1
|
Zhang Y, Anfang M, Rowe JH, Rizza A, Li Z, Su N, Bar H, Charrier L, Geisler M, Jones AM, Shani E. ABA importers ABCG17 and ABCG18 redundantly regulate seed size in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70096. [PMID: 40106270 PMCID: PMC7617562 DOI: 10.1111/tpj.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The stress hormone abscisic acid (ABA) plays a crucial role in mediating plant responses to the environment and regulating plant development. In this study, we demonstrate that two ABA importers, ABCG17 and ABCG18, control seed size by regulating the ABA levels transported into the embryo. Double knockdown of ABCG17 and ABCG18 resulted in lower ABA accumulation in the embryo, wider siliques, and increased overall seed size. Leaf phloem-specific ABA induction in the aba2-1 background showed that ABA could move from the vasculature to control seed size. ABCG17 and ABCG18 are expressed in leaves, and the reproductive organs septum, and valves but not in the developing seeds, suggesting that ABCG17 and ABCG18 affect seed size maternally. Together, the results shed light on the molecular mechanisms by which ABA is transported to the embryo to determine seed size.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - James H Rowe
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Zhuorong Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ning Su
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hamutal Bar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Panchal P, Sutar RR, Agrawal R, Thakur JK. Collaboration between DELLA proteins and the Mediator subunit MED15 to regulate transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:210-213. [PMID: 39269757 PMCID: PMC11714745 DOI: 10.1093/jxb/erae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Affiliation(s)
- Poonam Panchal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rashmi Ranjan Sutar
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rekha Agrawal
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jitendra K Thakur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
3
|
Alves LM, Valkov VT, Vittozzi Y, Ariante A, Notte A, Perez T, Barbulova A, Rogato A, Lacombe B, Chiurazzi M. The Lotus japonicus NPF4.6 gene, encoding for a dual nitrate and ABA transporter, plays a role in the lateral root elongation process and is not involved in the N 2-fixing nodule development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109144. [PMID: 39341182 DOI: 10.1016/j.plaphy.2024.109144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
Plant root development depends on signaling pathways responding to external and internal signals. In this study we demonstrate the involvement of the Lotus japonicus LjNPF4.6 gene in the ABA and nitrate root responding pathways. LjNPF4.6 expression in roots is induced by external application of both nitrate and ABA. LjNPF4.6 promoter activity is spatially localized in epidermal cell layer and vascular bundle structures with the latter pattern being controlled by externally applied ABA. LjNPF4.6 cRNA injection achieves both nitrate and ABA uptake in Xenopus laevis oocytes and the analyses of L. japonicus knock-out insertion mutants confirmed the role played by LjNPF4.6 in root nitrate uptake. The phenotypic characterization of the Ljnpf4.6 plants indicates the role played by LjNPF4.6 in the root program development in response to exogenously applied nitrate and ABA. Based on the presented data, the mode of action of this transporter is discussed.
Collapse
Affiliation(s)
- Ludovico Martin Alves
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Vladimir Totev Valkov
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Ylenia Vittozzi
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Anita Ariante
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Alberta Notte
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Thibaut Perez
- IPSIM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Ani Barbulova
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Alessandra Rogato
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy
| | - Benoit Lacombe
- IPSIM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Maurizio Chiurazzi
- Institute of Biosciences and Bioresources (CNR), Via P. Castellino 111, 80131, Napoli, Italy.
| |
Collapse
|
4
|
Chen SY, Zhang ZS, Zhang ZY, Sun LQ, Fan SJ, Zhang GH, Wu J, Xia JQ, Yu J, Hou SW, Qin P, Li SG, Xiang CB. Loss of OsMATE6 Function Enhances Drought Resistance Without Yield Penalty by Regulating Stomatal Closure in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248638 DOI: 10.1111/pce.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 09/10/2024]
Abstract
Drought is one of the most severe environmental factors limiting plant growth and crop yield, necessitating the identification of genes that enhance drought resistance for crop improvement. Through screening an ethyl methyl sulfonate-mutagenized rice mutant library, we isolated the PEG tolerance mutant 97-1 (ptm97-1), which displays enhanced resistance to osmotic and drought stress, and increased yield under drought conditions. A point mutation in OsMATE6 was identified as being associated with the drought-resistant phenotype of ptm97-1. The role of OsMATE6 in conferring drought resistance was confirmed by additional OsMATE6 knockout mutants. OsMATE6 is expressed in guard cells, shoots and roots and the OsMATE6-GFP fusion protein predominantly localizes to the plasma membrane. Our ABA efflux assays suggest that OsMATE6 functions as an ABA efflux transporter; mutant protoplasts exhibited a slower ABA release rate compared to the wild type. We hypothesize that OsMATE6 regulates ABA levels in guard cells, influencing stomatal closure and enhancing drought resistance. Notably, OsMATE6 knockout mutants demonstrated greater yields under field drought conditions compared to wild-type plants, highlighting OsMATE6 as a promising candidate for improving crop drought resistance.
Collapse
Affiliation(s)
- Si-Yan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zheng-Yi Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Liang-Qi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shi-Jun Fan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Guo-Hua Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Yu
- School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Sui-Wen Hou
- School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shi-Gui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, The Innovation Academy of Seed Design, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
5
|
Zhou H, Wang Y, Wang X, Cheng R, Zhang H, Yang L. Genome-wide characterization of DELLA gene family in blueberry (Vaccinium darrowii) and their expression profiles in development and response to abiotic stress. BMC Genomics 2024; 25:815. [PMID: 39210263 PMCID: PMC11360860 DOI: 10.1186/s12864-024-10721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The DELLA proteins, a class of GA signaling repressors, belong to the GRAS family of plant-specific nuclear proteins. Members of DELLA gene family encode transcriptional regulators with diverse functions in plant development and abiotic stress responses. To date, DELLAs have been identified in various plant species, such as Arabidopsis thaliana, Malus domestica, Populus trichocarpa, and other land plants. Most information of DELLA family genes was obtained from A. thaliana, whereas little is known about the DELLA gene family in blueberry. RESULTS In this study, we identified three DELLA genes in blueberry (Vaccinium darrowii, VdDELLA) and provided a complete overview of VdDELLA gene family, describing chromosome localization, protein properties, conserved domain, motif organization, and phylogenetic analysis. Three VdDELLA members, containing two highly conserved DELLA domain and GRAS domain, were distributed across three chromosomes. Additionally, cis-acting elements analysis indicated that VdDELLA genes might play a critical role in blueberry developmental processes, hormone, and stress responses. Expression analysis using quantitative real-time PCR (qRT-PCR) revealed that all of three VdDELLA genes were differentially expressed across various tissues. VdDELLA2 was the most highly expressed VdDELLA in all denoted tissues, with a highest expression in mature fruits. In addition, all of the three VdDELLA genes actively responded to diverse abiotic stresses. Based on qRT-PCR analysis, VdDELLA2 might act as a key regulator in V. darrowii in response to salt stress, whereas VdDELLA1 and VdDELLA2 might play an essential role in cold stress response. Under drought stress, all of three VdDELLA genes were involved in mediating drought response. Furthermore, their transiently co-localization with nuclear markers in A. thaliana protoplasts demonstrated their transcriptional regulator roles. CONCLUSIONS In this study, three VdDELLA genes were identified in V. darrowii genome. Three VdDELLA genes were closely related to the C. moschata DELLA genes, S. lycopersicum DELLA genes, and M. domestica DELLA genes, respectively, indicating their similar biological functions. Expression analysis indicated that VdDELLA genes were highly efficient in blueberry fruit development. Expression patterns under different stress conditions revealed the differentially expressed VdDELLA genes responding to salt, drought, and cold stress. Overall, these results enrich our understanding of evolutionary relationship and potential functions of VdDELLA genes, which provide valuable information for further studies on genetic improvement of the plant yield and plant resistance.
Collapse
Affiliation(s)
- Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China.
| | - Yanwen Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Xinyu Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Rui Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
- Bestplant (Shandong) Stem Cell Engineering Co., Ltd, 300 Changjiang Road, Yantai, 264001, China.
| |
Collapse
|
6
|
Mei C, Li X, Yan P, Feng B, Mamat A, Wang J, Li N. Identification of Apple Flower Development-Related Gene Families and Analysis of Transcriptional Regulation. Int J Mol Sci 2024; 25:7510. [PMID: 39062752 PMCID: PMC11277112 DOI: 10.3390/ijms25147510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Apple (Malus domestica Borkh.) stands out as a globally significant fruit tree with considerable economic importance. Nonetheless, the orchard production of 'Fuji' apples faces significant challenges, including delayed flowering in young trees and inconsistent annual yields in mature trees, ultimately resulting in suboptimal fruit yield due to insufficient flower bud formation. Flower development represents a pivotal process influencing plant adaptation to environmental conditions and is a crucial determinant of successful plant reproduction. The three gene or transcription factor (TF) families, C2H2, DELLA, and FKF1, have emerged as key regulators in plant flowering regulation; however, understanding their roles during apple flowering remains limited. Consequently, this study identified 24 MdC2H2, 6 MdDELLA, and 6 MdFKF1 genes in the apple genome with high confidence. Through phylogenetic analyses, the genes within each family were categorized into three distinct subgroups, with all facets of protein physicochemical properties and conserved motifs contingent upon subgroup classification. Repetitive events between these three gene families within the apple genome were elucidated via collinearity analysis. qRT-PCR analysis was conducted and revealed significant expression differences among MdC2H2-18, MdDELLA1, and MdFKF1-4 during apple bud development. Furthermore, yeast two-hybrid analysis unveiled an interaction between MdC2H2-18 and MdDELLA1. The genome-wide identification of the C2H2, DELLA, and FKF1 gene families in apples has shed light on the molecular mechanisms underlying apple flower bud development.
Collapse
Affiliation(s)
- Chuang Mei
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Xianguo Li
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Peng Yan
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Beibei Feng
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Aisajan Mamat
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Jixun Wang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Ning Li
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (C.M.); (X.L.); (P.Y.); (B.F.); (A.M.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| |
Collapse
|
7
|
Garg R, Mahato H, Choudhury U, Thakur RS, Debnath P, Ansari NG, Sane VA, Sane AP. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:848-862. [PMID: 38127946 PMCID: PMC10955490 DOI: 10.1111/pbi.14228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.
Collapse
Affiliation(s)
- Rashmi Garg
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Hrishikesh Mahato
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Upasana Choudhury
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ravindra S. Thakur
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Pratima Debnath
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Nasreen G. Ansari
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Vidhu A. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
8
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
9
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
10
|
Prabhakar R, Gupta A, Singh R, Sane AP. Suppression of SlDREB3 increases leaf ABA responses and promotes drought tolerance in transgenic tomato plants. Biochem Biophys Res Commun 2023; 681:136-143. [PMID: 37774571 DOI: 10.1016/j.bbrc.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Drought susceptibility is a major yield limiting factor in agricultural crops especially in hybrids/varieties that have been bred for high yields. We show that manipulation of the SlDREB3 gene in tomato alters ABA responses and thereby sensitivity of stomatal closure to ABA. SlDREB3 suppression lines show ABA hypersensitivity and rapid stomatal closure in response to ABA while over-expression lines show reduced sensitivity to ABA and open stomata even at high ABA levels with rapid water loss after 10 days of water stress. This is accompanied with high ROS levels and increased membrane damage due to senescence of leaves and drastically reduced survival in drought. The relative water content (RWC) of OEx lines is much reduced even when grown under well-watered conditions. In contrast, suppression lines show greater tolerance to water stress and almost complete survival to 10-day water stress. They show much reduced ROS levels, reduced membrane damage, higher RWC and reduced leaf water loss. These changes are associated with higher expression of ABA signalling pathway genes in suppression lines while these are highly reduced in OEx lines. The studies suggest that control of ABA signalling by SlDREB3 can help in withstanding severe drought.
Collapse
Affiliation(s)
- Rakhi Prabhakar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India
| | - Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rambir Singh
- Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India; Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, 796004, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Reig C, García-Lorca A, Martínez-Fuentes A, Mesejo C, Agustí M. Warm temperature during floral bud transition turns off EjTFL1 gene expression and promotes flowering in Loquat (Eriobotrya japonica Lindl.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111810. [PMID: 37500016 DOI: 10.1016/j.plantsci.2023.111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
The Rosaceae family includes several deciduous woody species whose flower development extends over two consecutive growing seasons with a winter dormant period in between. Loquat (Eriobotrya japonica Lindl.) belongs to this family, but it is an evergreen species whose flower bud initiation and flowering occur within the same growing year. Vegetative growth dominates from spring to late summer when terminal buds bloom as panicles. Thus, its floral buds do not undergo winter dormancy until flowering, but a summer heat period of dormancy is required for floral bud differentiation, and that is why we used loquat to study the mechanism by which this summer rest period contributes to floral differentiation of Rosaceae species. As for the deciduous species, the bud transition to the generative stage is initiated by the floral integrator genes. There is evidence that combinations of environmental signals and internal cues (plant hormones) control the expression of TFL1, but the mechanism by which this gene regulates its expression in loquat needs to be clarified for a better understanding of its floral initiation and seasonal growth cycles. Under high temperatures (>25ºC) after floral bud inductive period, EjTFL1 expression decreases during meristem transition to the reproductive stage, and the promoters of flowering (EjAP1 and EjLFY) increase, indicating that the floral bud differentiation is affected by high temperatures. Monitoring the apical meristem of loquat in June-August of two consecutive years under ambient and thermal controlled conditions showed that under lower temperatures (<25ºC) during the same period, shoot apex did not stop growing and a higher EjTFL1 expression was recorded, preventing the bud to flower. Likewise, temperature directly affects ABA content in the meristem paralleling EjTFL1 expression, suggesting signaling cascades could converge to refine the expression of EjTFL1 under specific conditions (Tª<25ºC) during the floral transition stage.
Collapse
Affiliation(s)
- Carmina Reig
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain.
| | - Ana García-Lorca
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Amparo Martínez-Fuentes
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Carlos Mesejo
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Manuel Agustí
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain
| |
Collapse
|
12
|
Zeng D, Si C, Teixeira da Silva JA, Shi H, Chen J, Huang L, Duan J, He C. Uncovering the involvement of DoDELLA1-interacting proteins in development by characterizing the DoDELLA gene family in Dendrobium officinale. BMC PLANT BIOLOGY 2023; 23:93. [PMID: 36782128 PMCID: PMC9926750 DOI: 10.1186/s12870-023-04099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | | | - Hongyu Shi
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
| |
Collapse
|
13
|
Shohat H, Cheriker H, Cohen A, Weiss D. Tomato ABA-IMPORTING TRANSPORTER 1.1 inhibits seed germination under high salinity conditions. PLANT PHYSIOLOGY 2023; 191:1404-1415. [PMID: 36449559 PMCID: PMC9922386 DOI: 10.1093/plphys/kiac545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 05/27/2023]
Abstract
The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Amir Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
14
|
How Changes in ABA Accumulation and Signaling Influence Tomato Drought Responses and Reproductive Development. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Water deficit conditions trigger the production of a chemical signal, the phytohormone abscisic acid (ABA), which coordinates multiple responses at different temporal and spatial scales. Despite the complexity of natural drought conditions, the modulation of ABA signaling could be harnessed to ameliorate the drought performances of crops in the face of increasingly challenging climate conditions. Based on recent studies, increasing ABA sensitivity can lead to genotypes with improved drought resistance traits, with sustained biomass production in water-limiting environments and little or no costs with respect to biomass production under optimal conditions. However, variations in ABA production and sensitivity lead to changes in various aspects of reproductive development, including flowering time. Here we provide an updated summary of the literature on ABA-related genes in tomato and discuss how their manipulation can impact water-deficit-related responses and/or other developmental traits. We suggest that a better understanding of specific ABA components’ function or their expression may offer novel tools to specifically engineer drought resistance without affecting developmental traits.
Collapse
|
15
|
The monitoring of plant physiology and ecology:from materials to flexible devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Genome-Wide Identification, Expression and Interaction Analysis of GmSnRK2 and Type A PP2C Genes in Response to Abscisic Acid Treatment and Drought Stress in Soybean Plant. Int J Mol Sci 2022; 23:ijms232113166. [PMID: 36361951 PMCID: PMC9653956 DOI: 10.3390/ijms232113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.
Collapse
|
17
|
Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid. Essays Biochem 2022; 66:657-671. [PMID: 35848080 PMCID: PMC9528083 DOI: 10.1042/ebc20210089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation. We highlight recent advances in our understanding of the complex phytohormone networks with less focus on archetypal immunity-related pathways and discuss protein and transcription factor signalling hubs that mediate hormone interplay.
Collapse
|
18
|
Ptošková K, Szecówka M, Jaworek P, Tarkowská D, Petřík I, Pavlović I, Novák O, Thomas SG, Phillips AL, Hedden P. Changes in the concentrations and transcripts for gibberellins and other hormones in a growing leaf and roots of wheat seedlings in response to water restriction. BMC PLANT BIOLOGY 2022; 22:284. [PMID: 35676624 PMCID: PMC9178827 DOI: 10.1186/s12870-022-03667-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is a major source of nutrition globally, but yields can be seriously compromised by water limitation. Redistribution of growth between shoots and roots is a common response to drought, promoting plant survival, but reducing yield. Gibberellins (GAs) are necessary for shoot and root elongation, but roots maintain growth at lower GA concentrations compared with shoots, making GA a suitable hormone for mediating this growth redistribution. In this study, the effect of progressive drought on GA content was determined in the base of the 4th leaf and root tips of wheat seedlings, containing the growing regions, as well as in the remaining leaf and root tissues. In addition, the contents of other selected hormones known to be involved in stress responses were determined. Transcriptome analysis was performed on equivalent tissues and drought-associated differential expression was determined for hormone-related genes. RESULTS After 5 days of applying progressive drought to 10-day old seedlings, the length of leaf 4 was reduced by 31% compared with watered seedlings and this was associated with significant decreases in the concentrations of bioactive GA1 and GA4 in the leaf base, as well as of their catabolites and precursors. Root length was unaffected by drought, while GA concentrations were slightly, but significantly higher in the tips of droughted roots compared with watered plants. Transcripts for the GA-inactivating gene TaGA2ox4 were elevated in the droughted leaf, while those for several GA-biosynthesis genes were reduced by drought, but mainly in the non-growing region. In response to drought the concentrations of abscisic acid, cis-zeatin and its riboside increased in all tissues, indole-acetic acid was unchanged, while trans-zeatin and riboside, jasmonate and salicylic acid concentrations were reduced. CONCLUSIONS Reduced leaf elongation and maintained root growth in wheat seedlings subjected to progressive drought were associated with attenuated and increased GA content, respectively, in the growing regions. Despite increased TaGA2ox4 expression, lower GA levels in the leaf base of droughted plants were due to reduced biosynthesis rather than increased catabolism. In contrast to GA, the other hormones analysed responded to drought similarly in the leaf and roots, indicating organ-specific differential regulation of GA metabolism in response to drought.
Collapse
Affiliation(s)
- Klára Ptošková
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Marek Szecówka
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Jaworek
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Stephen G Thomas
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Andrew L Phillips
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Peter Hedden
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
- Department of Plant Science, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
19
|
Watanabe S, Kanno Y, Seo M. Screening of ABA Transporters by a Yeast Two-Hybrid System-Based Screening Using the Receptor Complex as a Sensor. Methods Mol Biol 2022; 2462:85-99. [PMID: 35152382 DOI: 10.1007/978-1-0716-2156-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) is a plant hormone that is involved in many physiological events and is present in most plant tissues. How ABA moves within plants has not been well understood. To characterize the physiological consequences as well as the underlying molecular events responsible for ABA movement, it is crucial to identify the transporter proteins. Several approaches have been successful in identifying ABA transporters. In this chapter, we outline a methodology to directly identify proteins capable of transporting ABA in a heterologous yeast system. In our assay, the ABA receptor [PYRABACTIN RESISTANCE1 (PYR1) and PYR1-LIKE (PYL), also known as REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR)] and the protein phosphatases of type 2C (PP2C) coreceptor interact in an ABA-dependent manner. A yeast two-hybrid (Y2H) system is used to monitor interactions between the receptor and PP2C and, hence, the ABA concentration in the yeast cells. Screening cDNAs that induce or inhibit the receptor-PP2C interaction in the presence of ABA allows us to identify candidate transporters. ABA transport activities of the putative transporter proteins can be validated by quantifying hormone levels in the yeast cells using liquid chromatography tandem-mass spectrometry (LC-MS/MS).
Collapse
Affiliation(s)
- Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| |
Collapse
|
20
|
Shohat H, Cheriker H, Kilambi HV, Illouz Eliaz N, Blum S, Amsellem Z, Tarkowská D, Aharoni A, Eshed Y, Weiss D. Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term 'drought avoidance' responses in tomato. THE NEW PHYTOLOGIST 2021; 232:1985-1998. [PMID: 34541677 DOI: 10.1111/nph.17709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these 'drought avoidance' responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants' smaller canopy areas. The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Himabindu Vasuki Kilambi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Natanella Illouz Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Shula Blum
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Ziva Amsellem
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
21
|
Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. MOLECULAR HORTICULTURE 2021; 1:15. [PMID: 37789477 PMCID: PMC10515025 DOI: 10.1186/s43897-021-00019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 10/05/2023]
Abstract
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Natanella Illouz Eliaz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
22
|
Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, Egbaria A, Ripper D, Charrier L, Belew ZM, Wulff N, Damodaran S, Nour-Eldin HH, Aharoni A, Ragni L, Strader L, Sade N, Weinstain R, Geisler M, Shani E. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. SCIENCE ADVANCES 2021; 7:eabf6069. [PMID: 34669479 PMCID: PMC8528425 DOI: 10.1126/sciadv.abf6069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effects of abscisic acid (ABA) on plant growth, development, and response to the environment depend on local ABA concentrations. Here, we show that in Arabidopsis, ABA homeostasis is regulated by two previously unknown ABA transporters. Adenosine triphosphate–binding cassette subfamily G member 17 (ABCG17) and ABCG18 are localized to the plasma membranes of leaf mesophyll and cortex cells to redundantly promote ABA import, leading to conjugated inactive ABA sinks, thus restricting stomatal closure. ABCG17 and ABCG18 double knockdown revealed that the transporters encoded by these genes not only limit stomatal aperture size, conductance, and transpiration while increasing water use efficiency but also control ABA translocation from the shoot to the root to regulate lateral root emergence. Under abiotic stress conditions, ABCG17 and ABCG18 are transcriptionally repressed, promoting active ABA movement and response. The transport mechanism mediated by ABCG17 and ABCG18 allows plants to maintain ABA homeostasis under normal growth conditions.
Collapse
Affiliation(s)
- Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Himabindu Vasuki Kilambi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Hamutal Bar
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shani Lazary
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Dagmar Ripper
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Laurence Charrier
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Nikolai Wulff
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | | | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Laura Ragni
- ZMBP-Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding author.
| |
Collapse
|
23
|
Anfang M, Shani E. Transport mechanisms of plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102055. [PMID: 34102450 PMCID: PMC7615258 DOI: 10.1016/j.pbi.2021.102055] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 05/27/2023]
Abstract
Plant growth, development, and response to the environment are mediated by a group of small signaling molecules named hormones. Plants regulate hormone response pathways at multiple levels, including biosynthesis, metabolism, perception, and signaling. In addition, plants exhibit the unique ability to spatially control hormone distribution. In recent years, multiple transporters have been identified for most of the plant hormones. Here we present an updated snapshot of the known transporters for the hormones abscisic acid, auxin, brassinosteroid, cytokinin, ethylene, gibberellin, jasmonic acid, salicylic acid, and strigolactone. We also describe new findings regarding hormone movement and elaborate on hormone substrate specificity and possible genetic redundancy in hormone transport and distribution. Finally, we discuss subcellular, cell-to-cell, and long-distance hormone movement and local hormone sinks that trigger or prevent hormone-mediated responses.
Collapse
Affiliation(s)
- Moran Anfang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
24
|
Shimizu T, Kanno Y, Suzuki H, Watanabe S, Seo M. Arabidopsis NPF4.6 and NPF5.1 Control Leaf Stomatal Aperture by Regulating Abscisic Acid Transport. Genes (Basel) 2021; 12:genes12060885. [PMID: 34201150 PMCID: PMC8227765 DOI: 10.3390/genes12060885] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is actively synthesized in vascular tissues and transported to guard cells to promote stomatal closure. Although several transmembrane ABA transporters have been identified, how the movement of ABA within plants is regulated is not fully understood. In this study, we determined that Arabidopsis NPF4.6, previously identified as an ABA transporter expressed in vascular tissues, is also present in guard cells and positively regulates stomatal closure in leaves. We also found that mutants defective in NPF5.1 had a higher leaf surface temperature compared to the wild type. Additionally, NPF5.1 mediated cellular ABA uptake when expressed in a heterologous yeast system. Promoter activities of NPF5.1 were detected in several leaf cell types. Taken together, these observations indicate that NPF5.1 negatively regulates stomatal closure by regulating the amount of ABA that can be transported from vascular tissues to guard cells.
Collapse
Affiliation(s)
- Takafumi Shimizu
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Hiromi Suzuki
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan; (T.S.); (Y.K.); (H.S.); (S.W.)
- Correspondence:
| |
Collapse
|