion to form biliverdin IXα. RNA-seq analysis revealed that the loss of BnaC07.HO1 impaired tetrapyrrole metabolism, especially chlorophyll biosynthesis. According, the levels of chlorophyll intermediates were reduced in the ygl mutant. In addition, gene expression in multiple pathways was affected in ygl. These findings provide molecular evidences for the basis of the yellow-green leaf phenotype and further insights into the crucial role of HO1 in B. napus.
Collapse
Affiliation(s)
- Lixia Zhu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonghui Yang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops Oil Crops Research the Chinese Institute of Academy of Agricultural Sciences,, Ministry of Agriculture, Wuhan, 430062, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Liu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, Chen Y, Ma W, Bi J, Zhang X, Guo X, Wang J, Lei C, Wu F, Lin Q, Liu Y, Liu L, Jiang L. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. PLANT CELL REPORTS 2013; 32:1855-67. [PMID: 24043333 DOI: 10.1007/s00299-013-1498-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 05/19/2023]
Abstract
An insert mutation of YELLOW-GREEN LEAF2 , encoding Heme Oxygenase 1 , results in significant reduction of its transcript levels, and therefore impairs chlorophyll biosynthesis in rice. Heme oxygenase (HO) in higher plants catalyzes the degradation of heme to synthesize phytochrome precursor and its roles conferring the photoperiodic control of flowering in rice have been revealed. However, its involvement in regulating rice chlorophyll (Chl) synthesis is not fully explored. In this study, we isolated a rice mutant named yellow-green leaf 2 (ygl2) from a (60)Co-irradiated population. Normal grown ygl2 seedlings showed yellow-green leaves with reduced contents of Chl and tetrapyrrole intermediates whereas an increase of Chl a/b ratio. Ultrastructural analyses demonstrated grana were poorly stacked in ygl2 mutant, resulting in underdevelopment of chloroplasts. The ygl2 locus was mapped to chromosome 6 and isolated via map-based cloning. Sequence analysis indicated that it encodes the rice HO1 and its identity was verified by transgenic complementation test and RNA interference. A 7-Kb insertion was found in the first exon of YGL2/HO1, resulting in significant reduction of YGL2 expressions in the ygl2 mutant. YGL2 was constitutively expressed in a variety of rice tissues with the highest levels in leaves and regulated by temperature. In addition, we found expression levels of some genes associated with Chl biosynthesis and photosynthesis were concurrently altered in ygl2 mutant. These results provide direct evidence that YGL2 has a vital function in rice Chl biosynthesis.
Collapse
Affiliation(s)
- Hong Chen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Kang Z, Li G, Huang J, Niu X, Zou H, Zang G, Wenwen Y, Wang G. Photosynthetic and physiological analysis of the rice high-chlorophyll mutant (Gc). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:81-7. [PMID: 22922107 DOI: 10.1016/j.plaphy.2012.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 05/26/2023]
Abstract
Chlorophyll (Chl) molecules are essential for harvesting light energy in photosynthesis. A rice high-chlorophyll mutant (Gc) with significantly increased Chl b was identified previously in Zhenshan 97B (Oryza sativa indica). However, the mechanism underlying this higher Chl b content and its effects on photosynthetic efficiency are still unclear. Immunoblot and blue native polyacrylamide gel electrophoresis (BN-PAGE) with a second dimension electrophoresis followed by the matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) analysis showed that a few core proteins of photosystem I (PSI) and photosystem II (PSII), and light-harvesting complex II (LHCII) proteins were overexpressed in the mutant plants. Remarkable differences in chloroplast ultrastructure were observed between the wild-type and mutant plants, with the latter having more highly stacked and larger grana. Chl florescence analysis demonstrated that Gc had markedly increased quantum efficiency of photosystem II (ΦPSII), photochemical quenching (qP), non-photochemical quenching (qN) and electron transport rate (ETR). This morphological and physiological adaptation might confer a higher photosynthetic capacity in Gc than the wild-type.
Collapse
Affiliation(s)
- Zhenhui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. PLANT PHYSIOLOGY 2007; 145:29-40. [PMID: 17535821 PMCID: PMC1976586 DOI: 10.1104/pp.107.100321] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) synthase catalyzes esterification of chlorophyllide to complete the last step of Chl biosynthesis. Although the Chl synthases and the corresponding genes from various organisms have been well characterized, Chl synthase mutants have not yet been reported in higher plants. In this study, a rice (Oryza Sativa) Chl-deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5 and isolated by map-based cloning. Sequence analysis revealed that it encodes the Chl synthase and its identity was verified by transgenic complementation. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. YGL1 is constitutively expressed in all tissues, and its expression is not significantly affected in the ygl1 mutant. Interestingly, the mRNA expression of the cab1R gene encoding the Chl a/b-binding protein was severely suppressed in the ygl1 mutant. Moreover, the expression of some nuclear genes associated with Chl biosynthesis or chloroplast development was also affected in ygl1 seedlings. These results indicate that the expression of nuclear genes encoding various chloroplast proteins might be feedback regulated by the level of Chl or Chl precursors.
Collapse
Affiliation(s)
- Ziming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chai MF, Chen QJ, An R, Chen YM, Chen J, Wang XC. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. PLANT MOLECULAR BIOLOGY 2005; 59:553-64. [PMID: 16244906 DOI: 10.1007/s11103-005-6802-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 04/29/2005] [Indexed: 05/05/2023]
Abstract
As one of terminal electron acceptors in photosynthetic electron transport chain, NADP receives electron and H(+) to synthesize NADPH, an important reducing energy in chlorophyll synthesis and Calvin cycle. NAD kinase (NADK), the catalyzing enzyme for the de novo synthesis of NADP from substrates NAD and ATP, may play an important role in the synthesis of NADPH. NADK activity has been observed in different sub-cellular fractions of mitochondria, chloroplast, and cytoplasm. Recently, two distinct NADK isoforms (NADK1 and NADK2) have been identified in Arabidopsis. However, the physiological roles of NADKs remain unclear. In present study, we investigated the physiological role of Arabidiposis NADK2. Sub-cellular localization of the NADK2-GFP fusion protein indicated that the NADK2 protein was localized in the chloroplast. The NADK2 knock out mutant (nadk2) showed obvious growth inhibition and smaller rosette leaves with a pale yellow color. Parallel to the reduced chlorophyll content, the expression levels of two POR genes, encoding key enzymes in chlorophyll synthesis, were down regulated in the nadk2 plants. The nadk2 plants also displayed hypersensitivity to environmental stresses provoking oxidative stress, such as UVB, drought, heat shock and salinity. These results suggest that NADK2 may be a chloroplast NAD kinase and play a vital role in chlorophyll synthesis and chloroplast protection against oxidative damage.
Collapse
Affiliation(s)
- Mao-Feng Chai
- National Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100094 Beijing, China
| | | | | | | | | | | |
Collapse
|