1
|
Wu H, Li G, Zhan J, Zhang S, Beall BD, Yadegari R, Becraft PW. Rearrangement with the nkd2 promoter contributed to allelic diversity of the r1 gene in maize (Zea mays). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1701-1716. [PMID: 35876146 PMCID: PMC9546038 DOI: 10.1111/tpj.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The maize red1 (r1) locus regulates anthocyanin accumulation and is a classic model for allelic diversity; changes in regulatory regions are responsible for most of the variation in gene expression patterns. Here, an intrachromosomal rearrangement between the distal upstream region of r1 and the region of naked endosperm 2 (nkd2) upstream to the third exon generated a nkd2 null allele lacking the first three exons, and the R1-st (stippled) allele with a novel r1 5' promoter region homologous to 5' regions from nkd2-B73. R1-sc:124 (an R1-st derivative) shows increased and earlier expression than a standard R1-g allele, as well as ectopic expression in the starchy endosperm compartment. Laser capture microdissection and RNA sequencing indicated that ectopic R1-sc:124 expression impacted expression of genes associated with RNA modification. The expression of R1-sc:124 resembled nkd2-W22 expression, suggesting that nkd2 regulatory sequences may influence the expression of R1-sc:124. The r1-sc:m3 allele is derived from R1-sc:124 by an insertion of a Ds6 transposon in intron 4. This insertion blocks anthocyanin regulation by causing mis-splicing that eliminates exon 5 from the mRNA. This allele serves as an important launch site for Ac/Ds mutagenesis studies, and two Ds6 insertions believed to be associated with nkd2 mutant alleles were actually located in the r1 5' region. Among annotated genomes of teosinte and maize varieties, the nkd2 and r1 loci showed conserved overall gene structures, similar to the B73 reference genome, suggesting that the nkd2-r1 rearrangement may be a recent event.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Present address:
School of Integrative Plant ScienceCornell UniversityIthacaNew York14853USA
| | - Guosheng Li
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Junpeng Zhan
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
- Present address:
Donald Danforth Plant Science CenterSt. LouisMissouri63132USA
| | - Shanshan Zhang
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Brandon D. Beall
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Agronomy DepartmentIowa State UniversityAmesIowa50011USA
| | - Ramin Yadegari
- School of Plant SciencesUniversity of ArizonaTucsonArizona85721USA
| | - Philip W. Becraft
- Genetics, Development and Cell Biology DepartmentIowa State UniversityAmesIowaUSA
- Agronomy DepartmentIowa State UniversityAmesIowa50011USA
| |
Collapse
|
2
|
Aubert J, Bellegarde F, Oltehua-Lopez O, Leblanc O, Arteaga-Vazquez MA, Martienssen RA, Grimanelli D. AGO104 is a RdDM effector of paramutation at the maize b1 locus. PLoS One 2022; 17:e0273695. [PMID: 36040902 PMCID: PMC9426929 DOI: 10.1371/journal.pone.0273695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.
Collapse
Affiliation(s)
- Juliette Aubert
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Fanny Bellegarde
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Olivier Leblanc
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
| | | | - Robert A. Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, United States of America
| | - Daniel Grimanelli
- DIADE, University of Montpellier, CIRAD, IRD, Montpellier, France
- * E-mail:
| |
Collapse
|
3
|
Bente H, Foerster AM, Lettner N, Mittelsten Scheid O. Polyploidy-associated paramutation in Arabidopsis is determined by small RNAs, temperature, and allele structure. PLoS Genet 2021; 17:e1009444. [PMID: 33690630 PMCID: PMC7978347 DOI: 10.1371/journal.pgen.1009444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/19/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Paramutation is a form of non-Mendelian inheritance in which the expression of a paramutable allele changes when it encounters a paramutagenic allele. This change in expression of the paramutable alleles is stably inherited even after segregation of both alleles. While the discovery of paramutation and studies of its underlying mechanism were made with alleles that change plant pigmentation, paramutation-like phenomena are known to modulate the expression of other traits and in other eukaryotes, and many cases have probably gone undetected. It is likely that epigenetic mechanisms are responsible for the phenomenon, as paramutation forms epialleles, genes with identical sequences but different expression states. This could account for the intergenerational inheritance of the paramutated allele, providing profound evidence that triggered epigenetic changes can be maintained over generations. Here, we use a case of paramutation that affects a transgenic selection reporter gene in tetraploid Arabidopsis thaliana. Our data suggest that different types of small RNA are derived from paramutable and paramutagenic epialleles. In addition, deletion of a repeat within the epiallele changes its paramutability. Further, the temperature during the growth of the epiallelic hybrids determines the degree and timing of the allelic interaction. The data further make it plausible why paramutation in this system becomes evident only in the segregating F2 population of tetraploid plants containing both epialleles. In summary, the results support a model for polyploidy-associated paramutation, with similarities as well as distinctions from other cases of paramutation.
Collapse
Affiliation(s)
- Heinrich Bente
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Andrea M. Foerster
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Nicole Lettner
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
4
|
Grob S, Grossniklaus U. Invasive DNA elements modify the nuclear architecture of their insertion site by KNOT-linked silencing in Arabidopsis thaliana. Genome Biol 2019; 20:120. [PMID: 31186073 PMCID: PMC6560877 DOI: 10.1186/s13059-019-1722-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The three-dimensional (3D) organization of chromosomes is linked to epigenetic regulation and transcriptional activity. However, only few functional features of 3D chromatin architecture have been described to date. The KNOT is a 3D chromatin structure in Arabidopsis, comprising 10 interacting genomic regions termed KNOT ENGAGED ELEMENTs (KEEs). KEEs are enriched in transposable elements and associated small RNAs, suggesting a function in transposon biology. RESULTS Here, we report the KNOT's involvement in regulating invasive DNA elements. Transgenes can specifically interact with the KNOT, leading to perturbations of 3D nuclear organization, which correlates with the transgene's expression: high KNOT interaction frequencies are associated with transgene silencing. KNOT-linked silencing (KLS) cannot readily be connected to canonical silencing mechanisms, such as RNA-directed DNA methylation and post-transcriptional gene silencing, as both cytosine methylation and small RNA abundance do not correlate with KLS. Furthermore, KLS exhibits paramutation-like behavior, as silenced transgenes can lead to the silencing of active transgenes in trans. CONCLUSION Transgene silencing can be connected to a specific feature of Arabidopsis 3D nuclear organization, namely the KNOT. KLS likely acts either independent of or prior to canonical silencing mechanisms, such that its characterization not only contributes to our understanding of chromosome folding but also provides valuable insights into how genomes are defended against invasive DNA elements.
Collapse
Affiliation(s)
- Stefan Grob
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| |
Collapse
|
5
|
Wang PH, Wittmeyer KT, Lee TF, Meyers BC, Chopra S. Overlapping RdDM and non-RdDM mechanisms work together to maintain somatic repression of a paramutagenic epiallele of maize pericarp color1. PLoS One 2017; 12:e0187157. [PMID: 29112965 PMCID: PMC5675401 DOI: 10.1371/journal.pone.0187157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/14/2017] [Indexed: 11/18/2022] Open
Abstract
Allelic variation at the Zea mays (maize) pericarp color1 (p1) gene has been attributed to epigenetic gene regulation. A p1 distal enhancer, 5.2 kb upstream of the transcriptional start site, has demonstrated variation in DNA methylation in different p1 alleles/epialleles. In addition, DNA methylation of sequences within the 3’ end of intron 2 also plays a role in tissue-specific expression of p1 alleles. We show here a direct evidence for small RNAs’ involvement in regulating p1 that has not been demonstrated previously. The role of mediator of paramutation1 (mop1) was tested in the maintenance of somatic silencing at distinct p1 alleles: the non-paramutagenic P1-wr allele and paramutagenic P1-rr’ epiallele. The mop1-1 mutation gradually relieves the silenced phenotype after multiple generations of exposure; P1-wr;mop1-1 plants display a loss of 24-nt small RNAs and DNA methylation in the 3’ end of the intron 2, a region close to a Stowaway transposon. In addition, a MULE sequence within the proximal promoter of P1-wr shows depletion of 24nt siRNAs in mop1-1 plants. Release of silencing was not correlated with small RNAs at the distal enhancer region of the P1-wr allele. We found that the somatic silencing of the paramutagenic P1-rr’ is correlated with significantly reduced H3K9me2 in the distal enhancer of P1-rr’; mop1-1 plants, while symmetric DNA methylation is not significantly different. This study highlights that the epigenetic regulation of p1 alleles is controlled both via RdDM as well as non-RdDM mechanisms.
Collapse
Affiliation(s)
- Po-Hao Wang
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kameron T. Wittmeyer
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tzuu-fen Lee
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Blake C. Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, United States of America
| | - Surinder Chopra
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Plant Biology Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
6
|
|
7
|
|
8
|
Affiliation(s)
- Anna Amtmann
- Institute of Molecular, Cell and Systems Biology College of Medical, Veterinary and Life Sciences University of Glasgow Glasgow G12 8QQ United Kingdom
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development School of Life Sciences Fudan University Shanghai 200438, China
| | - Doris Wagner
- Department of Biology University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|