1
|
Huang M, Jiang Y, Qin R, Jiang D, Chang D, Tian Z, Li C, Wang C. Full-Length Transcriptional Analysis of the Same Soybean Genotype With Compatible and Incompatible Reactions to Heterodera glycines Reveals Nematode Infection Activating Plant Defense Response. FRONTIERS IN PLANT SCIENCE 2022; 13:866322. [PMID: 35665156 PMCID: PMC9158574 DOI: 10.3389/fpls.2022.866322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 06/04/2023]
Abstract
Full-length transcriptome sequencing with long reads is a powerful tool to analyze transcriptional and post-transcriptional events; however, it has not been applied on soybean (Glycine max). Here, a comparative full-length transcriptome analysis was performed on soybean genotype 09-138 infected with soybean cyst nematode (SCN, Heterodera glycines) race 4 (SCN4, incompatible reaction) and race 5 (SCN5, compatible reaction) using Oxford Nanopore Technology. Each of 9 full-length samples collected 8 days post inoculation with/without nematodes generated an average of 6.1 GB of clean data and a total of 65,038 transcript sequences. After redundant transcripts were removed, 1,117 novel genes and 41,096 novel transcripts were identified. By analyzing the sequence structure of the novel transcripts, a total of 28,759 complete open reading frame (ORF) sequences, 5,337 transcription factors, 288 long non-coding RNAs, and 40,090 novel transcripts with function annotation were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes (DEGs) revealed that growth hormone, auxin-activated signaling pathway and multidimensional cell growth, and phenylpropanoid biosynthesis pathway were enriched by infection with both nematode races. More DEGs associated with stress response elements, plant-hormone signaling transduction pathway, and plant-pathogen interaction pathway with more upregulation were found in the incompatible reaction with SCN4 infection, and more DEGs with more upregulation involved in cell wall modification and carbohydrate bioprocess were detected in the compatible reaction with SCN5 infection when compared with each other. Among them, overlapping DEGs with a quantitative difference was triggered. The combination of protein-protein interaction with DEGs for the first time indicated that nematode infection activated the interactions between transcription factor WRKY and VQ (valine-glutamine motif) to contribute to soybean defense. The knowledge of the SCN-soybean interaction mechanism as a model will present more understanding of other plant-nematode interactions.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Dan Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
2
|
Alternative splicing in plant abiotic stress responses. Biochem Soc Trans 2021; 48:2117-2126. [PMID: 32869832 DOI: 10.1042/bst20200281] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Modifications of the cellular proteome pool upon stress allow plants to tolerate environmental changes. Alternative splicing is the most significant mechanism responsible for the production of multiple protein isoforms from a single gene. The spliceosome, a large ribonucleoprotein complex, together with several associated proteins, controls this pre-mRNA processing, adding an additional level of regulation to gene expression. Deep sequencing of transcriptomes revealed that this co- or post-transcriptional mechanism is highly induced by abiotic stress, and concerns vast numbers of stress-related genes. Confirming the importance of splicing in plant stress adaptation, key players of stress signaling have been shown to encode alternative transcripts, whereas mutants lacking splicing factors or associated components show a modified sensitivity and defective responses to abiotic stress. Here, we examine recent literature on alternative splicing and splicing alterations in response to environmental stresses, focusing on its role in stress adaptation and analyzing the future perspectives and directions for research.
Collapse
|
3
|
Fernandez‐Pozo N, Metz T, Chandler JO, Gramzow L, Mérai Z, Maumus F, Mittelsten Scheid O, Theißen G, Schranz ME, Leubner‐Metzger G, Rensing SA. Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:275-293. [PMID: 33453123 PMCID: PMC8641386 DOI: 10.1111/tpj.15161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Abstract
Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-β and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).
Collapse
Affiliation(s)
- Noe Fernandez‐Pozo
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Timo Metz
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
| | - Jake O. Chandler
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
| | - Lydia Gramzow
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | | | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant BiologyAustrian Academy of SciencesVienna BioCenter (VBC)ViennaAustria
| | - Günter Theißen
- Matthias Schleiden Institute/GeneticsFriedrich Schiller University JenaJenaGermany
| | - M. Eric Schranz
- Biosystematics GroupWageningen UniversityWageningenThe Netherlands
| | - Gerhard Leubner‐Metzger
- School of Biological SciencesRoyal Holloway University of LondonEghamSurreyUK
- Laboratory of Growth RegulatorsCentre of the Region Haná for Biotechnological and Agricultural ResearchPalacký University and Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicOlomoucCzech Republic
| | - Stefan A. Rensing
- Plant Cell BiologyDepartment of BiologyUniversity of MarburgMarburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgFreiburgGermany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO)University of MarburgMarburgGermany
| |
Collapse
|