1
|
Yang J, Chen J, He X, Wang G, Barrett SCH, Li Z. The Monochoria genome provides insights into the molecular mechanisms underlying floral heteranthery. J Genet Genomics 2025:S1673-8527(25)00055-4. [PMID: 40020913 DOI: 10.1016/j.jgg.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/03/2025]
Abstract
Heteranthery, the occurrence of functionally and structurally distinct stamens within a flower, represents a striking example of convergent evolution among diverse animal-pollinated lineages. Although the ecological basis of this somatic polymorphism is understood, the developmental and molecular mechanisms are largely unknown. To address this knowledge gap, we selected Monochoria elata (Pontederiaceae) as our study system due to its typical heterantherous floral structure. We constructed a chromosome-level genome assembly of M. elata, conducted transcriptomic analyses and target phytohormone metabolome analysis to explore gene networks and hormones associated with heteranthery. We focused on three key stamen characteristics-colour, spatial patterning, and filament elongation-selected for their significant roles in stamen differentiation and their relevance to the functional diversity observed in heterantherous species. Our analyses suggest that gene networks involving MelLEAFY3, MADS-box, and TCP genes regulate stamen identity, with anthocyanin influencing colour, and lignin contributing to filament elongation. Additionally, variation in jasmonic acid and abscisic acid concentration between feeding and pollinating anthers appears to contribute to their morphological divergence. Our findings highlight gene networks and hormones associated with intra-floral stamen differentiation and indicate that whole genome duplications have likely facilitated the evolution of heteranthery during divergence from other Pontederiaceae without heteranthery.
Collapse
Affiliation(s)
- Jingshan Yang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Xiangyan He
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangxi Wang
- Laboratory of Plant Conservation Science, Faculty of Agriculture, Meijo University, Aichi 468-8502, Japan
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada.
| | - Zhizhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Yang Y, Sun M, Yuan C, Zhang Q. ECE-CYC1 Transcription Factor CmCYC1a May Interact with CmCYC2 in Regulating Flower Symmetry and Stamen Development in Chrysanthemum morifolium. Genes (Basel) 2025; 16:152. [PMID: 40004481 PMCID: PMC11855172 DOI: 10.3390/genes16020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The attractive inflorescence of Chrysanthemum morifolium, its capitulum, is always composed of ray (female, zygomorphy) and disc (bisexual, actinomorphy) florets, but the formation mechanism remains elusive. The gene diversification pattern of the ECE (CYC/TB1) clade has been speculated to correlate with the capitulum. Within the three subclades of ECE, the involvement of CYC2 in defining floret identity and regulating flower symmetry has been demonstrated in many species of Asteraceae, including C. morifolium. Differential expression of the other two subclade genes, CYC1 and CYC3, in different florets has been reported in other Asteraceae groups, yet their functions in flower development have not been investigated. METHODS Here, a CYC1 gene, CmCYC1a, was isolated and its expression pattern was studied in C. morifolium. The function of CmCYC1a was identified with gene transformation in Arabidopsis thaliana and yeast two-hybrid (Y2H) assays were performed to explore the interaction between CmCYC1 and CmCYC2. RESULTS CmCYC1a was expressed at higher levels in disc florets than in ray florets and the expression of CmCYC1a was increased in both florets during the flowering process. Overexpression of CmCYC1a in A. thaliana changed flower symmetry from actinomorphic to zygomorphic, with fewer stamens. Furthermore, CmCYC1a could interact with CmCYC2b, CmCYC2d, and CmCYC2f in Y2H assays. CONCLUSIONS The results provide evidence for the involvement of CmCYC1a in regulating flower symmetry and stamen development in C. morifolium and deepen our comprehension of the contributions of ECE genes in capitulum formation.
Collapse
Affiliation(s)
- Yi Yang
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Fei L, Liu J, Liao Y, Sharif R, Liu F, Lei J, Chen G, Zhu Z, Chen C. The CaABCG14 transporter gene regulates the capsaicin accumulation in Pepper septum. Int J Biol Macromol 2024; 280:136122. [PMID: 39343282 DOI: 10.1016/j.ijbiomac.2024.136122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Capsaicin (CAP), a crucial compound found in chili peppers, not only contributes to their spicy flavor but also possesses several industrial applications. CAP biosynthetic pathway is well known, while its transport mechanism remains elusive. Herein, we performed a comparative transcriptome analysis conducted on pepper fruit tissues at three different stages of development. Four important CAP transporter genes, including one MATE and three ABCs, were identified by differential expression and WGCNA analysis. Specifically, the expression patterns of three ABC genes were assessed in the septum of fruits from nine distinct genotypes of peppers with high capsaicin levels. Interestingly, CaABCG14 was associated with variations in CAP concentration and co-expressed with genes involved in CAP biosynthesis. Transient expression assay revealed that CaABCG14 is localized to the membrane and nucleus. Silencing of CaABCG14 resulted in a notable reduction in the levels of CAP contents and the expression of its biosynthetic genes in the septum of pepper. The overexpression of CaABCG14 greatly intensified the cytotoxic effects of CAP on the yeast cells. Taken together, we for the first time identified a new transporter gene CaABCG14, regulating the CAP accumulation in pepper septum. These findings offer a fresh molecular theoretical framework for CAP transport and accumulation.
Collapse
Affiliation(s)
- Liuying Fei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiarong Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Liao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Feng Liu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jianjun Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guoju Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhangsheng Zhu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Changming Chen
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Wang Q, Su Z, Chen J, Chen W, He Z, Wei S, Yang J, Zou J. HaMADS3, HaMADS7, and HaMADS8 are involved in petal prolongation and floret symmetry establishment in sunflower ( Helianthus annuus L.). PeerJ 2024; 12:e17586. [PMID: 38974413 PMCID: PMC11225715 DOI: 10.7717/peerj.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhou Su
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jing Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Weiying Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhuoyuan He
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Shuhong Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jun Yang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jian Zou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
5
|
Zhang G, Yang J, Zhang C, Jiao B, Panero JL, Cai J, Zhang ZR, Gao LM, Gao T, Ma H. Nuclear phylogenomics of Asteraceae with increased sampling provides new insights into convergent morphological and molecular evolution. PLANT COMMUNICATIONS 2024; 5:100851. [PMID: 38409784 PMCID: PMC11211554 DOI: 10.1016/j.xplc.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Convergent morphological evolution is widespread in flowering plants, and understanding this phenomenon relies on well-resolved phylogenies. Nuclear phylogenetic reconstruction using transcriptome datasets has been successful in various angiosperm groups, but it is limited to taxa with available fresh materials. Asteraceae, which are one of the two largest angiosperm families and are important for both ecosystems and human livelihood, show multiple examples of convergent evolution. Nuclear Asteraceae phylogenies have resolved relationships among most subfamilies and many tribes, but many phylogenetic and evolutionary questions regarding subtribes and genera remain, owing to limited sampling. Here, we increased the sampling for Asteraceae phylogenetic reconstruction using transcriptomes and genome-skimming datasets and produced nuclear phylogenetic trees with 706 species representing two-thirds of recognized subtribes. Ancestral character reconstruction supports multiple convergent evolutionary events in Asteraceae, with gains and losses of bilateral floral symmetry correlated with diversification of some subfamilies and smaller groups, respectively. Presence of the calyx-related pappus may have been especially important for the success of some subtribes and genera. Molecular evolutionary analyses support the likely contribution of duplications of MADS-box and TCP floral regulatory genes to innovations in floral morphology, including capitulum inflorescences and bilaterally symmetric flowers, potentially promoting the diversification of Asteraceae. Subsequent divergences and reductions in CYC2 gene expression are related to the gain and loss of zygomorphic flowers. This phylogenomic work with greater taxon sampling through inclusion of genome-skimming datasets reveals the feasibility of expanded evolutionary analyses using DNA samples for understanding convergent evolution.
Collapse
Affiliation(s)
- Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA; State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junbo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Caifei Zhang
- Wuhan Botanical Garden and Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bohan Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - José L Panero
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jie Cai
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhi-Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Lijiang National Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan 674100, China.
| | - Tiangang Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hong Ma
- Department of Biology, the Huck Institute of the Life Sciences, the Pennsylvania State University, State College, PA 16801, USA.
| |
Collapse
|
6
|
Su X, Zheng J, Diao X, Yang Z, Yu D, Huang F. MtTCP18 Regulates Plant Structure in Medicago truncatula. PLANTS (BASEL, SWITZERLAND) 2024; 13:1012. [PMID: 38611541 PMCID: PMC11013128 DOI: 10.3390/plants13071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Plant structure has a large influence on crop yield formation, with branching and plant height being the important factors that make it up. We identified a gene, MtTCP18, encoding a TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factor highly conserved with Arabidopsis gene BRC1 (BRANCHED1) in Medicago truncatula. Sequence analysis revealed that MtTCP18 included a conserved basic helix-loop-helix (BHLH) motif and R domain. Expression analysis showed that MtTCP18 was expressed in all organs examined, with relatively higher expression in pods and axillary buds. Subcellular localization analysis showed that MtTCP18 was localized in the nucleus and exhibited transcriptional activation activity. These results supported its role as a transcription factor. Meanwhile, we identified a homozygous mutant line (NF14875) with a mutation caused by Tnt1 insertion into MtTCP18. Mutant analysis showed that the mutation of MtTCP18 altered plant structure, with increased plant height and branch number. Moreover, we found that the expression of auxin early response genes was modulated in the mutant. Therefore, MtTCP18 may be a promising candidate gene for breeders to optimize plant structure for crop improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Huang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture, Zhongshan Biological Breeding Laboratory (ZSBBL), National Innovation Platform for Soybean Breeding and Industry-Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China; (X.S.); (J.Z.); (X.D.); (Z.Y.); (D.Y.)
| |
Collapse
|
7
|
Zhang T, Elomaa P. Development and evolution of the Asteraceae capitulum. THE NEW PHYTOLOGIST 2024; 242:33-48. [PMID: 38361269 DOI: 10.1111/nph.19590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula. We focus on new results on patterning of the enlarged meristem resulting in the iconic phyllotactic arrangement of florets in Fibonacci numbers of spirals. We also summarize the current understanding of the genetic networks regulating the characteristic reproductive traits in the family such as floral dimorphism and differentiation of highly specialized floral organs. So far, developmental studies in Asteraceae are still limited to a very narrow selection of model species. Along with the recent advancements in genomics and phylogenomics, Asteraceae and its relatives provide an outstanding model clade for extended evo-devo studies to exploit the morphological diversity and the underlying molecular networks and to translate this knowledge to the breeding of the key crops in the family.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| |
Collapse
|
8
|
Wei X, Yuan M, Zheng BQ, Zhou L, Wang Y. Genome-wide identification and characterization of TCP gene family in Dendrobium nobile and their role in perianth development. FRONTIERS IN PLANT SCIENCE 2024; 15:1352119. [PMID: 38375086 PMCID: PMC10875090 DOI: 10.3389/fpls.2024.1352119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
TCP is a widely distributed, essential plant transcription factor that regulates plant growth and development. An in-depth study of TCP genes in Dendrobium nobile, a crucial parent in genetic breeding and an excellent model material to explore perianth development in Dendrobium, has not been conducted. We identified 23 DnTCP genes unevenly distributed across 19 chromosomes and classified them as Class I PCF (12 members), Class II: CIN (10 members), and CYC/TB1 (1 member) based on the conserved domain and phylogenetic analysis. Most DnTCPs in the same subclade had similar gene and motif structures. Segmental duplication was the predominant duplication event for TCP genes, and no tandem duplication was observed. Seven genes in the CIN subclade had potential miR319 and -159 target sites. Cis-acting element analysis showed that most DnTCP genes contained many developmental stress-, light-, and phytohormone-responsive elements in their promoter regions. Distinct expression patterns were observed among the 23 DnTCP genes, suggesting that these genes have diverse regulatory roles at different stages of perianth development or in different organs. For instance, DnTCP4 and DnTCP18 play a role in early perianth development, and DnTCP5 and DnTCP10 are significantly expressed during late perianth development. DnTCP17, 20, 21, and 22 are the most likely to be involved in perianth and leaf development. DnTCP11 was significantly expressed in the gynandrium. Specially, MADS-specific binding sites were present in most DnTCP genes putative promoters, and two Class I DnTCPs were in the nucleus and interacted with each other or with the MADS-box. The interactions between TCP and the MADS-box have been described for the first time in orchids, which broadens our understanding of the regulatory network of TCP involved in perianth development in orchids.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Zhu Y, Liu Y, Wang W, Li H, Liu C, Dou L, Wei L, Cheng W, Bao M, Yi Q, He Y. Identification and characterization of CYC2-like genes related to floral symmetric development in Tagetes erecta (Asteraceae). Gene 2023; 889:147804. [PMID: 37716585 DOI: 10.1016/j.gene.2023.147804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Marigold (Tagetes erecta) is an annual herbaceous flower belonging to Asteraceae, whose capitulum is composed of bilateral symmetry ray florets on the outer periphery and radial symmetry disk florets on the inside. The flower symmetry evolution from radial symmetry to bilateral symmetry has changed the morphology, inflorescence architecture and function of florets among several lineages in Asteraceae. Several studies have identified that CYC2 genes in TCP transcription factor family are the key genes regulating the flower morphogenesis, such as corolla symmetry and stamen development. Here, seven TeCYC2 genes were cloned and phylogenetically grouped into the CYC2 branch of TCP transcription family. TeCYC2c and TeCYC2d were found to be expressed specifically in ray florets, TeCYC2b was strongly expressed in both ray and disk florets, TeCYC2g was significantly higher expressed in ray florets than in disk florets, while TeCYC2a, TeCYC2e1 and TeCYC2e2 were significantly expressed in disk florets, according to an examination of the expression profile. Among the ectopic expression lines of seven TeCYC2 genes in Arabidopsis thaliana, the flower symmetry of all transgenic lines was changed from radial symmetry to bilateral symmetry, and only the reproductive growth of TeCYC2c lines was affected. In TeCYC2c transgenic Arabidopsis, the pollen sac was difficult to crack, and the filaments were shorter than the pistils, resulting in a significant decrease in the seed setting rate. All TeCYC2 proteins were localized in the nucleus. Eight pairs of interactions between TeCYC2 proteins were validated by Y2H and BiFC assays, indicating the possibility of TeCYC2 proteins forming homodimers or heterodimers to improve functional specificity. Our findings verified the main regulatory role of TeCYC2c on the development of corollas and stamen in marigold, and analyzed the interaction network of the formation mechanism of floral symmetry in two florets, which provided more insights into the expansion of CYC2 genes in the evolution of Asteraceae inflorescence and contributed to elucidate the complex regulatory network, as well as the molecular breeding concerning flower form diversity in marigold.
Collapse
Affiliation(s)
- Yu Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Linlin Dou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ludan Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhan Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingping Yi
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen 448000, Hubei, China.
| | - Yanhong He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
11
|
Qiu T, Li S, Zhao K, Jia D, Chen F, Ding L. Morphological Characteristics and Expression Patterns of CmCYC2c of Different Flower Shapes in Chrysanthemum morifolium. PLANTS (BASEL, SWITZERLAND) 2023; 12:3728. [PMID: 37960083 PMCID: PMC10647454 DOI: 10.3390/plants12213728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
The chrysanthemum is widely used as a cut flower, potted flower, and garden flower worldwide and has high ornamental, edible, and medicinal value. The flower heads, composed of ray florets and disc florets, are the most diverse in terms of morphology among ornamental plants. Here, we compared and analyzed the developmental processes of different capitulum types as well as ray florets and disc florets. Morphological differentiation of the two florets occurred on the dorsal domain of the petals at stage Ⅳ of flower development, and differences in stamen development occurred at stage Ⅴ. The dorsal domain of the ray florets and the early stage of flower development were also an essential site and period, respectively, for the differences among capitulum types. In situ hybridization revealed that CmCYC2c, whose homologs are involved in the specification of floret identity in Asteraceae, was expressed in both the dorsal and ventral domains of the ray petals in the tubular-type chrysanthemum, whereas, it was differentially transcribed in the ray petals of flat- and spoon-type chrysanthemum cultivars and had lower or no expression in the dorsal domain and higher expression in the ventral domain at stage Ⅳ. Our study indicates that the expression pattern of CmCYC2c on the dorsal domain of the ray floret at stage Ⅳ contributes to the formation of diverse flower head types in chrysanthemums.
Collapse
Affiliation(s)
- Taijia Qiu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kunkun Zhao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Jia
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (T.Q.); (S.L.); (K.Z.); (D.J.); (F.C.)
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Wu X, Li J, Wen X, Zhang Q, Dai S. Genome-wide identification of the TCP gene family in Chrysanthemum lavandulifolium and its homologs expression patterns during flower development in different Chrysanthemum species. FRONTIERS IN PLANT SCIENCE 2023; 14:1276123. [PMID: 37841609 PMCID: PMC10570465 DOI: 10.3389/fpls.2023.1276123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
TCP proteins, part of the transcription factors specific to plants, are recognized for their involvement in various aspects of plant growth and development. Nevertheless, a thorough investigation of TCPs in Chrysanthemum lavandulifolium, a prominent ancestral species of cultivated chrysanthemum and an excellent model material for investigating ray floret (RF) and disc floret (DF) development in Chrysanthemum, remains unexplored yet. Herein, a comprehensive study was performed to analyze the genome-wide distribution of TCPs in C. lavandulifolium. In total, 39 TCPs in C. lavandulifolium were identified, showing uneven distribution on 8 chromosomes. Phylogenetic and gene structural analyses revealed that ClTCPs were grouped into classes I and II. The class II genes were subdivided into two subclades, the CIN and CYC/TB1 subclades, with members of each clade having similar conserved motifs and gene structures. Four CIN subclade genes (ClTCP24, ClTCP25, ClTCP26, and ClTCP27) contained the potential miR319 target sites. Promoter analysis revealed that ClTCPs had numerous cis-regulatory elements associated with phytohormone responses, stress responses, and plant growth/development. The expression patterns of ClTCPs during capitulum development and in two different florets were determined using RNA-seq and qRT-PCR. The expression levels of TCPs varied in six development stages of capitula; 25 out of the 36 TCPs genes were specifically expressed in flowers. Additionally, we identified six key ClCYC2 genes, which belong to the class II TCP subclade, with markedly upregulated expression in RFs compared with DFs, and these genes exhibited similar expression patterns in the two florets of Chrysanthemum species. It is speculated that they may be responsible for RFs and DFs development. Subcellular localization and transactivation activity analyses of six candidate genes demonstrated that all of them were localized in the nucleus, while three exhibited self-activation activities. This research provided a better understanding of TCPs in C. lavandulifolium and laid a foundation for unraveling the mechanism by which important TCPs involved in the capitulum development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junzhuo Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaohui Wen
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiuling Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Qin DD, Liu R, Xu F, Dong G, Xu Q, Peng Y, Xu L, Cheng H, Guo G, Dong J, Li C. Characterization of a barley ( Hordeum vulgare L.) mutant with multiple stem nodes and spikes and dwarf ( msnsd) and fine-mapping of its causal gene. FRONTIERS IN PLANT SCIENCE 2023; 14:1189743. [PMID: 37484471 PMCID: PMC10359901 DOI: 10.3389/fpls.2023.1189743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Introduction Multiple nodes and dwarf mutants in barley are a valuable resource for identifying genes that control shoot branching, vegetative growth and development. Methods In this study, physiological, microscopic and genetic analysis were conducted to characterize and fine-map the underling gene of a barley mutant with Multiple Stem Nodes and Spikes and Dwarf (msnsd), which was selected from EMS- and 60Co-treated barley cv. Edamai 934. Results and discussion The msnsd mutant had more stem nodes, lower plant height and a shorter plastochron than Edamai 934. Moreover, the mutant had two or more spikes on each tiller. Microscopic analysis showed that the dwarf phenotype of msnsd resulted from reduced cell lengths and cell numbers in the stem. Further physiological analysis showed that msnsd was GA3-deficient, with its plant height increasing after external GA3 application. Genetic analysis revealed that a single recessive nuclear gene, namely, HvMSNSD, controlled the msnsd phenotype. Using a segregating population derived from Harrington and the msnsd mutant, HvMSNSD was fine-mapped on chromosome 5H in a 200 kb interval using bulked segregant analysis (BSA) coupled with RNA-sequencing (BSR-seq), with a C-T substitution in the exon of HvTCP25 co-segregating with the msnsd phenotype. RNA-seq analysis showed that a gene encoding gibberellin 2-oxidase 8, a negative regulator of GA biosynthesis, was upregulated in the msnsd mutant. Several known genes related to inflorescence development that were also upregulated and enriched in the msnsd mutant. Collectively, we propose that HvMSNSD regulates the plastochron and morphology of reproductive organs, likely by coordinating GA homeostasis and changed expression of floral development related genes in barley. This study offers valuable insights into the molecular regulation of barley plant architecture and inflorescence development.
Collapse
Affiliation(s)
- Dandan D. Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Rui Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Le Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Hongna Cheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
14
|
Viola IL, Gonzalez DH. TCP Transcription Factors in Plant Reproductive Development: Juggling Multiple Roles. Biomolecules 2023; 13:biom13050750. [PMID: 37238620 DOI: 10.3390/biom13050750] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs) are plant-specific transcriptional regulators exerting multiple functions in plant growth and development. Ever since one of the founding members of the family was described, encoded by the CYCLOIDEA (CYC) gene from Antirrhinum majus and involved in the regulation of floral symmetry, the role of these TFs in reproductive development was established. Subsequent studies indicated that members of the CYC clade of TCP TFs were important for the evolutionary diversification of flower form in a multitude of species. In addition, more detailed studies of the function of TCPs from other clades revealed roles in different processes related to plant reproductive development, such as the regulation of flowering time, the growth of the inflorescence stem, and the correct growth and development of flower organs. In this review, we summarize the different roles of members of the TCP family during plant reproductive development as well as the molecular networks involved in their action.
Collapse
Affiliation(s)
- Ivana L Viola
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| |
Collapse
|
15
|
Zhao H, Liao H, Li S, Zhang R, Dai J, Ma P, Wang T, Wang M, Yuan Y, Fu X, Cheng J, Duan X, Xie Y, Zhang P, Kong H, Shan H. Delphinieae flowers originated from the rewiring of interactions between duplicated and diversified floral organ identity and symmetry genes. THE PLANT CELL 2023; 35:994-1012. [PMID: 36560915 PMCID: PMC10015166 DOI: 10.1093/plcell/koac368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Species of the tribe Delphinieae (Ranunculaceae) have long been the focus of morphological, ecological, and evolutionary studies due to their highly specialized, nearly zygomorphic (bilaterally symmetrical) spiral flowers with nested petal and sepal spurs and reduced petals. The mechanisms underlying the development and evolution of Delphinieae flowers, however, remain unclear. Here, by conducting extensive phylogenetic, comparative transcriptomic, expression, and functional studies, we clarified the evolutionary histories, expression patterns, and functions of floral organ identity and symmetry genes in Delphinieae. We found that duplication and/or diversification of APETALA3-3 (AP3-3), AGAMOUS-LIKE6 (AGL6), CYCLOIDEA (CYC), and DIVARICATA (DIV) lineage genes was tightly associated with the origination of Delphinieae flowers. Specifically, an AGL6-lineage member (such as the Delphinium ajacis AGL6-1a) represses sepal spur formation and petal development in the lateral and ventral parts of the flower while determining petal identity redundantly with AGL6-1b. By contrast, two CYC2-like genes, CYC2b and CYC2a, define the dorsal and lateral-ventral identities of the flower, respectively, and form complex regulatory links with AP3-3, AGL6-1a, and DIV1. Therefore, duplication and diversification of floral symmetry genes, as well as co-option of the duplicated copies into the preexisting floral regulatory network, have been key for the origin of Delphinieae flowers.
Collapse
Affiliation(s)
- Huiqi Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Hong Liao
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shuixian Li
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Dai
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Pengrui Ma
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tianpeng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meimei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Yi Yuan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuehao Fu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Jie Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yanru Xie
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
16
|
Advances in Research on the Regulation of Floral Development by CYC-like Genes. Curr Issues Mol Biol 2023; 45:2035-2059. [PMID: 36975501 PMCID: PMC10047570 DOI: 10.3390/cimb45030131] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes.
Collapse
|
17
|
Zeng J, Yang M, Deng J, Zheng D, Lai Z, Wang-Pruski G, XuHan X, Guo R. The function of BoTCP25 in the regulation of leaf development of Chinese kale. FRONTIERS IN PLANT SCIENCE 2023; 14:1127197. [PMID: 37143872 PMCID: PMC10151756 DOI: 10.3389/fpls.2023.1127197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/15/2023] [Indexed: 05/06/2023]
Abstract
XG Chinese kale (Brassica oleracea cv. 'XiangGu') is a variety of Chinese kale and has metamorphic leaves attached to the true leaves. Metamorphic leaves are secondary leaves emerging from the veins of true leaves. However, it remains unknown how the formation of metamorphic leaves is regulated and whether it differs from normal leaves. BoTCP25 is differentially expressed in different parts of XG leaves and respond to auxin signals. To clarify the function of BoTCP25 in XG Chinese kale leaves, we overexpressed BoTCP25 in XG and Arabidopsis, and interestingly, its overexpression caused Chinese kale leaves to curl and changed the location of metamorphic leaves, whereas heterologous expression of BoTCP25 in Arabidopsis did not show metamorphic leaves, but only an increase in leaf number and leaf area. Further analysis of the expression of related genes in Chinese kale and Arabidopsis overexpressing BoTCP25 revealed that BoTCP25 could directly bind the promoter of BoNGA3, a transcription factor related to leaf development, and induce a significant expression of BoNGA3 in transgenic Chinese kale plants, whereas this induction of NGA3 did not occur in transgenic Arabidopsis. This suggests that the regulation of Chinese kale metamorphic leaves by BoTCP25 is dependent on a regulatory pathway or elements specific to XG and that this regulatory element may be repressed or absent from Arabidopsis. In addition, the expression of miR319's precursor, a negative regulator of BoTCP25, also differed in transgenic Chinese kale and Arabidopsis. miR319's transcrips were significantly up-regulated in transgenic Chinese kale mature leaves, while in transgenic Arabidopsis, the expression of miR319 in mature leaves was kept low. In conclusion, the differential expression of BoNGA3 and miR319 in the two species may be related to the exertion of BoTCP25 function, thus partially contributing to the differences in leaf phenotypes between overexpressed BoTCP25 in Arabidopsis and Chinese kale.
Collapse
Affiliation(s)
- Jiajing Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengyu Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongyang Zheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gefu Wang-Pruski
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | - Xu XuHan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Faculté des sciences et de la technologie, Institut de la Recherche Interdiciplinaire de Toulouse (IRIT-ARI), Toulouse, France
| | - Rongfang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Rongfang Guo,
| |
Collapse
|
18
|
Fan J, Huang J, Pu Y, Niu Y, Zhang M, Dai S, Huang H. Transcriptomic analysis reveals the formation mechanism of anemone-type flower in chrysanthemum. BMC Genomics 2022; 23:846. [PMID: 36544087 PMCID: PMC9773529 DOI: 10.1186/s12864-022-09078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ray and disc florets on the chrysanthemum capitulum are morphologically diverse and have remarkably abundant variant types, resulting in a rich variety of flower types. An anemone shape with pigmented and elongated disk florets is an important trait in flower shape breeding of chrysanthemums. The regulatory mechanism of their anemone-type disc floret formation was not clear, thus limiting the directional breeding of chrysanthemum flower types. In this study, we used morphological observation, transcriptomic analysis, and gene expression to investigate the morphogenetic processes and regulatory mechanisms of anemone-type chrysanthemum. RESULT Scanning electron microscopy (SEM) observation showed that morphological differences between non-anemone-type disc florets and anemone-type disc florets occurred mainly during the petal elongation period. The anemone-type disc florets elongated rapidly in the later stages of development. Longitudinal paraffin section analysis revealed that the anemone-type disc florets were formed by a great number of cells in the middle layer of the petals with vigorous division. We investigated the differentially expressed genes (DEGs) using ray and disc florets of two chrysanthemum cultivars, 082 and 068, for RNA-Seq and their expression patterns of non-anemone-type and anemone-type disc florets. The result suggested that the CYCLOIDEA2 (CYC2s), MADS-box genes, and phytohormone signal-related genes appeared significantly different in both types of disc florets and might have important effects on the formation of anemone-type disc florets. In addition, it is noteworthy that the auxin and jasmonate signaling pathways might play a vital role in developing anemone-type disc florets. CONCLUSIONS Based on our findings, we propose a regulatory network for forming non-anemone-type and anemone-type disc florets. The results of this study lead the way to further clarify the mechanism of the anemone-type chrysanthemum formation and lay the foundation for the directive breeding of chrysanthemum petal types.
Collapse
Affiliation(s)
- Jiawei Fan
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Jialu Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Ya Pu
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - Yajing Niu
- National Bot Garden, Beijing, 100093 China
| | | | - Silan Dai
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| | - He Huang
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding By Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, 100083 China
| |
Collapse
|
19
|
Flower-like meristem conditions and spatial constraints shape architecture of floral pseudanthia in Apioideae. EvoDevo 2022; 13:19. [PMID: 36536450 PMCID: PMC9764545 DOI: 10.1186/s13227-022-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pseudanthia are multiflowered units that resemble single flowers, frequently by association with pseudocorollas formed by enlarged peripheral florets (ray flowers). Such resemblance is not only superficial, because numerous pseudanthia originate from peculiar reproductive meristems with flower-like characteristics, i.e. floral unit meristems (FUMs). Complex FUM-derived pseudanthia with ray flowers are especially common in Apiaceae, but our knowledge about their patterning is limited. In this paper, we aimed to investigate both the genetic and morphological basis of their development. RESULTS We analysed umbel morphogenesis with SEM in six species representing four clades of Apiaceae subfamily Apioideae with independently acquired floral pseudanthia. Additionally, using in situ hybridization, we investigated expression patterns of LEAFY (LFY), UNUSUAL FLORAL ORGANS (UFO), and CYCLOIDEA (CYC) during umbel development in carrot (Daucus carota subsp. carota). Here, we show that initial differences in size and shape of umbel meristems influence the position of ray flower formation, whereas an interplay between peripheral promotion and spatial constraints in umbellet meristems take part in the establishment of specific patterns of zygomorphy in ray flowers of Apiaceae. This space-dependent patterning results from flower-like morphogenetic traits of the umbel which are also visible at the molecular level. Transcripts of DcLFY are uniformly distributed in the incipient umbel, umbellet and flower meristems, while DcCYC shows divergent expression in central and peripheral florets. CONCLUSIONS Our results indicate that umbels develop from determinate reproductive meristems with flower-like characteristics, which supports their recognition as floral units. The great architectural diversity and complexity of pseudanthia in Apiaceae can be explained by the unique conditions of FUMs-an interplay between expression of regulatory genes, specific spatio-temporal ontogenetic constraints and morphogenetic gradients arising during expansion and repetitive fractionation. Alongside Asteraceae, umbellifers constitute an interesting model for investigation of patterning in complex pseudanthia.
Collapse
|
20
|
Damerval C, Claudot C, Le Guilloux M, Conde e Silva N, Brunaud V, Soubigou-Taconnat L, Caius J, Delannoy E, Nadot S, Jabbour F, Deveaux Y. Evolutionary analyses and expression patterns of TCP genes in Ranunculales. FRONTIERS IN PLANT SCIENCE 2022; 13:1055196. [PMID: 36531353 PMCID: PMC9752903 DOI: 10.3389/fpls.2022.1055196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
TCP transcription factors play a role in a large number of developmental processes and are at the crossroads of numerous hormonal biosynthetic and signaling pathways. The complete repertoire of TCP genes has already been characterized in several plant species, but not in any species of early diverging eudicots. We focused on the order Ranunculales because of its phylogenetic position as sister group to all other eudicots and its important morphological diversity. Results show that all the TCP genes expressed in the floral transcriptome of Nigella damascena (Ranunculaceae) are the orthologs of the TCP genes previously identified from the fully sequenced genome of Aquilegia coerulea. Phylogenetic analyses combined with the identification of conserved amino acid motifs suggest that six paralogous genes of class I TCP transcription factors were present in the common ancestor of angiosperms. We highlight independent duplications in core eudicots and Ranunculales within the class I and class II subfamilies, resulting in different numbers of paralogs within the main subclasses of TCP genes. This has most probably major consequences on the functional diversification of these genes in different plant clades. The expression patterns of TCP genes in Nigella damascena were consistent with the general suggestion that CIN and class I TCP genes may have redundant roles or take part in same pathways, while CYC/TB1 genes have more specific actions. Our findings open the way for future studies at the tissue level, and for investigating redundancy and subfunctionalisation in TCP genes and their role in the evolution of morphological novelties.
Collapse
Affiliation(s)
- Catherine Damerval
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Carmine Claudot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Martine Le Guilloux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Natalia Conde e Silva
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| | - Véronique Brunaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Ludivine Soubigou-Taconnat
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - José Caius
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Etienne Delannoy
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Sophie Nadot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Florian Jabbour
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yves Deveaux
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, IDEEV, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Zhang CJ, Rong YL, Jiang CK, Guo YP, Rao GY. Co-option of a carotenoid cleavage dioxygenase gene (CCD4a) into the floral symmetry gene regulatory network contributes to the polymorphic floral shape-color combinations in Chrysanthemum sensu lato. THE NEW PHYTOLOGIST 2022; 236:1197-1211. [PMID: 35719106 DOI: 10.1111/nph.18325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Morphological novelties, including formation of trait combinations, may result from de novo gene origination and/or co-option of existing genes into other developmental contexts. A variety of shape-color combinations of capitular florets occur in Chrysanthemum and its allies. We hypothesized that co-option of a carotenoid cleavage dioxygenase gene into the floral symmetry gene network would generate a white zygomorphic ray floret. We tested this hypothesis in an evolutionary context using species in Chrysanthemum sensu lato, a monophyletic group with diverse floral shape-color combinations, based on morphological investigation, interspecific crossing, molecular interaction and transgenic experiments. Our results showed that white color was significantly associated with floret zygomorphy. Specific expression of the carotenoid cleavage dioxygenase gene CCD4a in marginal florets resulted in white color. Crossing experiments between Chrysanthemum lavandulifolium and Ajania pacifica indicated that expression of CCD4a is trans-regulated. The floral symmetry regulator CYC2g can activate expression of CCD4a with a dependence on TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING (TCP) binding element 8 on the CCD4a promoter. Based on all experimental findings, we propose that gene co-option of carotenoid degradation into floral symmetry regulation, and the subsequent dysfunction or loss of either CYC2g or CCD4a, may have led to evolution of capitular shape-color patterning in Chrysanthemum sensu lato.
Collapse
Affiliation(s)
- Chu-Jie Zhang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Lin Rong
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chen-Kun Jiang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yan-Ping Guo
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, and College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Li X, Sun M, Jia Y, Qiu D, Peng Q, Zhuang L. Genetic control of the lateral petal shape and identity of asymmetric flowers in mungbean ( Vigna radiata L.). FRONTIERS IN PLANT SCIENCE 2022; 13:996239. [PMID: 36247614 PMCID: PMC9560771 DOI: 10.3389/fpls.2022.996239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Broad diversity of flowers in Fabaceae provides a good system to investigate development and evolution of floral symmetry in higher plants. Many studies have demonstrated a conserved mechanism controlling development of zygomorphic flower during last decades. However, the molecular basis of how asymmetric flower established is largely unknown. In this study, we characterized mutants named keeled wings (kw) in mungbean (Vigna radiata L.), which is a legume species with asymmetric flowers. Compared to those in the wild type plants, the lateral petals were ventralized in the kw mutants. Map-based cloning showed that KW was VrCYC3 gene in mungbean, the ortholog of Lotus japonicus CYC3 (LjCYC3) and Pisum sativum CYC3 (PsCYC3). In addition, another two CYC-like genes named VrCYC1 and VrCYC2 were identified from mungbean genome. The three CYC-like genes displayed distinct expression patterns in dorsal, lateral and ventral petals. It was found that VrCYC3 was located in nucleus. Further analysis showed that VrCYC3 had transcription activity and could interact with VrCYC1 and VrCYC2 in yeast cell. Moreover, the deletion of two amino acid residues in the R domain of VrCYC3 protein could decrease its interaction with VrCYC1 and VrCYC2 proteins. Our results suggest that LjCYC3/VrCYC3 orthologs play conserved roles determining the lateral petal shape and identity of zygomorphic flower as well as asymmetric flower in Papilionoideae.
Collapse
Affiliation(s)
- Xin Li
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Mingzhu Sun
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Yahui Jia
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Dan Qiu
- College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Qincheng Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lili Zhuang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Tanahara Y, Yamanaka K, Kawai K, Ando Y, Nakatsuka T. Establishment of an efficient transformation method of garden stock ( Matthiola incana) using a callus formation chemical inducer. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:273-280. [PMID: 36349235 PMCID: PMC9592952 DOI: 10.5511/plantbiotechnology.22.0602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Matthiola incana is an important floricultural plant that blooms from winter to spring, and had been desired to be established a transformation system. This study successfully obtained stable transgenic plants from M. incana. We used Agrobacterium tumefaciens harboring a binary vector containing the β-glucuronidase gene (GUS) under the control of cauliflower mosaic virus 35S promoter to evaluate the transformation frequency of M. incana. We observed that cocultivation with the A. tumefaciens strain GV3101 for 5 days effectively enhanced the infection frequency, assessed through a transient GUS expression area in the seedling. Furthermore, the addition of 100 µM acetosyringone was necessary for Agrobacterium infection. However, we could not obtain transgenic plants on a shoot formation medium supplemented with 1 mg l-1 6-benzyladenine (BA). For callus formation from the leaf sections, a medium supplemented with 1-50 µM fipexide (FPX), a novel callus induction chemical, was employed. Then, the callus formation was observed after 2 weeks, and an earlier response was detected than that in the BA medium (4-6 weeks). Results also showed that cultivation in a selection medium supplemented with 12.5 µM FPX obtained hygromycin-resistant calli. Thus, this protocol achieved a 0.7% transformation frequency. Similarly, progenies from one transgenic line were observed on the basis of GUS stains on their leaves, revealing that the transgenes were also inherited stably. Hence, FPX is considered a breakthrough for establishing the transformation protocol of M. incana, and its use is proposed in recalcitrant plants.
Collapse
Affiliation(s)
- Yoshiki Tanahara
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kaho Yamanaka
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kentaro Kawai
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Yukiko Ando
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
24
|
Zheng X, Lan J, Yu H, Zhang J, Zhang Y, Qin Y, Su XD, Qin G. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. PLANT COMMUNICATIONS 2022; 3:100309. [PMID: 35605201 PMCID: PMC9284284 DOI: 10.1016/j.xplc.2022.100309] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 05/06/2023]
Abstract
Green petals pose a challenge for pollinators to distinguish flowers from leaves, but they are valuable as a specialty flower trait. However, little is understood about the molecular mechanisms that underlie the development of green petals. Here, we report that CINCINNATA (CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) proteins play key roles in the control of petal color. The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation. Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17. We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development, whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals. TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions, consistent with the green-white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals. RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals, but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals. We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE (PORB), DIVINYL REDUCTASE (DVR), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), which are known to promote petal greening. We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species. Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
Collapse
Affiliation(s)
- Xinhui Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingqiu Lan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hao Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Jingzhe Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Yongmei Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
25
|
Integrative Analysis of miRNAs and Their Targets Involved in Ray Floret Growth in Gerbera hybrida. Int J Mol Sci 2022; 23:ijms23137296. [PMID: 35806310 PMCID: PMC9266715 DOI: 10.3390/ijms23137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and development at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop. However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study, we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret during inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during ray floret growth, and 607 differentially expressed target genes of these differentially expressed miRNAs were identified using psRNATarget. We performed a comprehensive analysis of the expression profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156, ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs were determined using 5′-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and anthocyanin accumulation in gerbera.
Collapse
|
26
|
Yu Z, Tian C, Guan Y, He J, Wang Z, Wang L, Lin S, Guan Z, Fang W, Chen S, Zhang F, Jiang J, Chen F, Wang H. Expression Analysis of TCP Transcription Factor Family in Autopolyploids of Chrysanthemum nankingense. FRONTIERS IN PLANT SCIENCE 2022; 13:860956. [PMID: 35720599 PMCID: PMC9201386 DOI: 10.3389/fpls.2022.860956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Autopolyploids often exhibit plant characteristics different from their diploid ancestors and are frequently associated with altered genes expression controlling growth and development. TCP is a unique transcription factor family in plants that is closely related to plant growth and development. Based on transcriptome sequencing of Chrysanthemum nankingense, 23 full-length TCP genes were cloned. The expression of CnTCP9 was most variable in tetraploids, at least threefold greater than diploids. Due to the lack of a C. nankingense transgenic system, we overexpressed CnTCP9 in Arabidopsis thaliana (Col-0) and Chrysanthemum morifolium. Overexpression of CnTCP9 caused enlargement of leaves in A. thaliana and petals in C. morifolium, and the expression of genes downstream of the GA pathway in C. morifolium were increased. Our results suggest that autopolyploidization of C. nankingense led to differential expression of TCP family genes, thereby affecting plant characteristics by the GA pathway. This study improves the understanding of enlarged plant size after autopolyploidization.
Collapse
|
27
|
Liang J, Wu Z, Zheng J, Koskela EA, Fan L, Fan G, Gao D, Dong Z, Hou S, Feng Z, Wang F, Hytönen T, Wang H. The GATA factor HANABA TARANU promotes runner formation by regulating axillary bud initiation and outgrowth in cultivated strawberry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1237-1254. [PMID: 35384101 DOI: 10.1111/tpj.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A runner, as an elongated branch, develops from the axillary bud (AXB) in the leaf axil and is crucial for the clonal propagation of cultivated strawberry (Fragaria × ananassa Duch.). Runner formation occurs in at least two steps: AXB initiation and AXB outgrowth. HANABA TARANU (HAN ) encodes a GATA transcription factor that affects AXB initiation in Arabidopsis and promotes branching in grass species, but the underlying mechanism is largely unknown. Here, the function of a strawberry HAN homolog FaHAN in runner formation was characterized. FaHAN transcripts can be detected in the leaf axils. Overexpression (OE) of FaHAN increased the number of runners, mainly by enhancing AXB outgrowth, in strawberry. The expression of the strawberry homolog of BRANCHED1 , a key inhibitor of AXB outgrowth in many plant species, was significantly downregulated in the AXBs of FaHAN -OE lines, whereas the expression of the strawberry homolog of SHOOT MERISTEMLESS, a marker gene for AXB initiation in Arabidopsis, was upregulated. Moreover, several genes of gibberellin biosynthesis and cytokinin signaling pathways were activated, whereas the auxin response pathway genes were repressed. Further assays indicated that FaHAN could be directly activated by FaNAC2, the overexpression of which in strawberry also increased the number of runners. The silencing of FaNAC2 or FaHAN inhibited AXB initiation and led to a higher proportion of dormant AXBs, confirming their roles in the control of runner formation. Taken together, our results revealed a FaNAC2-FaHAN pathway in the control of runner formation and have provided a means to enhance the vegetative propagation of cultivated strawberry.
Collapse
Affiliation(s)
- Jiahui Liang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Zheng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Elli A Koskela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Lingjiao Fan
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Shengfan Hou
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zekun Feng
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Feng Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Latokartanonkaari 7, 00790, Helsinki, Finland
- NIAB EMR, Kent, ME19 6BJ, UK
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
28
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
29
|
Baczyński J, Sauquet H, Spalik K. Exceptional evolutionary lability of flower-like inflorescences (pseudanthia) in Apiaceae subfamily Apioideae. AMERICAN JOURNAL OF BOTANY 2022; 109:437-455. [PMID: 35112711 PMCID: PMC9310750 DOI: 10.1002/ajb2.1819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
PREMISE Pseudanthia are widespread and have long been postulated to be a key innovation responsible for some of the angiosperm radiations. The aim of our study was to analyze macroevolutionary patterns of these flower-like inflorescences and their potential correlation with diversification rates in Apiaceae subfamily Apioideae. In particular, we were interested to investigate evolvability of pseudanthia and evaluate their potential association with changes in the size of floral display. METHODS The framework for our analyses consisted of a time-calibrated phylogeny of 1734 representatives of Apioideae and a morphological matrix of inflorescence traits encoded for 847 species. Macroevolutionary patterns in pseudanthia were inferred using Markov models of discrete character evolution and stochastic character mapping, and a principal component analysis was used to visualize correlations in inflorescence architecture. The interdependence between net diversification rates and the occurrence of pseudocorollas was analyzed with trait-independent and trait-dependent approaches. RESULTS Pseudanthia evolved in 10 major clades of Apioideae with at least 36 independent origins and 46 reversals. The morphospace analysis recovered differences in color and compactness between floral and hyperfloral pseudanthia. A correlation between pseudocorollas and size of inflorescence was also strongly supported. Contrary to our predictions, pseudanthia are not responsible for variation in diversification rates identified in this subfamily. CONCLUSIONS Our results suggest that pseudocorollas evolve as an answer to the trade-off between enlargement of floral display and costs associated with production of additional flowers. The high evolvability and architectural differences in apioid pseudanthia may be explained on the basis of adaptive wandering and evolutionary developmental biology.
Collapse
Affiliation(s)
- Jakub Baczyński
- Institute of Evolutionary Biology, Faculty of BiologyUniversity of Warsaw Biological and Chemical Research CentreWarsawPoland
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW)Royal Botanic Gardens and Domain TrustSydneyNSW2000Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
| | - Krzysztof Spalik
- Institute of Evolutionary Biology, Faculty of BiologyUniversity of Warsaw Biological and Chemical Research CentreWarsawPoland
| |
Collapse
|
30
|
Wang B, Hu W, Fang Y, Feng X, Fang J, Zou T, Zheng S, Ming R, Zhang J. Comparative Analysis of the MADS-Box Genes Revealed Their Potential Functions for Flower and Fruit Development in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 12:813798. [PMID: 35154209 PMCID: PMC8829350 DOI: 10.3389/fpls.2021.813798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important economic crop widely planted in tropical and subtropical regions, and flower and fruit development play decisive effects on the longan yield and fruit quality formation. MCM1, AGAMOUS, DEFICIENS, Serum Response Factor (MADS)-box transcription factor family plays important roles for the flowering time, floral organ identity, and fruit development in plants. However, there is no systematic information of MADS-box family in longan. In this study, 114 MADS-box genes were identified from the longan genome, phylogenetic analysis divided them into type I (Mα, Mβ, Mγ) and type II (MIKC*, MIKC C ) groups, and MIKC C genes were further clustered into 12 subfamilies. Comparative genomic analysis of 12 representative plant species revealed the conservation of type II in Sapindaceae and analysis of cis-elements revealed that Dof transcription factors might directly regulate the MIKC C genes. An ABCDE model was proposed for longan based on the phylogenetic analysis and expression patterns of MADS-box genes. Transcriptome analysis revealed that MIKC C genes showed wide expression spectrums, particularly in reproductive organs. From 35 days after KClO3 treatment, 11 MIKC genes were up-regulated, suggesting a crucial role in off-season flower induction, while DlFLC, DlSOC1, DlSVP, and DlSVP-LIKE may act as the inhibitors. The gene expression patterns of longan fruit development indicated that DlSTK, DlSEP1/2, and DlMADS53 could be involved in fruit growth and ripening. This paper carried out the whole genome identification and analysis of the longan MADS-box family for the first time, which provides new insights for further understanding its function in flowers and fruit.
Collapse
Affiliation(s)
- Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenshun Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxi Feng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Tengyue Zou
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
31
|
Zhang C, Wei L, Yu X, Li H, Wang W, Wu S, Duan F, Bao M, Chan Z, He Y. Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110938. [PMID: 34134845 DOI: 10.1016/j.plantsci.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Marigold (Tagetes erecta), as one member of Asteraceae family, bears a typical capitulum with two morphologically distinct florets. The SEPALLATA genes are involved in regulating the floral meristem determinacy, organ identity, fruit maturation, seed formation, and plant architecture. Here, five SEP-like genes were cloned and identified from marigold. Sequence alignment and phylogenetic analysis demonstrated that TeSEP3-1, TeSEP3-2, and TeSEP3-3 proteins were grouped into SEP3 clade, and TeSEP1 and TeSEP4 proteins were clustered into SEP1/2/4 clade. Quantitative real-time PCR analysis revealed that TeSEP1 and TeSEP3-3 were broadly expressed in floral organs, and that TeSEP3-2 and TeSEP4 were mainly expressed in pappus and corollas, while TeSEP3-1 was mainly expressed in two inner whorls. Ectopic expression of TeSEP1, TeSEP3-2, TeSEP3-3, and TeSEP4 in arabidopsis and tobacco resulted in early flowering. However, overexpression of TeSEP3-1 in arabidopsis and tobacco caused no visible phenotypic changes. Notably, overexpression of TeSEP4 in tobacco decreased the number of petals and stamens. Overexpression of TeSEP1 in tobacco led to longer sepals and simpler inflorescence architecture. The comprehensive pairwise interaction analysis suggested that TeSEP proteins had a broad interaction with class A, C, D, E proteins to form dimers. The yeast three-hybrid analysis suggested that in ternary complexes, class B proteins interacted with TeSEP3 by forming heterodimer TePI-TeAP3-2. The regulatory network analysis of MADS-box genes in marigold further indicated that TeSEP proteins played a "glue" role in regulating floral organ development, implying functional conservation and divergence of MADS box genes in regulating two-type floret developments. This study provides an insight into the formation mechanism of floral organs of two-type florets, thus broadening our knowledge of the genetic basis of flower evolution.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Xiaomin Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Shenzhong Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Feng Duan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
32
|
Lin X, Huang S, Huang G, Chen Y, Wang X, Wang Y. 14-3-3 Proteins Are Involved in BR-Induced Ray Petal Elongation in Gerbera hybrida. FRONTIERS IN PLANT SCIENCE 2021; 12:718091. [PMID: 34421972 PMCID: PMC8371339 DOI: 10.3389/fpls.2021.718091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 05/03/2023]
Abstract
14-3-3 proteins play a major role in the regulation of primary metabolism, protein transport, ion channel activity, signal transduction and biotic/abiotic stress responses. However, their involvement in petal growth and development is largely unknown. Here, we identified and characterized the expression patterns of seven genes of the 14-3-3 family in gerbera. While none of the genes showed any tissue or developmental specificity of spatiotemporal expression, all seven predicted proteins have the nine α-helices typical of 14-3-3 proteins. Following treatment with brassinolide, an endogenous brassinosteroid, the Gh14-3-3 genes displayed various response patterns; for example, Gh14-3-3b and Gh14-3-3f reached their highest expression level at early (2 h) and late (24 h) timepoints, respectively. Further study revealed that overexpression of Gh14-3-3b or Gh14-3-3f promoted cell elongation, leading to an increase in ray petal length. By contrast, silencing of Gh14-3-3b or Gh14-3-3f inhibited petal elongation, which was eliminated partly by brassinolide. Correspondingly, the expression of petal elongation-related and brassinosteroid signaling-related genes was modified in transgenic petals. Taken together, our research suggests that Gh14-3-3b and Gh14-3-3f are positive regulators of brassinosteroid-induced ray petal elongation and thus provides novel insights into the molecular mechanism of petal growth and development.
Collapse
Affiliation(s)
- Xiaohui Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shina Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Gan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, China
| | - Yanbo Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- *Correspondence: Yaqin Wang,
| |
Collapse
|
33
|
Fambrini M, Bernardi R, Pugliesi C. Ray flower initiation in the Helianthus radula inflorescence is influenced by a functional allele of the HrCYC2c gene. Genesis 2020; 58:e23401. [PMID: 33283401 DOI: 10.1002/dvg.23401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/03/2023]
Abstract
The radiate pseudanthium, with actinomorphic disk flowers surrounded by showy marginal zygomorphic ray flowers, is the most common inflorescence in the Helianthus genus. In Helianthus radula, ray flower primordia are normally absent at the dorsal domain of the inner phyllaries (discoid heads) while the occurrence of radiate inflorescences is uncommon. In Helianthus spp., flower symmetry and inflorescence architecture are mainly controlled by CYCLOIDEA (CYC)-like genes but the putative role of these genes in the development of discoid inflorescences has not been investigate. Three CYC genes of H. radula with a role in ray flower identity (HrCYC2c, HrCYC2d, and HrCYC2e) were isolated. The phylogenetic analysis placed these genes within the CYC2 subclade. We identified two different alleles for the HrCYC2c gene. A mutant allele, designed HrCYC2c-m, shows a thymine to adenine transversion, which generates a TGA stop codon after a translation of 14 amino acids. We established homozygous dominant (HrCYC2c/HrCYC2c) and recessive (HrCYC2c-m/HrCYC2c-m) plants for this nonsense mutation. Inflorescences of both HrCYC2c/HrCYC2c and HrCYC2c/HrCYC2c-m plants initiated ray flowers, despite at low frequency. By contrast, plants homozygous for the mutant allele (HrCYC2c-m/HrCYC2c-m) failed at all to develop ray flowers. The results support, for the first time, a role of the HrCYC2c gene on the initiation of ray flower primordia. However, also in the two dominant phenotypes, discoid heads are the prevalent architecture suggesting that this gene is required but not sufficient to initiate ray flowers in pseudanthia. Other unknown major genes are most likely required in the shift from discoid to radiate inflorescence.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Pisa, Italy
| |
Collapse
|
34
|
Yu Y. CYCLOIDEA3 Is Targeted by Disparate Transcription Factors in Patterning Flowers in Gerbera. PLANT PHYSIOLOGY 2020; 184:1214-1216. [PMID: 33139485 PMCID: PMC7608149 DOI: 10.1104/pp.20.01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132
| |
Collapse
|