1
|
Hao G, Zhou L, Liu H, Kachroo P, Hunt AG. Revisiting CPSF30-mediated alternative polyadenylation in Arabidopsis thaliana. PLoS One 2025; 20:e0319180. [PMID: 39992955 PMCID: PMC11849871 DOI: 10.1371/journal.pone.0319180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative polyadenylation (APA) is an important contributor to the regulation of gene expression in plants. One subunit of the complex that cleaves and polyadenylates mRNAs in the nucleus, CPSF30 (for the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor), has been implicated in a wide-ranging network of regulatory events. CPSF30 plays roles in root development, flowering time, and response to biotic and abiotic stresses. CPSF30 also is a conduit that links cellular signaling and RNA modification with alternative RNA processing events and transcriptional dynamics. While much is known about CPSF30 and its roles in plants, questions remain regarding the connections between CPSF30-mediated APA and the downstream events that lead to specific phenotypic outcomes. To address these, we conducted a detailed analysis of poly(A) site usage in the CPSF30 mutant. Our results corroborate earlier reports that link CPSF30 with a distinctive cis element (AAUAAA) that is present 10-30 nts upstream of some, but not all, plant pre-mRNAs. Interestingly, our results reveal a distinctive shift in poly(A) site in mutants deficient in CPSF30, resulting in cleavage and polyadenylation at the location of motifs similar to AAUAAA. Importantly, CPSF30-associated APA had at best a small impact on mRNA functionality. These results necessitate the formulation of new hypotheses for mechanisms by which CPSF30-mediated APA influences physiological processes.
Collapse
Affiliation(s)
- Guijie Hao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lichun Zhou
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
2
|
Feng Q, Zhao L, Jiang S, Qiu Y, Zhai T, Yu S, Yang W, Zhang S. The C2H2 family protein ZAT17 engages in the cadmium stress response by interacting with PRL1 in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133528. [PMID: 38237437 DOI: 10.1016/j.jhazmat.2024.133528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Cadmium (Cd) is a heavy metal and a toxic substance. Soil Cd pollution has emerged as a significant environmental issue that jeopardizes both the safety of agricultural products and human health. PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) has been identified as a crucial factor in Cd stress and a series of defence mechanisms. However, the mechanism through which PRL1 mediates its downstream signalling has remained poorly understood. Here, we discovered a prl1-2 suppressor (sup8) for prl1-2 that complemented the defective development phenotype of prl1-2 under Cd stress. Gene cloning revealed a mutation in the C2H2 transcription factor ZAT17 as the basis for the sup8 phenotype. Genetic and biochemical studies indicated that ZAT17 acts as a negative regulator of Cd tolerance. Transcriptome analysis revealed that ZAT17 influences the alternative splicing (AS) process of multiple Cd-responsive genes by interacting with members of the MAC splicing complex, including PRL1 and CDC5. In conclusion, the identification of the novel gene ZAT17 enriches the understanding of the Cd stress response pathway and provides a valuable candidate locus for breeding Cd-resistant plant varieties.
Collapse
Affiliation(s)
- Qiuling Feng
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Luming Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaolong Jiang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanxin Qiu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shaowei Yu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
3
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Liao HS, Chen YJ, Hsieh WY, Li YC, Hsieh MH. Arabidopsis ACT DOMAIN REPEAT9 represses glucose signaling pathways. PLANT PHYSIOLOGY 2023; 192:1532-1547. [PMID: 36843191 PMCID: PMC10231364 DOI: 10.1093/plphys/kiad127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
Nutrient sensing and signaling are critical for plants to coordinate growth and development in response to nutrient availability. Plant ACT DOMAIN REPEAT (ACR) proteins have been proposed to serve as nutrient sensors, but their functions remain largely unknown. Here, we showed that Arabidopsis (Arabidopsis thaliana) ACR9 might function as a repressor in glucose (Glc) signaling pathways. ACR9 was highly expressed in the leaves, and its expression was downregulated by sugars. Interestingly, the acr9-1 and acr9-2 T-DNA insertion mutants were hypersensitive to Glc during seedling growth, development, and anthocyanin accumulation. Nitrogen deficiency increased the mutants' sensitivity to Glc. The expression of sugar-responsive genes was also significantly enhanced in the acr9 mutants. By contrast, the 35S:ACR9 and 35S:ACR9-GFP overexpression (OE) lines were insensitive to Glc during early seedling development. The Glc signaling pathway is known to interact with the plant hormone abscisic acid (ABA). Notably, the acr9 mutants were also hypersensitive to ABA during early seedling development. The Glc sensor HEXOKINASE1 (HXK1) and the energy sensor SUCROSE NON-FERMENTING1 (SNF1)-RELATED PROTEIN KINASE1 (SnRK1) are key components of the Glc signaling pathways. The acr9-1/hxk1-3 and acr9-1/snrk1 double mutants were no longer hypersensitive to Glc, indicating that functional HXK1 and SnRK1 were required for the acr9-1 mutant to be hypersensitive to Glc. Together, these results suggest that ACR9 is a repressor of the Glc signaling pathway, which may act independently or upstream of the HXK1-SnRK1 signaling module.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Jhu Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chiou Li
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
5
|
MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21197095. [PMID: 32993050 PMCID: PMC7584024 DOI: 10.3390/ijms21197095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Sugars, which are important signaling molecules, regulate diverse biological processes in plants. However, the convergent regulatory mechanisms governing these physiological activities have not been fully elucidated. MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity, also regulates floral transition, cell cycle control, and other biological processes. However, there was no evidence of whether this protein was involved in sugar responses. In this study, we found that the loss-of-function mutant mos1-6 (mos1) was hypersensitive to sugar and was characterized by defective germination and shortened roots when grown on high-sugar medium. The expression of MOS1 was enhanced by sucrose. Hexokinase 1, an important gene involved in sugar signaling, was upregulated in the mos1 mutant compared to wild-type Col-0 in response to sugar. Furthermore, the mos1 mutant accumulated more anthocyanin than did wild-type Col-0 when grown on high-sugar concentration medium or under high light. MOS1 was found to regulate the expression of flavonoid and anthocyanin biosynthetic genes in response to exogenous sucrose and high-light stress but with different underlying mechanisms, showing multiple functions in addition to immunity regulation in plant development. Our results suggest that the immune regulator MOS1 serves as a coordinator in the regulatory network, governing immunity and other physiological processes.
Collapse
|
6
|
Olatunji D, Kelley DR. A role for Arabidopsis myosins in sugar-induced hypocotyl elongation. MICROPUBLICATION BIOLOGY 2020; 2020:10.17912/micropub.biology.000276. [PMID: 32666043 PMCID: PMC7351584 DOI: 10.17912/micropub.biology.000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Yu J, Lu W, Ge T, Huang R, Chen B, Ye M, Bai Y, Shi G, Songyang Z, Ma W, Huang J. Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells 2019; 37:743-753. [PMID: 30801858 DOI: 10.1002/stem.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
The scaffold protein Symplekin (Sympk) is involved in cytoplasmic RNA polyadenylation, transcriptional modulation, and the regulation of epithelial differentiation and proliferation via tight junctions. It is highly expressed in embryonic stem cells (ESCs), in which its role remains unknown. In this study, we found Sympk overexpression in mouse ESCs significantly increased colony formation, and Sympk deletion via CRISPR/Cas9 decreased colony formation. Sympk promoted ESC growth and its overexpression sustained ESC pluripotency, as assessed by teratoma and chimeric mouse formation. Genomic stability was preserved in these cells after long-term passage. The domain of unknown function 3453 (DUF3453) in Sympk was required for its interaction with the key pluripotent factor Oct4, and its depletion led to impaired colony formation. Sympk activated proliferation-related genes and suppressed differentiation-related genes. Our results indicate that Sympk interacts with Oct4 to promote self-renewal and pluripotency in ESCs and preserves genome integrity; accordingly, it has potential value for stem cell therapies. Stem Cells 2019;37:743-753.
Collapse
Affiliation(s)
- Jianping Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Rui Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Yaofu Bai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat Commun 2018; 9:1522. [PMID: 29670153 PMCID: PMC5906681 DOI: 10.1038/s41467-018-03884-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Sugars function as signal molecules to regulate growth, development, and gene expression in plants, yeasts, and animals. A coordination of sugar availability with phytohormone signals is crucial for plant growth and development. The molecular link between sugar availability and hormone-dependent plant growth are largely unknown. Here we report that BRI1 and BAK1 are involved in sugar-responsive growth and development. Glucose influences the physical interactions and phosphorylations of BRI1 and BAK1 in a concentration-dependent manner. BRI1 and BAK1 physically interact with G proteins that are essential for mediating sugar signaling. Biochemical data show that BRI1 can phosphorylate G protein β subunit and γ subunits, and BAK1 can phosphorylate G protein γ subunits. Genetic analyses suggest that BRI1 and BAK1 function in a common pathway with G-protein subunits to regulate sugar responses. Thus, our findings reveal an important genetic and molecular mechanism by which BR receptors associate with G proteins to regulate sugar-responsive growth and development. G-proteins regulate sugar-responsive growth in plants. Here the authors show that brassinosteroid (BR) signaling is also involved in sugar responses and present evidence that the BR receptor BRI1 and its co-receptor BAK1 can phosphorylate G-protein subunits to regulate sugar signaling in Arabidopsis.
Collapse
|