1
|
Vasseur F, Baldrich P, Jiménez-Góngora T, Villar-Martin L, Weigel D, Rubio-Somoza I. miR472 Deficiency Enhances Arabidopsis thaliana Defense Without Reducing Seed Production. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:819-827. [PMID: 39321260 DOI: 10.1094/mpmi-02-24-0011-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
After having co-existed in plant genomes for at least 200 million years, the products of microRNA (miRNA) and nucleotide-binding leucine-rich repeat protein (NLR) genes formed a regulatory relationship in the common ancestor of modern gymnosperms and angiosperms. From then on, DNA polymorphisms occurring at miRNA target sequences within NLR transcripts must have been compensated by mutations in the corresponding mature miRNA sequence. The potential evolutionary advantage of such regulation remains largely unknown and might be related to two nonexclusive scenarios: (i) miRNA-dependent regulation of NLR levels might prevent defense mis-activation with negative effects on plant growth and reproduction or (ii) reduction of active miRNA levels in response to pathogen-derived molecules (pathogen-associated molecular patterns [PAMPs] and silencing suppressors) might rapidly release otherwise silent NLR transcripts for rapid translation and thereby enhance defense. Here, we used Arabidopsis thaliana plants deficient for miR472 function to study the impact of releasing its NLR targets on plant growth and reproduction and on defense against the fungal pathogen Plectosphaerella cucumerina. We show that miR472 regulation has a dual role, participating both in the tight regulation of plant defense and growth. MIM472 lines, with reduced active miR472, are more resistant to pathogens and, correlatively, have reduced relative growth compared with wild-type plants, although the end of their reproductive phase is delayed, exhibiting higher adult biomass and similar seed yield as the wild-type. Our study highlights how negative consequences of defense activation might be compensated by changes in phenology and that miR472 reduction is an integral part of plant defense responses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Francois Vasseur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Tamara Jiménez-Góngora
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Luis Villar-Martin
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ignacio Rubio-Somoza
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- Molecular Reprogramming and Evolution Laboratory, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08001, Spain
| |
Collapse
|
2
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
3
|
Fujita H, Yoshida S, Suzuki K, Toju H. Soil prokaryotic and fungal biome structures associated with crop disease status across the Japan Archipelago. mSphere 2024; 9:e0080323. [PMID: 38567970 PMCID: PMC11036807 DOI: 10.1128/msphere.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/24/2024] Open
Abstract
Archaea, bacteria, and fungi in the soil are increasingly recognized as determinants of agricultural productivity and sustainability. A crucial step for exploring soil microbiomes with important ecosystem functions is to perform statistical analyses on the potential relationship between microbiome structure and functions based on comparisons of hundreds or thousands of environmental samples collected across broad geographic ranges. In this study, we integrated agricultural field metadata with microbial community analyses by targeting 2,903 bulk soil samples collected along a latitudinal gradient from cool-temperate to subtropical regions in Japan (26.1-42.8 °N). The data involving 632 archaeal, 26,868 bacterial, and 4,889 fungal operational taxonomic units detected across the fields of 19 crop plant species allowed us to conduct statistical analyses (permutational analyses of variance, generalized linear mixed models, randomization analyses, and network analyses) on the relationship among edaphic factors, microbiome compositions, and crop disease prevalence. We then examined whether the diverse microbes form species sets varying in potential ecological impacts on crop plants. A network analysis suggested that the observed prokaryotes and fungi were classified into several species sets (network modules), which differed substantially in association with crop disease prevalence. Within the network of microbe-to-microbe coexistence, ecologically diverse microbes, such as an ammonium-oxidizing archaeon, an antibiotics-producing bacterium, and a potentially mycoparasitic fungus, were inferred to play key roles in shifts between crop-disease-promotive and crop-disease-suppressive states of soil microbiomes. The bird's-eye view of soil microbiome structure will provide a basis for designing and managing agroecosystems with high disease-suppressive functions.IMPORTANCEUnderstanding how microbiome structure and functions are organized in soil ecosystems is one of the major challenges in both basic ecology and applied microbiology. Given the ongoing worldwide degradation of agroecosystems, building frameworks for exploring structural diversity and functional profiles of soil microbiomes is an essential task. Our study provides an overview of cropland microbiome states in light of potential crop-disease-suppressive functions. The large data set allowed us to explore highly functional species sets that may be stably managed in agroecosystems. Furthermore, an analysis of network architecture highlighted species that are potentially used to cause shifts from disease-prevalent states of agroecosystems to disease-suppressive states. By extending the approach of comparative analyses toward broader geographic ranges and diverse agricultural practices, agroecosystem with maximized biological functions will be further explored.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Shigenobu Yoshida
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kenta Suzuki
- Integrated Bioresource Information Division, BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
de Oliveira Cabral SK, de Freitas MB, Stadnik MJ, Kulcheski FR. Emerging roles of plant microRNAs during Colletotrichum spp. infection. PLANTA 2024; 259:48. [PMID: 38285194 DOI: 10.1007/s00425-023-04318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION This review provides valuable insights into plant molecular regulatory mechanisms during fungus attacks, highlighting potential miRNA candidates for future disease management. Plant defense responses to biotic stress involve intricate regulatory mechanisms, including post-transcriptional regulation of genes mediated by microRNAs (miRNAs). These small RNAs play a vital role in the plant's innate immune system, defending against viral, bacterial, and fungal attacks. Among the plant pathogenic fungi, Colletotrichum spp. are notorious for causing anthracnose, a devastating disease affecting economically important crops worldwide. Understanding the molecular machinery underlying the plant immune response to Colletotrichum spp. is crucial for developing tools to reduce production losses. In this comprehensive review, we examine the current understanding of miRNAs associated with plant defense against Colletotrichum spp. We summarize the modulation patterns of miRNAs and their respective target genes. Depending on the function of their targets, miRNAs can either contribute to host resistance or susceptibility. We explore the multifaceted roles of miRNAs during Colletotrichum infection, including their involvement in R-gene-dependent immune system responses, hormone-dependent defense mechanisms, secondary metabolic pathways, methylation regulation, and biosynthesis of other classes of small RNAs. Furthermore, we employ an integrative approach to correlate the identified miRNAs with various strategies and distinct phases of fungal infection. This study provides valuable insights into the current understanding of plant miRNAs and their regulatory mechanisms during fungus attacks.
Collapse
Affiliation(s)
- Sarah Kirchhofer de Oliveira Cabral
- Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mateus Brusco de Freitas
- Laboratory of Plant Pathology, Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Marciel João Stadnik
- Laboratory of Plant Pathology, Center of Agricultural Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Franceli Rodrigues Kulcheski
- Group of Plant Molecular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Post-Graduation Program in Cell and Developmental Biology, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
5
|
Tian Y, Liu Y, Uwaremwe C, Zhao X, Yue L, Zhou Q, Wang Y, Tran LSP, Li W, Chen G, Sha Y, Wang R. Characterization of three new plant growth-promoting microbes and effects of the interkingdom interactions on plant growth and disease prevention. PLANT CELL REPORTS 2023; 42:1757-1776. [PMID: 37674059 DOI: 10.1007/s00299-023-03060-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
KEY MESSAGE The novel interkingdom PGPM consortia enhanced the ability of plant growth promotion and disease resistance, which would be beneficial to improve plant growth in sustainable agriculture through engineering microbiome. Plant growth-promoting microbes (PGPMs) play important roles in promoting plant growth and bio-controlling of pathogens. Much information reveals that the plant growth-promoting ability of individual PGPM affects plant growth. However, the effects of the PGPM consortia properties on plant growth remain largely unexplored. Here, we characterized three new PGPM strains including Rhodotorula graminis JJ10.1 (termed as J), Pseudomonas psychrotolerans YY7 (termed as Y) and P. chlororaphis T8 (termed as T), and assessed their effects in combination with Bacillus amyloliquefaciens FZB42 (termed as F) on plant growth promotion and disease prevention in Arabidopsis thaliana and tomato (Solanum lycopersicum) plants by investigating morphological changes, whole-genome sequencing and plant growth promoting (PGP) characterization. Results revealed that the three new strains R. graminis JJ10.1, P. psychrotolerans YY7 and P. chlororaphis T8 had the potential for being combined with B. amyloliquefaciens FZB42 to form interkingdom PGPM consortia. The combinations of R. graminis JJ10.1, B. amyloliquefaciens FZB42, and P. psychrotolerans YY7, i. e. JF and JYF, exhibited the strongest ability of synergetic biofilm production. Furthermore, the growth-promotion abilities of the consortia were significantly enhanced compared with those of individual strains under both inoculation and volatile organic compounds (VOCs) treatment. Importantly, the consortia showed stronger abilities of in planta disease prevention than individual strains. Findings of our study may provide future guidance for engineering the minimal microbiome communities to improve plant growth and/or disease resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Yuan Tian
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Liu
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Constantine Uwaremwe
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xia Zhao
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Yue
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qin Zhou
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Jilin Da'an Agro-Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, People's Republic of China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin, 730900, People's Republic of China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Ruoyu Wang
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Uddin MJ, Huang X, Lu X, Li S. Increased Conidia Production and Germination In Vitro Correlate with Virulence Enhancement in Fusarium oxysporum f. sp. cucumerinum. J Fungi (Basel) 2023; 9:847. [PMID: 37623618 PMCID: PMC10455488 DOI: 10.3390/jof9080847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Cucumber plants commonly suffer from Fusarium wilt disease, which is caused by Fusarium oxysporum f. sp. cucumerinum (Foc). Although resistant cultivars assist with Fusarium wilt disease control, enhancement of the virulence of Foc has been identified after monoculture of wilt-resistant cultivars. To investigate the biological characteristics that contribute to the virulence evolution of Foc, a wildtype strain foc-3b (WT) and its virulence-enhanced variant Ra-4 (InVir) were compared in terms of their growth, reproduction, stress tolerance, and colonization in cucumber plants. The InVir strain showed similar culture characteristics on PDA media to the WT strain but produced significantly more conidia (>two fold), with a distinctly higher germination rate (>four fold) than the WT strain. The colony diameter of the InVir strain increased faster than the WT strain on PDA plates; however, the mycelia dry weight of the InVir was significantly lower (<70%) than that of the WT harvested from PDB. The InVir strain exhibited a significant increase in tolerance to osmolality (1 M NaCl, 1 M KCl, etc.). The GFP-labeled InVir strain propagated in the cucumber vascular faster than the WT strain. These results suggest that increased conidia production and germination in vitro may correlate with virulence enhancement in Fusarium oxysporum f. sp. cucumerinum. This study will provide an insight into its virulence evolution and help us understand the mechanisms underlying the evolutionary biology of F. oxysporum.
Collapse
Affiliation(s)
- Md. Jamal Uddin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
- Crops Division, Bangladesh Agricultural Research Council (BARC), Dhaka 1215, Bangladesh
| | - Xiaoqing Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| | - Xiaohong Lu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| | - Shidong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.J.U.); (X.H.)
| |
Collapse
|
7
|
You Y, Astudillo-Estévez I, Essenstam B, Qin S, van Kan JAL. Leaf resistance to Botrytis cinerea in wild tomato Solanum habrochaites depends on inoculum composition. FRONTIERS IN PLANT SCIENCE 2023; 14:1156804. [PMID: 37600190 PMCID: PMC10433766 DOI: 10.3389/fpls.2023.1156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023]
Abstract
Tomato (Solanum lycopersicum) cv. Moneymaker (MM) is very susceptible to the grey mould Botrytis cinerea, while quantitative resistance in the wild species Solanum habrochaites (accession LYC4) has been reported. In leaf inoculation assays, an effect of nutrient and spore concentration on disease incidence was observed. Resistance in LYC4 leaves was manifested as a high incidence of tiny black, dispersed spots which did not expand ("incompatible interaction") and was pronounced when B. cinerea was inoculated at high spore density (1000 spores/µL) in medium with 10 mM sucrose and 10 mM phosphate buffer. Under the same condition, a high frequency of expanding lesions was observed on MM leaves ("compatible interaction"). Remarkably, inoculation of LYC4 with a high spore density in medium with higher concentrations of sucrose and/or phosphate as well as lower spore density (30 spores/µL) in medium with low sucrose and phosphate, all resulted in a higher percentage of expanding lesions. The lesion sizes at 3 days post inoculation differed markedly between all these inoculation conditions. This inoculation method provides a convenient tool to study mechanisms that determine the distinction between compatible and incompatible interactions between B. cinerea and a host plant.
Collapse
Affiliation(s)
- Yaohua You
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | | | - Bert Essenstam
- Wageningen University & Research, Unifarm, Wageningen, Netherlands
| | - Si Qin
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
8
|
Zhu J, Lolle S, Tang A, Guel B, Kvitko B, Cole B, Coaker G. Single-cell profiling of Arabidopsis leaves to Pseudomonas syringae infection. Cell Rep 2023; 42:112676. [PMID: 37342910 PMCID: PMC10528479 DOI: 10.1016/j.celrep.2023.112676] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Plant response to pathogen infection varies within a leaf, yet this heterogeneity is not well resolved. We expose Arabidopsis to Pseudomonas syringae or mock treatment and profile >11,000 individual cells using single-cell RNA sequencing. Integrative analysis of cell populations from both treatments identifies distinct pathogen-responsive cell clusters exhibiting transcriptional responses ranging from immunity to susceptibility. Pseudotime analyses through pathogen infection reveals a continuum of disease progression from an immune to a susceptible state. Confocal imaging of promoter-reporter lines for transcripts enriched in immune cell clusters shows expression surrounding substomatal cavities colonized or in close proximity to bacterial colonies, suggesting that cells within immune clusters represent sites of early pathogen invasion. Susceptibility clusters exhibit more general localization and are highly induced at later stages of infection. Overall, our work shows cellular heterogeneity within an infected leaf and provides insight into plant differential response to infection at a single-cell level.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Signe Lolle
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Andrea Tang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Bella Guel
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brian Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Cole
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Jia H, Zhang GX, Wu YF, Dai WW, Xu QB, Gan S, Ju XY, Feng ZZ, Li RP, Yuan B. Evaluation of negative effect of Naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis. CHEMOSPHERE 2023; 318:137909. [PMID: 36681195 DOI: 10.1016/j.chemosphere.2023.137909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Toxic substances in the environment disturb the adsorption of pollutants in plants but little is known about the underlying mechanisms of these processes. This study evaluated the PAH adsorption by Phragmites australis under NAs stress. Results showed that Naphthenic acids (NAs) significantly decreased the adsorption of PAHs and had higher selectivity for type and structure. P. australis root cell growth and mitosis were significantly affected by NAs, which was accompanied by serious disturbances in mitochondrial function. The physiological evaluation showed the NAs could increase Reactive Oxygen Species (ROS) accumulation by around 16-fold and cause damage to the root cell normal redox equilibrium. The levels of three key related antioxidants, PLA, CAT and POD, decreased significantly to 35-50% under NAs stress and were dependent upon NAs concentration. Furthermore, NAs could significantly change the concentration and species of root exudates of P. ausralis. Autotoxic substances, including alcohol and amines, increased by 28.63% and 23.96, respectively. Sixteen compounds were identified and assumed as potential biomarkers. Galactonic, glyceric, and octadecanoic acid had the general effect of activating PAH in soil. The global view of the metabolic pathway suggests that NAs influenced the citric acid cycle, fatty acid synthesis, amino acid metabolism and the phenylpropanoid pathway. Detection data results indicated that the energy products cause hypoxia and oxidative stress, which are the main processes under the NAs. Furthermore, verification of these processes was fulfilled through gene expression and biomarkers quantification. Our results provide novel metabolic insights into the mechanisms of PAHs adsorption by P. australis under NAs disturbance, suggesting that monitoring NAs in phytoremediation applications is necessary.
Collapse
Affiliation(s)
- Hui Jia
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guang-Xi Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Yi-Fan Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Quan-Bin Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shu Gan
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiu-Yun Ju
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Zhao-Zhong Feng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Rong-Peng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
10
|
Fei W, Liu Y. Biotrophic Fungal Pathogens: a Critical Overview. Appl Biochem Biotechnol 2023; 195:1-16. [PMID: 35951248 DOI: 10.1007/s12010-022-04087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/13/2023]
Abstract
Biotrophic fungi are one group of heterogeneous organisms and these fungi differ in their traits like mode of nutrition, types of reproduction, and dispersal systems. Generally, based on the nutritional mode, fungi are classified into three broad categories, viz. biotrophs, necrotrophs, and hemi-biotrophs. Biotrophs derive their nutrients and energy from living plant cells and survive within the interstitial space of the cells. Biotrophic fungi cause serious crop diseases but are highly challenging to investigate and develop a treatment strategy. Blumeria (Erysiphe) graminis, Uromyces fabae, Ustilago maydis, Cladosporium fulvum, Puccinia graminis, and Phytophthora infestans are some of the significant biotrophic fungi that affect mainly plants. One among the biotrophic fungus, Pneumocystis jirovecii (Taphrinomycotina subphylum of the Ascomycota) exclusively a human pathogen, can cause lung diseases such as "pneumocystis." Biotrophic fungus widely parasitizing Solanaceae family crops (Tomato and potato) has done massive damage to the crops and has led to economic impact worldwide. During infection and for nutrient absorption, biotrophs develops external appendages such as appressoria or haustoria. The hyphae or appressorium adheres to the plant cell wall and collapses the layers for their nutrient absorption. The pathogen also secretes effector molecules to escape from the plant defense mechanism. Later, plants activate their primary and secondary defense mechanisms; however, the pathogen induces virulence genes to escape the host immune responses. Obligate biotrophic fungi pathogenicity has not been fully understood at the molecular level because of the complex interaction, recognition, and signaling with the host. This review summarizes the mechanism of infection in the host, and immune response to emphasize the understanding of the biotrophic fungal biology and pathogenesis in crops. Thus, the detailed review will pave the way to design methods to overcome the resistance of biotrophic fungi and develop disease-free crops.
Collapse
Affiliation(s)
- Wang Fei
- Zhengzhou Yongfeng Bio-Fertilizer Co., Ltd, high-tech district, 6 Tsui Zhu Street, 863 Software Park, Building 9 1102, Henan Province, 450001, Zhengzhou City, China.
| | - Ye Liu
- Xiangtan Institute for Food and Drug Control, Xiangtan, China
| |
Collapse
|
11
|
Wilkinson SW, Hannan Parker A, Muench A, Wilson RS, Hooshmand K, Henderson MA, Moffat EK, Rocha PSCF, Hipperson H, Stassen JHM, López Sánchez A, Fomsgaard IS, Krokene P, Mageroy MH, Ton J. Long-lasting memory of jasmonic acid-dependent immunity requires DNA demethylation and ARGONAUTE1. NATURE PLANTS 2023; 9:81-95. [PMID: 36604579 DOI: 10.1038/s41477-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Stress can have long-lasting impacts on plants. Here we report the long-term effects of the stress hormone jasmonic acid (JA) on the defence phenotype, transcriptome and DNA methylome of Arabidopsis. Three weeks after transient JA signalling, 5-week-old plants retained induced resistance (IR) against herbivory but showed increased susceptibility to pathogens. Transcriptome analysis revealed long-term priming and/or upregulation of JA-dependent defence genes but repression of ethylene- and salicylic acid-dependent genes. Long-term JA-IR was associated with shifts in glucosinolate composition and required MYC2/3/4 transcription factors, RNA-directed DNA methylation, the DNA demethylase ROS1 and the small RNA (sRNA)-binding protein AGO1. Although methylome analysis did not reveal consistent changes in DNA methylation near MYC2/3/4-controlled genes, JA-treated plants were specifically enriched with hypomethylated ATREP2 transposable elements (TEs). Epigenomic characterization of mutants and transgenic lines revealed that ATREP2 TEs are regulated by RdDM and ROS1 and produce 21 nt sRNAs that bind to nuclear AGO1. Since ATREP2 TEs are enriched with sequences from IR-related defence genes, our results suggest that AGO1-associated sRNAs from hypomethylated ATREP2 TEs trans-regulate long-lasting memory of JA-dependent immunity.
Collapse
Affiliation(s)
- S W Wilkinson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK.
| | - A Hannan Parker
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - A Muench
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - R S Wilson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - K Hooshmand
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - M A Henderson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - E K Moffat
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - P S C F Rocha
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - H Hipperson
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - J H M Stassen
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - A López Sánchez
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK
| | - I S Fomsgaard
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - P Krokene
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - M H Mageroy
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - J Ton
- Plants, Photosynthesis and Soil, School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
12
|
Johnston-Monje D, Gutiérrez JP, Becerra Lopez-Lavalle LA. Stochastic Inoculum, Biotic Filtering and Species-Specific Seed Transmission Shape the Rare Microbiome of Plants. Life (Basel) 2022; 12:life12091372. [PMID: 36143410 PMCID: PMC9506401 DOI: 10.3390/life12091372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
A plant’s health and productivity is influenced by its associated microbes. Although the common/core microbiome is often thought to be the most influential, significant numbers of rare or uncommon microbes (e.g., specialized endosymbionts) may also play an important role in the health and productivity of certain plants in certain environments. To help identify rare/specialized bacteria and fungi in the most important angiosperm plants, we contrasted microbiomes of the seeds, spermospheres, shoots, roots and rhizospheres of Arabidopsis, Brachypodium, maize, wheat, sugarcane, rice, tomato, coffee, common bean, cassava, soybean, switchgrass, sunflower, Brachiaria, barley, sorghum and pea. Plants were grown inside sealed jars on sterile sand or farm soil. Seeds and spermospheres contained some uncommon bacteria and many fungi, suggesting at least some of the rare microbiome is vertically transmitted. About 95% and 86% of fungal and bacterial diversity inside plants was uncommon; however, judging by read abundance, uncommon fungal cells are about half of the mycobiome, while uncommon bacterial cells make up less than 11% of the microbiome. Uncommon-seed-transmitted microbiomes consisted mostly of Proteobacteria, Firmicutes, Bacteriodetes, Ascomycetes and Basidiomycetes, which most heavily colonized shoots, to a lesser extent roots, and least of all, rhizospheres. Soil served as a more diverse source of rare microbes than seeds, replacing or excluding the majority of the uncommon-seed-transmitted microbiome. With the rarest microbes, their colonization pattern could either be the result of stringent biotic filtering by most plants, or uneven/stochastic inoculum distribution in seeds or soil. Several strong plant–microbe associations were observed, such as seed transmission to shoots, roots and/or rhizospheres of Sarocladium zeae (maize), Penicillium (pea and Phaseolus), and Curvularia (sugarcane), while robust bacterial colonization from cassava field soil occurred with the cyanobacteria Leptolyngbya into Arabidopsis and Panicum roots, and Streptomyces into cassava roots. Some abundant microbes such as Sakaguchia in rice shoots or Vermispora in Arabidopsis roots appeared in no other samples, suggesting that they were infrequent, stochastically deposited propagules from either soil or seed (impossible to know based on the available data). Future experiments with culturing and cross-inoculation of these microbes between plants may help us better understand host preferences and their role in plant productivity, perhaps leading to their use in crop microbiome engineering and enhancement of agricultural production.
Collapse
Affiliation(s)
- David Johnston-Monje
- Max Planck Tandem Group in Plant Microbial Ecology, Universidad del Valle, Cali 76001, Colombia
- International Center for Tropical Agriculture (CIAT), Cali 763537, Colombia
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Correspondence: ; Tel.: +57-315-545-6227
| | | | | |
Collapse
|
13
|
Yu JC, Lu JZ, Cui XY, Guo L, Wang ZJ, Liu YD, Wang F, Qi MF, Liu YF, Li TL. Melatonin mediates reactive oxygen species homeostasis via SlCV to regulate leaf senescence in tomato plants. J Pineal Res 2022; 73:e12810. [PMID: 35620796 DOI: 10.1111/jpi.12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/08/2022] [Accepted: 05/21/2022] [Indexed: 11/28/2022]
Abstract
Melatonin (MT) functions in removing reactive oxygen species (ROS) and delaying plant senescence, thereby acting as an antioxidant; however, the molecular mechanism underlying the specific action of MT is unclear. Herein, we used the mutant plants carrying the MT decomposition gene melatonin 3-hydroxylase (M3H) in tomato to elucidate the specific mechanism of action of MT. SlM3H-OE accelerated senescence by decreasing the content of endogenous MT in plants. SlM3H is a senescence-related gene that positively regulates aging. MT inhibited the expression of the senescence-related gene SlCV to scavenge ROS, induced stable chloroplast structure, and delayed leaf senescence. Simultaneously, MT weakened the interaction between SlCV and SlPsbO/SlCAT3, reduced ROS production in photosystem II, and promoted ROS elimination. In conclusion, MT regulates ROS homeostasis and delays leaf aging in tomato plants through SlCV expression modulation.
Collapse
Affiliation(s)
- Jun-Chi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Jia-Zhi Lu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Xiao-Yu Cui
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Lei Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Zhi-Jun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Dong Liu
- Agricultural Department, Shihezi University, Shihezi, People's Republic of China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Ming-Fang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Yu-Feng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| | - Tian-Lai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, People's Republic of China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
14
|
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Interactions of fungi with non-isothiocyanate products of the plant glucosinolate pathway: A review on product formation, antifungal activity, mode of action and biotransformation. PHYTOCHEMISTRY 2022; 200:113245. [PMID: 35623473 DOI: 10.1016/j.phytochem.2022.113245] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 05/05/2023]
Abstract
The glucosinolate pathway, which is present in the order Brassicales, is one of the most researched defensive natural product biosynthesis pathways. Its core molecules, the glucosinolates are broken down upon pathogen challenge or tissue damage to yield an array of natural products that may help plants defend against the stressor. Though the most widely known glucosinolate decomposition products are the antimicrobial isothiocyanates, there is a wide range of other volatile and non-volatile natural products that arise from this biosynthetic pathway. This review summarizes our current knowledge on the interaction of these much less examined, non-isothiocyanate products with fungi. It deals with compounds including (1) glucosinolates and their biosynthesis precursors; (2) glucosinolate-derived nitriles (e.g. derivatives of 1H-indole-3-acetonitrile), thiocyanates, epithionitriles and oxazolidine-2-thiones; (3) putative isothiocyanate downstream products such as raphanusamic acid, 1H-indole-3-methanol (= indole-3-carbinol) and its oligomers, 1H-indol-3-ylmethanamine and ascorbigen; (4) 1H-indole-3-acetonitrile downstream products such as 1H-indole-3-carbaldehyde (indole-3-carboxaldehyde), 1H-indole-3-carboxylic acid and their derivatives; and (5) indole phytoalexins including brassinin, cyclobrassinin and brassilexin. Herein, a literature review on the following aspects is provided: their direct antifungal activity and the proposed mechanisms of antifungal action, increased biosynthesis after fungal challenge, as well as data on their biotransformation/detoxification by fungi, including but not limited to fungal myrosinase activity.
Collapse
Affiliation(s)
- Tamás Plaszkó
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032, Debrecen, Hungary.
| | - Zsolt Szűcs
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary; Healthcare Industry Institute, University of Debrecen, 4032, Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Sándor Gonda
- Department of Botany, Division of Pharmacognosy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| |
Collapse
|
15
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
16
|
López Sánchez A, Pascual-Pardo D, Furci L, Roberts MR, Ton J. Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:644999. [PMID: 33719325 PMCID: PMC7952753 DOI: 10.3389/fpls.2021.644999] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of Arabidopsis thaliana to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR.
Collapse
Affiliation(s)
- Ana López Sánchez
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ana López Sánchez,
| | - David Pascual-Pardo
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Leonardo Furci
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Jurriaan Ton
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- Jurriaan Ton,
| |
Collapse
|
17
|
García-Andrade J, González B, Gonzalez-Guzman M, Rodriguez PL, Vera P. The Role of ABA in Plant Immunity is Mediated through the PYR1 Receptor. Int J Mol Sci 2020; 21:ijms21165852. [PMID: 32824010 PMCID: PMC7461614 DOI: 10.3390/ijms21165852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/13/2023] Open
Abstract
ABA is involved in plant responses to a broad range of pathogens and exhibits complex antagonistic and synergistic relationships with salicylic acid (SA) and ethylene (ET) signaling pathways, respectively. However, the specific receptor of ABA that triggers the positive and negative responses of ABA during immune responses remains unknown. Through a reverse genetic analysis, we identified that PYR1, a member of the family of PYR/PYL/RCAR ABA receptors, is transcriptionally upregulated and specifically perceives ABA during biotic stress, initiating downstream signaling mediated by ABA-activated SnRK2 protein kinases. This exerts a damping effect on SA-mediated signaling, required for resistance to biotrophic pathogens, and simultaneously a positive control over the resistance to necrotrophic pathogens controlled by ET. We demonstrated that PYR1-mediated signaling exerted control on a priori established hormonal cross-talk between SA and ET, thereby redirecting defense outputs. Defects in ABA/PYR1 signaling activated SA biosynthesis and sensitized plants for immune priming by poising SA-responsive genes for enhanced expression. As a trade-off effect, pyr1-mediated activation of the SA pathway blunted ET perception, which is pivotal for the activation of resistance towards fungal necrotrophs. The specific perception of ABA by PYR1 represented a regulatory node, modulating different outcomes in disease resistance.
Collapse
Affiliation(s)
| | | | | | | | - Pablo Vera
- Correspondence: ; Tel.: +34-963877884; Fax: +34-963877859
| |
Collapse
|
18
|
Mageroy MH, Wilkinson SW, Tengs T, Cross H, Almvik M, Pétriacq P, Vivian-Smith A, Zhao T, Fossdal CG, Krokene P. Molecular underpinnings of methyl jasmonate-induced resistance in Norway spruce. PLANT, CELL & ENVIRONMENT 2020; 43:1827-1843. [PMID: 32323322 DOI: 10.1111/pce.13774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/15/2020] [Indexed: 05/13/2023]
Abstract
In response to various stimuli, plants acquire resistance against pests and/or pathogens. Such acquired or induced resistance allows plants to rapidly adapt to their environment. Spraying the bark of mature Norway spruce (Picea abies) trees with the phytohormone methyl jasmonate (MeJA) enhances resistance to tree-killing bark beetles and their associated phytopathogenic fungi. Analysis of spruce chemical defenses and beetle colonization success suggests that MeJA treatment both directly induces immune responses and primes inducible defenses for a faster and stronger response to subsequent beetle attack. We used metabolite and transcriptome profiling to explore the mechanisms underlying MeJA-induced resistance in Norway spruce. We demonstrated that MeJA treatment caused substantial changes in the bark transcriptional response to a triggering stress (mechanical wounding). Profiling of mRNA expression showed a suite of spruce inducible defenses are primed following MeJA treatment. Although monoterpenes and diterpene resin acids increased more rapidly after wounding in MeJA-treated than control bark, expression of their biosynthesis genes did not. We suggest that priming of inducible defenses is part of a complex mixture of defense responses that underpins the increased resistance against bark beetle colonization observed in Norway spruce. This study provides the most detailed insights yet into the mechanisms underlying induced resistance in a long-lived gymnosperm.
Collapse
Affiliation(s)
- Melissa H Mageroy
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Samuel W Wilkinson
- P3 Centre for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Torstein Tengs
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Hugh Cross
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Marit Almvik
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Pierre Pétriacq
- P3 Centre for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- UMR 1332 BFP, INRA, University of Bordeaux, MetaboHUB-Bordeaux, MetaboHUB, PHENOME-EMPHASIS, Villenave d'Ornon, France
| | - Adam Vivian-Smith
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Tao Zhao
- School of Science and Technology, Örebro University, Örebro, Sweden
| | - Carl Gunnar Fossdal
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Paal Krokene
- Molecular plant biology and Forest Genetics and biodiversity, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
19
|
Pastorczyk M, Kosaka A, Piślewska-Bednarek M, López G, Frerigmann H, Kułak K, Glawischnig E, Molina A, Takano Y, Bednarek P. The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. THE NEW PHYTOLOGIST 2020; 225:400-412. [PMID: 31411742 DOI: 10.1111/nph.16118] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/07/2019] [Indexed: 05/14/2023]
Abstract
Effective defense of Arabidopsis against filamentous pathogens requires two mechanisms, both of which involve biosynthesis of tryptophan (Trp)-derived metabolites. Extracellular resistance involves products of PEN2-dependent metabolism of indole glucosinolates (IGs). Restriction of further fungal growth requires PAD3-dependent camalexin and other, as yet uncharacterized, indolics. This study focuses on the function of CYP71A12 monooxygenase in pathogen-triggered Trp metabolism, including the biosynthesis of indole-3-carboxylic acid (ICA). Moreover, to investigate the contribution of CYP71A12 and its products to Arabidopsis immunity, we analyzed infection phenotypes of multiple mutant lines combining pen2 with pad3, cyp71A12, cyp71A13 or cyp82C2. Metabolite profiling of cyp71A12 lines revealed a reduction in ICA accumulation. Additionally, analysis of mutant plants showed that low amounts of ICA can form during an immune response by CYP71B6/AAO1-dependent metabolism of indole acetonitrile, but not via IG hydrolysis. Infection assays with Plectosphaerella cucumerina and Colletotrichum tropicale, two pathogens with different lifestyles, revealed cyp71A12-, cyp71A13- and cyp82C2-associated defects associated with Arabidopsis immunity. Our results indicate that CYP71A12, but not CYP71A13, is the major enzyme responsible for the accumulation of ICA in Arabidopsis in response to pathogen ingression. We also show that both enzymes are key players in the resistance of Arabidopsis against selected filamentous pathogens after they invade.
Collapse
Affiliation(s)
- Marta Pastorczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Ayumi Kosaka
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Henning Frerigmann
- Max Planck Institute for Plant Breeding Research and Cluster of Excellence on Plant Sciences (CEPLAS), Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Yoshitaka Takano
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
20
|
Proietti S, Falconieri GS, Bertini L, Baccelli I, Paccosi E, Belardo A, Timperio AM, Caruso C. GLYI4 Plays A Role in Methylglyoxal Detoxification and Jasmonate-Mediated Stress Responses in Arabidopsis thaliana. Biomolecules 2019; 9:biom9100635. [PMID: 31652571 PMCID: PMC6843518 DOI: 10.3390/biom9100635] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Plant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system. Recently, by a genome-wide association study performed in Arabidopsis, we identified GLYI4 as a novel player in the crosstalk between jasmonate (JA) and salicylic acid (SA) hormone pathways. Here, we investigated the impact of GLYI4 knock-down on MG scavenging and on JA pathway. In glyI4 mutant plants, we observed a general stress phenotype, characterized by compromised MG scavenging, accumulation of reactive oxygen species (ROS), stomatal closure, and reduced fitness. Accumulation of MG in glyI4 plants led to lower efficiency of the JA pathway, as highlighted by the increased susceptibility of the plants to the pathogenic fungus Plectospherella cucumerina. Moreover, MG accumulation brought about a localization of GLYI4 to the plasma membrane, while MeJA stimulus induced a translocation of the protein into the cytoplasmic compartment. Collectively, the results are consistent with the hypothesis that GLYI4 is a hub in the MG and JA pathways.
Collapse
Affiliation(s)
- Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | | | - Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Ivan Baccelli
- Institute for Sustainable Plant Protection, National Research Council of Italy, Sesto Fiorentino, 50019 Florence, Italy.
| | - Elena Paccosi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Antonio Belardo
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
21
|
Gullino ML, Gilardi G, Garibaldi A. Ready-to-Eat Salad Crops: A Plant Pathogen's Heaven. PLANT DISEASE 2019; 103:2153-2170. [PMID: 31343378 DOI: 10.1094/pdis-03-19-0472-fe] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The ready-to-eat salad sector, also called fresh-cut or bagged salads, is a fast-growing segment of the fresh-food industry. The dynamism and specialization of this sector, together with the lack of adequate crop rotation, the globalization of the seed market, and climate change, are the main causes of the development of many new diseases that cause severe production losses. Newly detected diseases of the most important crops grown (lettuce, wild and cultivated rocket, lamb's lettuce, chicory, endive, basil, spinach, and Swiss chard) are critically discussed. The management of these diseases represents a formidable challenge, since few fungicides are registered on these minor-use crops. An interesting feature of the ready-to-eat salad sector is that most crops are grown under protection, often in soilless systems, which provide an environment helpful to the implementation of innovative control methods. Current trends in disease management are discussed, with special focus on the most sustainable practices.
Collapse
Affiliation(s)
- Maria Lodovica Gullino
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Giovanna Gilardi
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Angelo Garibaldi
- Centre of Competence for the Agro-Environmental Sector (AGROINNOVA), University of Torino. Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
22
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Dyda M, Wąsek I, Tyrka M, Wędzony M, Szechyńska-Hebda M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. PHYSIOLOGIA PLANTARUM 2019; 165:711-727. [PMID: 29774565 DOI: 10.1111/ppl.12760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 05/13/2023]
Abstract
Microdochium nivale is a fungal pathogen that causes yield losses of cereals during winter. Cold hardening under light conditions induces genotype-dependent resistance of a plant to infection. We aim to show how photosystem II (PSII) regulation contributes to plant resistance. Using mapping population of triticale doubled haploid lines, three M. nivale strains and different infection assays, we demonstrate that plants that maintain a higher maximum quantum efficiency of PSII show less leaf damage upon infection. The fungus can establish necrotrophic or biotrophic interactions with susceptible or resistant genotypes, respectively. It is suggested that local inhibition of photosynthesis during the infection of sensitive genotypes is not balanced by a supply of energy from the tissue surrounding the infected cells as efficiently as in resistant genotypes. Thus, defence is limited, which in turn results in extensive necrotic damage. Quantitative trait loci regions, involved in the control of both PSII functioning and resistance, were located on chromosomes 4 and 6, similar to a wide range of PSII- and resistance-related genes. A meta-analysis of microarray experiments showed that the expression of genes involved in the repair and de novo assembly of PSII was maintained at a stable level. However, to establish a favourable energy balance for defence, genes encoding PSII proteins resistant to oxidative degradation were downregulated to compensate for the upregulation of defence-related pathways. Finally, we demonstrate that the structural and functional integrity of the plant is a factor required to meet the energy demand of infected cells, photosynthesis-dependent systemic signalling and defence responses.
Collapse
Affiliation(s)
- Mateusz Dyda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
- Pedagogical University of Cracow, 30-084, Kraków, Poland
| | - Iwona Wąsek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Maria Wędzony
- Pedagogical University of Cracow, 30-084, Kraków, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
- Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Blonie, Poland
| |
Collapse
|
24
|
Wang Q, Li H, Xia Z, Hou Y, Liu W. Characterization of the complete mitochondrial genome of Plectosphaerella sp. (Glomerellales: Hypocreomycetidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1610097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- QiangFeng Wang
- Institute of Biotechnology and Nucleic Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - HuiXia Li
- Sichuan Provincial Fourth People's Hospital, Chengdu, Sichuan, China
| | - ZhongMei Xia
- Institute of Biotechnology and Nucleic Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Yong Hou
- Institute of Biotechnology and Nucleic Technology, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
| | - Wu Liu
- Sichuan Lanyue Science and Technology Co., Ltd, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Barriuso J, Hogan DA, Keshavarz T, Martínez MJ. Role of quorum sensing and chemical communication in fungal biotechnology and pathogenesis. FEMS Microbiol Rev 2018; 42:627-638. [PMID: 29788231 DOI: 10.1093/femsre/fuy022] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density-dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical 'languages' used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation and the potential applications of these mechanisms in biotechnology and pathogenesis.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Tajalli Keshavarz
- Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
26
|
Gamir J, Pastor V, Sánchez-Bel P, Agut B, Mateu D, García-Andrade J, Flors V. Starch degradation, abscisic acid and vesicular trafficking are important elements in callose priming by indole-3-carboxylic acid in response to Plectosphaerella cucumerina infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:518-531. [PMID: 30051514 DOI: 10.1111/tpj.14045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 05/21/2023]
Abstract
A fast callose accumulation has been shown to mediate defence priming in certain plant-pathogen interactions, but the events upstream of callose assembly following chemical priming are poorly understood, mainly because those steps comprise sugar transfer to the infection site. β-Amino butyric acid (BABA)-induced resistance in Arabidopsis against Plectosphaerella cucumerina is known to be mediated by callose priming. Indole-3-carboxylic acid (ICOOH, also known as I3CA) mediates BABA-induced resistance in Arabidopsis against P. cucumerina. This indolic compound is found in a common fingerprint of primed metabolites following treatments with various priming stimuli. In the present study, we show that I3CA induces resistance in Arabidopsis against P. cucumerina and primes enhancement of callose accumulation. I3CA treatment increased abscisic acid (ABA) levels before infection with P. cucumerina. An intact ABA synthesis pathway is needed to activate a starch amylase (BAM1) to trigger augmented callose deposition against P. cucumerina during I3CA-IR. To verify the relevance of the BAM1 amylase in I3CA-IR, knockdown mutants and overexpressors of the BAM1 gene were tested. The mutant bam1 was impaired to express I3CA-IR, but complemented 35S::BAM1-YFP lines in the background of bam1 restored an intact I3CA-IR and callose priming. Therefore, a more active starch metabolism is a committed step for I3CA-IR, inducing callose priming in adult plants. Additionally, I3CA treatments induced expression of the ubiquitin ligase ATL31 and syntaxin SYP131, suggesting that vesicular trafficking is relevant for callose priming. As a final element in the callose priming, an intact Powdery Mildew resistant4 (PMR4) gene is also essential to fully express I3CA-IR.
Collapse
Affiliation(s)
- Jordi Gamir
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, Granada, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Paloma Sánchez-Bel
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Blas Agut
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Diego Mateu
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Javier García-Andrade
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Ingeniero Fausto Elio, Valencia, Spain
| | - Víctor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| |
Collapse
|
27
|
Williams A, Pétriacq P, Beerling DJ, Cotton TEA, Ton J. Impacts of Atmospheric CO 2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1493. [PMID: 30405655 PMCID: PMC6204664 DOI: 10.3389/fpls.2018.01493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/25/2018] [Indexed: 05/24/2023]
Abstract
Concerns over rising atmospheric CO2 concentrations have led to growing interest in the effects of global change on plant-microbe interactions. As a primary substrate of plant metabolism, atmospheric CO2 influences below-ground carbon allocation and root exudation chemistry, potentially affecting rhizosphere interactions with beneficial soil microbes. In this study, we have examined the effects of different atmospheric CO2 concentrations on Arabidopsis rhizosphere colonization by the rhizobacterial strain Pseudomonas simiae WCS417 and the saprophytic strain Pseudomonas putida KT2440. Rhizosphere colonization by saprophytic KT2440 was not influenced by sub-ambient (200 ppm) and elevated (1,200 ppm) concentrations of CO2, irrespective of the carbon (C) and nitrogen (N) content of the soil. Conversely, rhizosphere colonization by WCS417 in soil with relatively low C and N content increased from sub-ambient to elevated CO2. Examination of plant responses to WCS417 revealed that plant growth and systemic resistance varied according to atmospheric CO2 concentration and soil-type, ranging from growth promotion with induced susceptibility at sub-ambient CO2, to growth repression with induced resistance at elevated CO2. Collectively, our results demonstrate that the interaction between atmospheric CO2 and soil nutritional status has a profound impact on plant responses to rhizobacteria. We conclude that predictions about plant performance under past and future climate scenarios depend on interactive plant responses to soil nutritional status and rhizobacteria.
Collapse
Affiliation(s)
- Alex Williams
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Pierre Pétriacq
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- UMR 1332 Fruit Biology and Pathology, INRA-Bordeaux & University of Bordeaux, Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle de Bordeaux, INRA – Bordeaux, Villenave d’Ornon, France
| | - David J. Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - T. E. Anne Cotton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Jurriaan Ton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
- P Institute for Translational Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Qian X, Chen L, Guo X, He D, Shi M, Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018; 6:e5767. [PMID: 30345176 PMCID: PMC6187995 DOI: 10.7717/peerj.5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023] Open
Abstract
The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Buswell W, Schwarzenbacher RE, Luna E, Sellwood M, Chen B, Flors V, Pétriacq P, Ton J. Chemical priming of immunity without costs to plant growth. THE NEW PHYTOLOGIST 2018; 218:1205-1216. [PMID: 29465773 DOI: 10.1111/nph.15062] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 05/05/2023]
Abstract
β-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-β-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.
Collapse
Affiliation(s)
- Will Buswell
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland E Schwarzenbacher
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Estrella Luna
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew Sellwood
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, UK
| | - Beining Chen
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemistry, University of Sheffield, Sheffield, S10 2TN, UK
| | - Victor Flors
- Metabolic Integration and Cell Signalling Group, Plant Physiology Section, Department of Agricultural Science and the Natural Environment, Universitat Jaume I, 12071, Castellón de la Plana, Spain
| | - Pierre Pétriacq
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- P3 Institute for Plant and Soil Biology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
30
|
Williams A, Pétriacq P, Schwarzenbacher RE, Beerling DJ, Ton J. Mechanisms of glacial-to-future atmospheric CO 2 effects on plant immunity. THE NEW PHYTOLOGIST 2018; 218:752-761. [PMID: 29424932 PMCID: PMC5873421 DOI: 10.1111/nph.15018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/26/2017] [Indexed: 05/22/2023]
Abstract
The impacts of rising atmospheric CO2 concentrations on plant disease have received increasing attention, but with little consensus emerging on the direct mechanisms by which CO2 shapes plant immunity. Furthermore, the impact of sub-ambient CO2 concentrations, which plants have experienced repeatedly over the past 800 000 yr, has been largely overlooked. A combination of gene expression analysis, phenotypic characterisation of mutants and mass spectrometry-based metabolic profiling was used to determine development-independent effects of sub-ambient CO2 (saCO2 ) and elevated CO2 (eCO2 ) on Arabidopsis immunity. Resistance to the necrotrophic Plectosphaerella cucumerina (Pc) was repressed at saCO2 and enhanced at eCO2 . This CO2 -dependent resistance was associated with priming of jasmonic acid (JA)-dependent gene expression and required intact JA biosynthesis and signalling. Resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) increased at both eCO2 and saCO2 . Although eCO2 primed salicylic acid (SA)-dependent gene expression, mutations affecting SA signalling only partially suppressed Hpa resistance at eCO2 , suggesting additional mechanisms are involved. Induced production of intracellular reactive oxygen species (ROS) at saCO2 corresponded to a loss of resistance in glycolate oxidase mutants and increased transcription of the peroxisomal catalase gene CAT2, unveiling a mechanism by which photorespiration-derived ROS determined Hpa resistance at saCO2 . By separating indirect developmental impacts from direct immunological effects, we uncover distinct mechanisms by which CO2 shapes plant immunity and discuss their evolutionary significance.
Collapse
Affiliation(s)
- Alex Williams
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Pierre Pétriacq
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- biOMICS FacilityDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Roland E. Schwarzenbacher
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - David J. Beerling
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Jurriaan Ton
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
- P Institute for Translational Soil and Plant BiologyDepartment of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
31
|
Zhou S, Hong Q, Li Y, Li Q, Wang M. Autophagy contributes to regulate the ROS levels and PCD progress in TMV-infected tomatoes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:12-19. [PMID: 29606209 DOI: 10.1016/j.plantsci.2017.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 06/08/2023]
Abstract
Programmed cell death (PCD) and autophagy are both important means for plants to resist pathogen. It is also the main biological reaction of plant immunity. In previous studies, we found that TMV local-infection on tomato leaves not only caused the PCD process in the distal root tissues, but also induced autophagy in root-tip cells. However, the reasons for these biological phenomena are unclear. In order to get deeper insight, the role of a putative inducible factor reactive oxidative species (ROS) was investigated. The situ staining and subcellular localization analysis showed that the ROS level in the root tissue of TMV infected plants was significantly promoted. TEM observation showed that the intracellular ROS was excreted into the cell wall and intercellular layer. At the same time, the results of western blot and qRT-PCR showed that the expression of autophagy related protein Atg8 and genes (Atg5, Atg7 and Atg10) were increased. However, in the subsequent DPI inhibition experiments we found that the accumulation of ROS in infected plant root-tip tissues was inhibited and the autophagy in the root-tip cells also decreased. When 3-methyladenine (3-MA) was used to inhibit autophagy, there was no significant change in the ROS level in the apical tissue, while the systemic PCD process of the root-tip cells was elevated. Taken together, these results indicate that local TMV inoculation on the leaves induced the root-tip cells producing and releasing a lot of ROS into the extracellular matrix for defense against pathogen invasion. Meanwhile, ROS acted as a signaling substance and triggered autophagy in root-tip cells, in order to eliminate excessive intracellular ROS oxidative damage and maintain cell survival.
Collapse
Affiliation(s)
- Shumin Zhou
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qiang Hong
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yang Li
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qi Li
- Lab of Plant Cell Biology, Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mao Wang
- College of Biology, China Agricultural University, Beijing 100094, China.
| |
Collapse
|
32
|
Gilardi G, Gullino ML, Garibaldi A. Emerging foliar and soil-borne pathogens of leafy vegetable crops: a possible threat to Europe. ACTA ACUST UNITED AC 2018. [DOI: 10.1111/epp.12447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- G. Gilardi
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| | - M. L. Gullino
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
- Department of Agricultural, Forest and Food Sciences (DISAFA); University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| | - A. Garibaldi
- Centre for Innovation in the Agro-Environmental Sector; AGROINNOVA; University of Torino; Largo P. Braccini 2 10095 Grugliasco TO (Italy)
| |
Collapse
|
33
|
Salvador-Guirao R, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B. The MicroRNA miR773 Is Involved in the Arabidopsis Immune Response to Fungal Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:249-259. [PMID: 28990488 DOI: 10.1094/mpmi-05-17-0108-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide short noncoding RNAs that trigger gene silencing in eukaryotes. In plants, miRNAs play a crucial role in a wide range of developmental processes and adaptive responses to abiotic and biotic stresses. In this work, we investigated the role of miR773 in modulating resistance to infection by fungal pathogens in Arabidopsis thaliana. Interference with miR773 activity by target mimics (in MIM773 plants) and concomitant upregulation of the miR773 target gene METHYLTRANSFERASE 2 (MET2) increased resistance to infection by necrotrophic (Plectosphaerrella cucumerina) and hemibiotrophic (Fusarium oxysporum, Colletototrichum higginianum) fungal pathogens. By contrast, both MIR773 overexpression and MET2 silencing enhanced susceptibility to pathogen infection. Upon pathogen challenge, MIM773 plants accumulated higher levels of callose and reactive oxygen species than wild-type plants. Stronger induction of defense-gene expression was also observed in MIM773 plants in response to fungal infection. Expression analysis revealed an important reduction in miR773 accumulation in rosette leaves of plants upon elicitor perception and pathogen infection. Taken together, our results show not only that miR773 mediates pathogen-associated molecular pattern-triggered immunity but also demonstrate that suppression of miR773 activity is an effective approach to improve disease resistance in Arabidopsis plants.
Collapse
Affiliation(s)
- Raquel Salvador-Guirao
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Patricia Baldrich
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Detlef Weigel
- 2 Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; and
| | - Ignacio Rubio-Somoza
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Blanca San Segundo
- 1 Centre for Research in Agricultural Genomics (CRAG) CSIC, IRTA, UAB, UB. Edifici CRAG. Carrer de la Vall Moronta. Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
- 3 Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
34
|
Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci Rep 2017; 7:17251. [PMID: 29222513 PMCID: PMC5722813 DOI: 10.1038/s41598-017-17248-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Infection stages of charcoal rot fungus Macrophomina phaseolina in sesame revealed for the first time a transition from biotrophy via BNS (biotrophy-to-necrotrophy switch) to necrotrophy as confirmed by transcriptional studies. Microscopy using normal and GFP-expressing pathogen showed typical constricted thick intercellular bitrophic hyphae which gave rise to thin intracellular necrotrophic hyphae during BNS and this stage was delayed in a resistant host. Results also show that as the pathogen switched its strategy of infection, the host tailored its defense strategy to meet the changing situation. Less ROS accumulation, upregulation of ROS signaling genes and higher antioxidant enzyme activities post BNS resulted in resistance. There was greater accumulation of secondary metabolites and upregulation of secondary metabolite-related genes after BNS. A total of twenty genes functioning in different aspects of plant defense that were monitored over a time course during the changing infection phases showed a coordinated response. Experiments using phytohormone priming and phytohormone inhibitors showed that resistance resulted from activation of JA-ET signaling pathway. Most importantly this defense response was more prompt in the resistant than the susceptible host indicating that a resistant host makes different choices from a susceptible host during infection which ultimately influences the severity of the disease.
Collapse
|
35
|
Mou S, Liu Z, Gao F, Yang S, Su M, Shen L, Wu Y, He S. CaHDZ27, a Homeodomain-Leucine Zipper I Protein, Positively Regulates the Resistance to Ralstonia solanacearum Infection in Pepper. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:960-973. [PMID: 28840788 DOI: 10.1094/mpmi-06-17-0130-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Homeodomain-leucine zipper class I (HD-Zip I) transcription factors have been functionally characterized in plant responses to abiotic stresses, but their roles in plant immunity are poorly understood. Here, a HD-Zip I gene, CaHZ27, was isolated from pepper (Capsicum annum) and characterized for its role in pepper immunity. Quantitative real-time polymerase chain reaction showed that CaHDZ27 was transcriptionally induced by Ralstonia solanacearum inoculation and exogenous application of methyl jasmonate, salicylic acid, or ethephon. The CaHDZ27-green fluorescent protein fused protein was targeted exclusively to the nucleus. Chromatin immunoprecipitation demonstrated that CaHDZ27 bound to the 9-bp pseudopalindromic element (CAATAATTG) and triggered β-glucuronidase expression in a CAATAATTG-dependent manner. Virus-induced gene silencing of CaHDZ27 significantly attenuated the resistance of pepper plants against R. solanacearum and downregulated defense-related marker genes, including CaHIR1, CaACO1, CaPR1, CaPR4, CaPO2, and CaBPR1. By contrast, transient overexpression of CaHDZ27 triggered strong cell death mediated by the hypersensitive response and upregulated the tested immunity-associated marker genes. Ectopic CaHDZ27 expression in tobacco enhances its resistance against R. solanacearum. These results collectively suggest that CaHDZ27 functions as a positive regulator in pepper resistance against R. solanacearum. Bimolecular fluorescence complementation and coimmunoprecipitation assays indicate that CaHDZ27 monomers bind with each other, and this binding is enhanced significantly by R. solanacearum inoculation. We speculate that homodimerization of CaHZ27 might play a role in pepper response to R. solanacearum, further direct evidence is required to confirm it.
Collapse
Affiliation(s)
- Shaoliang Mou
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Zhiqin Liu
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Feng Gao
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Sheng Yang
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Meixia Su
- 2 College of Life Science, Fujian Agriculture and Forestry University
| | - Lei Shen
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| | - Yang Wu
- 4 College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- 1 National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- 3 College of Crop Science, Fujian Agriculture and Forestry University; and
| |
Collapse
|
36
|
Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J. Metabolite profiling of non-sterile rhizosphere soil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:147-162. [PMID: 28742258 PMCID: PMC5639361 DOI: 10.1111/tpj.13639] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/10/2023]
Abstract
Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere.
Collapse
Affiliation(s)
- Pierre Pétriacq
- Plant Production and Protection (P) Institute for Translational Plant & Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
- biOMICS FacilityDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| | - Alex Williams
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| | - Anne Cotton
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| | | | - Stephen A. Rolfe
- Plant Production and Protection (P) Institute for Translational Plant & Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| | - Jurriaan Ton
- Plant Production and Protection (P) Institute for Translational Plant & Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
37
|
Zhu W, Ronen M, Gur Y, Minz-Dub A, Masrati G, Ben-Tal N, Savidor A, Sharon I, Eizner E, Valerius O, Braus GH, Bowler K, Bar-Peled M, Sharon A. BcXYG1, a Secreted Xyloglucanase from Botrytis cinerea, Triggers Both Cell Death and Plant Immune Responses. PLANT PHYSIOLOGY 2017; 175:438-456. [PMID: 28710128 PMCID: PMC5580746 DOI: 10.1104/pp.17.00375] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In search of Botrytis cinerea cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the BcXYG1 gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a B. cinerea strain overexpressing BcXYG1 produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Mordechi Ronen
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yonatan Gur
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Minz-Dub
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alon Savidor
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itai Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elad Eizner
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Physical Electronics, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oliver Valerius
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Gerhard H Braus
- Complex Carbohydrate Research Center, Department of Plant Biology, University of Georgia, Athens, Georgia 30602-4712
| | - Kyle Bowler
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Maor Bar-Peled
- Department of Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences, Georg-August-Universität, Goettingen, 37073 Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Park JM, You YH, Back CG, Kim HH, Ghim SY, Park JH. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis 2017. [DOI: 10.1007/s13199-017-0494-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Baccelli I, Mauch-Mani B. When the story proceeds backward: The discovery of endogenous β-aminobutyric acid as the missing link for a potential new plant hormone. Commun Integr Biol 2017. [PMCID: PMC5398230 DOI: 10.1080/19420889.2017.1290019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The capacity of β-aminobutyric acid (BABA) to induce resistance in plants against biotic and abiotic stresses has been known for more than 50 y. In the beginning reports were mainly descriptive of the phenomenon, but it became clear with the discovery of BABA insensitive mutants in Arabidopsis that there was definitely a genetic basis underlying BABA-induced resistance. The study of these mutants, along with the use of regular hormone mutants, allowed establishing the defense pathways activated upon defense induction. To date it is clear that BABA potentiates the defense pathway more appropriate to counteract the upcoming stress situation, through a phenomenon termed priming. Interestingly, plants possess a receptor for BABA, but up to recently there was a general consensus on the fact that BABA was a xenobiotic molecule. The development of an accurate non-destructive assay for measuring aminobutyric acid isomers in planta and the finding of plant-produced BABA, thus seems to represent the missing link for the discovery of a novel plant hormone. Differences and similarities with some of the classical plant hormones are presented here.
Collapse
Affiliation(s)
- Ivan Baccelli
- University of Neuchâtel, Faculty of Sciences, Institute of Biology, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- University of Neuchâtel, Faculty of Sciences, Institute of Biology, Neuchâtel, Switzerland
| |
Collapse
|
40
|
Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B. NAD Acts as an Integral Regulator of Multiple Defense Layers. PLANT PHYSIOLOGY 2016; 172:1465-1479. [PMID: 27621425 PMCID: PMC5100754 DOI: 10.1104/pp.16.00780] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 05/18/2023]
Abstract
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.
Collapse
Affiliation(s)
- Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.);
- AgroParisTech, 75121 Paris cedex 05, France (O.P.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Jurriaan Ton
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Oriane Patrit
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Guillaume Tcherkez
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Bertrand Gakière
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| |
Collapse
|
41
|
López Sánchez A, Stassen JH, Furci L, Smith LM, Ton J. The role of DNA (de)methylation in immune responsiveness of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:361-374. [PMID: 27341062 PMCID: PMC5132069 DOI: 10.1111/tpj.13252] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/20/2016] [Indexed: 05/13/2023]
Abstract
DNA methylation is antagonistically controlled by DNA methyltransferases and DNA demethylases. The level of DNA methylation controls plant gene expression on a global level. We have examined impacts of global changes in DNA methylation on the Arabidopsis immune system. A range of hypo-methylated mutants displayed enhanced resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis (Hpa), whereas two hyper-methylated mutants were more susceptible to this pathogen. Subsequent characterization of the hypo-methylated nrpe1 mutant, which is impaired in RNA-directed DNA methylation, and the hyper-methylated ros1 mutant, which is affected in DNA demethylation, revealed that their opposite resistance phenotypes are associated with changes in cell wall defence and salicylic acid (SA)-dependent gene expression. Against infection by the necrotrophic pathogen Plectosphaerella cucumerina, nrpe1 showed enhanced susceptibility, which was associated with repressed sensitivity of jasmonic acid (JA)-inducible gene expression. Conversely, ros1 displayed enhanced resistance to necrotrophic pathogens, which was not associated with increased responsiveness of JA-inducible gene expression. Although nrpe1 and ros1 were unaffected in systemic acquired resistance to Hpa, they failed to develop transgenerational acquired resistance against this pathogen. Global transcriptome analysis of nrpe1 and ros1 at multiple time-points after Hpa infection revealed that 49% of the pathogenesis-related transcriptome is influenced by NRPE1- and ROS1-controlled DNA methylation. Of the 166 defence-related genes displaying augmented induction in nrpe1 and repressed induction in ros1, only 25 genes were associated with a nearby transposable element and NRPE1- and/or ROS1-controlled DNA methylation. Accordingly, we propose that the majority of NRPE1- and ROS1-dependent defence genes are regulated in trans by DNA methylation.
Collapse
Affiliation(s)
- Ana López Sánchez
- P3 Institute for Translational Plant and Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | - Joost H.M. Stassen
- P3 Institute for Translational Plant and Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | - Leonardo Furci
- P3 Institute for Translational Plant and Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | - Lisa M. Smith
- P3 Institute for Translational Plant and Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | - Jurriaan Ton
- P3 Institute for Translational Plant and Soil BiologyDepartment of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| |
Collapse
|
42
|
Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B. NAD Acts as an Integral Regulator of Multiple Defense Layers. PLANT PHYSIOLOGY 2016. [PMID: 27621425 PMCID: PMC5074631 DOI: 10.1104/pp.16.01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.
Collapse
Affiliation(s)
- Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.);
- AgroParisTech, 75121 Paris cedex 05, France (O.P.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Jurriaan Ton
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Oriane Patrit
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Guillaume Tcherkez
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Bertrand Gakière
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| |
Collapse
|