1
|
Huang X, Bai X, Qian C, Liu S, Goher F, He F, Zhao G, Pei G, Zhao H, Wang J, Kang Z, Guo J. TaUAM3, a UDP‐Ara mutases protein, positively regulates wheat resistance to the stripe rust fungus. Food Energy Secur 2023. [DOI: 10.1002/fes3.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Affiliation(s)
- Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Chaowei Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Shuai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Fuxin He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Guosen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Hua Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
| |
Collapse
|
2
|
Yan J, Fang L, Yang L, He H, Huang Y, Liu Y, Zhang A. Abscisic acid positively regulates l-arabinose metabolism to inhibit seed germination through ABSCISIC ACID INSENSITIVE4-mediated transcriptional promotions of MUR4 in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2020; 225:823-834. [PMID: 31461539 DOI: 10.1111/nph.16149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 05/06/2023]
Abstract
l-Arabinose (l-Ara) is a major monosaccharide in plant polysaccharides and glycoproteins, and functions in plant growth and development. However, the potential role of l-Ara during abscisic acid (ABA)-mediated seed germination has been largely ignored. Here, our results showed a function of l-Ara during ABA-mediated seed germination. ABA slowed down the reduction of l-Ara in seed cell wall, and exogenous l-Ara aggravated the inhibition of ABA on germination. We further found that MUR4, encoding URIDINE 5'-DIPHOSPHATE-d-XYLOSE 4-EPIMERASE 1, played a vital role in ABA-mediated germination. MUR4 was highly expressed in embryo and induced by ABA in both seeds and seedlings. Overexpression of MUR4 conferred hypersensitive seed germination and early postgermination growth to ABA. Further analysis revealed that ABSCISIC ACID INSENSITIVE4 (ABI4) positively modulated the MUR4 expression by directly binding the Coupling Element1 motif of MUR4 promoter. Consistently, abi4-1 mutant had a lower l-Ara content in seed cell wall, while a higher l-Ara content in seed cell wall was observed in ABI4 overexpressors. Genetic analysis suggested that overexpression of MUR4 in abi4-1 partly restored the ABA sensitivity of abi4-1. We established the link between ABA and l-Ara during ABA-mediated seed germination and cotyledon greening in Arabidopsis and revealed the potential molecular mechanism.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
3
|
Guo J, Hu Y, Zhou Y, Zhu Z, Sun Y, Li J, Wu R, Miao Y, Sun X. Profiling of the Receptor for Activated C Kinase 1a (RACK1a) interaction network in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 520:366-372. [PMID: 31606202 DOI: 10.1016/j.bbrc.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
As a scaffold protein, Receptor for Activated C Kinase 1a (RACK1) interacts with many proteins and is involved in multiple biological processes in Arabidopsis. However, the global RACK1 protein interaction network in higher plants remains poorly understood. Here, we generated a yeast two-hybrid library using mixed samples from different developmental stages of Arabidopsis thaliana. Using RACK1a as bait, we performed a comprehensive screening of the resulting library to identify RACK1a interactors at the whole-transcriptome level. We selected 1065 independent positive clones that led to the identification of 215 RACK1a interactors. We classified these interactors into six groups according to their potential functions. Several interactors were selected for bimolecular fluorescence complementation (BiFC) analysis and their interaction with RACK1a was confirmed in vivo. Our results provide further insight into the molecular mechanisms through which RACK1a regulates various growth and development processes in higher plants.
Collapse
Affiliation(s)
- Jinggong Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yijing Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
4
|
Saqib A, Scheller HV, Fredslund F, Welner DH. Molecular characteristics of plant UDP-arabinopyranose mutases. Glycobiology 2019; 29:839-846. [PMID: 31679023 PMCID: PMC6861824 DOI: 10.1093/glycob/cwz067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.
Collapse
Affiliation(s)
- Anam Saqib
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
- Industrial Enzymes and Biofuels Group, National Institute for Biotechnology and Genetic Engineering, Jhang Road, 44000 Faisalabad, Pakistan
| | - Henrik Vibe Scheller
- Feedstocks Division, Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA 94608, USA; Environmental Engineering and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Folmer Fredslund
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| | - Ditte Hededam Welner
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kongens Lyngby, DK-2800, Denmark
| |
Collapse
|
5
|
Okekeogbu IO, Pattathil S, González Fernández-Niño SM, Aryal UK, Penning BW, Lao J, Heazlewood JL, Hahn MG, McCann MC, Carpita NC. Glycome and Proteome Components of Golgi Membranes Are Common between Two Angiosperms with Distinct Cell-Wall Structures. THE PLANT CELL 2019; 31:1094-1112. [PMID: 30914498 PMCID: PMC6533026 DOI: 10.1105/tpc.18.00755] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/28/2019] [Accepted: 03/24/2019] [Indexed: 05/20/2023]
Abstract
The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize (Zea mays) and leaves of Arabidopsis (Arabidopsis thaliana), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.
Collapse
Affiliation(s)
- Ikenna O Okekeogbu
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | | | - Bryan W Penning
- U.S. Department of Agriculture, Agricultural Research Service, Corn, Soybean and Wheat Quality Research, Wooster, Ohio 44691
| | - Jeemeng Lao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joshua L Heazlewood
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Maureen C McCann
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Nicholas C Carpita
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|