1
|
Liang H, Zhou J, Chen C. The aleurone layer of cereal grains: Development, genetic regulation, and breeding applications. PLANT COMMUNICATIONS 2025; 6:101283. [PMID: 39949062 PMCID: PMC12010395 DOI: 10.1016/j.xplc.2025.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cereal aleurone cells are differentiated from triploid endosperm cells and exhibit distinct cytological, physiological, and biochemical characteristics that distinguish them from the starchy endosperm cells of cereals. Aleurone cells maintain viability throughout seed development, whereas starchy endosperm cells undergo programmed cell death during maturation. Despite variations in aleurone-related traits among cereal species, the aleurone layer plays a crucial role in regulating many aspects of seed development, including the accumulation of storage reserves, the acquisition of dormancy, and germination. Given that many nutrients-such as lipids, dietary fibers, vitamins, and minerals like iron and zinc-are predominantly accumulated in the aleurone cells of cereal grains, this layer has attracted considerable attention aimed at improving the nutritional value of cereals. This review provides a comprehensive overview of the developmental, genetic, and molecular basis of aleurone cell differentiation and proliferation. It focuses on the improvement of aleurone-related traits informed by knowledge of the molecular networks governing aleurone development and presents a detailed discussion on the challenges and potential solutions associated with cereal improvement through the manipulation of aleurone-related traits.
Collapse
Affiliation(s)
- Huawei Liang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jian Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China; Yangzhou Modern Seed Innovation Institute, Gaoyou 225600, China.
| |
Collapse
|
2
|
Ali B, Mary‐Huard T, Charcosset A, Moreau L, Rincent R. Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions. THE PLANT GENOME 2025; 18:e20553. [PMID: 39779652 PMCID: PMC11711123 DOI: 10.1002/tpg2.20553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization. It allows likely causal markers to account for a certain portion of genetic variance independently from the remaining markers. We systematically tested a list of 5110 GO terms for their predictive performance for physiological (platform traits) and productivity traits (field grain yield) in a maize (Zea mays L.) panel using genomic features best linear unbiased prediction (GFBLUP) model. Predictive abilities were compared to the classical genomic best linear unbiased prediction (GBLUP). Predictive gains with categorizing markers based on a given GO term strongly depend on the trait and on the growth conditions, as a term can be useful for a given trait in a given condition or somewhat similar conditions but not useful for the same trait in a different condition. Overall, results of all GFBLUP models compared to GBLUP show that the former might be less efficient than the latter. Even though we could not identify a prior criterion to determine which GO terms can offer benefit to a given trait, we could a posteriori find biological interpretations of the results, meaning that GFBLUP could be helpful if more about the gene functions and their relationships with the growth conditions was known.
Collapse
Affiliation(s)
- Baber Ali
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tristan Mary‐Huard
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- MIA Paris‐Saclay, INRAE, AgroParisTechUniversité Paris‐SaclayPalaiseauFrance
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE–Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| |
Collapse
|
3
|
Cheng X, Zhang S, E Z, Yang Z, Cao S, Zhang R, Niu B, Li QF, Zhou Y, Huang XY, Liu QQ, Chen C. Maternally expressed FERTILIZATION-INDEPENDENT ENDOSPERM1 regulates seed dormancy and aleurone development in rice. THE PLANT CELL 2024; 37:koae304. [PMID: 39549266 DOI: 10.1093/plcell/koae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Seed dormancy, an essential trait for plant adaptation, is determined by the embryo itself and the surrounding tissues. Here, we found that rice (Oryza sativa) FERTILIZATION-INDEPENDENT ENDOSPERM1 (OsFIE1) regulates endosperm-imposed dormancy and the dorsal aleurone thickness in a manner dependent on the parent of origin. Maternally expressed OsFIE1 suppresses gibberellin (GA) biosynthesis in the endosperm by depositing trimethylation of lysine 27 on histone H3 (H3K27me3) marks on GA biosynthesis-related genes, thus inhibiting germination and aleurone differentiation. Knockout of rice GA 20-oxidase1 (OsGA20ox1) alleviated the phenotypic defects in osfie1. The aleurone-positive determinant Crinkly 4 (OsCR4) is another target of the OsFIE1-containing Polycomb repressive complex 2 (PRC2). We found that OsFIE1 plays an important role in genomic imprinting in the endosperm of germinating seeds, particularly for paternally expressed genes associated with H3K27me3. The increased aleurone thickness of osfie1 substantially improved grain nutritional quality, indicating that the osfie1 gene may be utilized for breeding nutrient-enriched rice. The findings provide insights into the essential roles of PRC2-mediated H3K27me3 methylation in the acquisition of seed dormancy and endosperm cell differentiation in rice.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Su Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Zhiguo E
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311499, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Sijia Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Rui Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Sanya Institute of Nanjing Agricultural University, Sanya 572022, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Šafranek M, Shumbusho A, Johansen W, Šarkanová J, Voško S, Bokor B, Jásik J, Demko V. Membrane-anchored calpains - hidden regulators of growth and development beyond plants? FRONTIERS IN PLANT SCIENCE 2023; 14:1289785. [PMID: 38173928 PMCID: PMC10762896 DOI: 10.3389/fpls.2023.1289785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.
Collapse
Affiliation(s)
- Martin Šafranek
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alain Shumbusho
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Wenche Johansen
- Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Júlia Šarkanová
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Stanislav Voško
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ján Jásik
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktor Demko
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
5
|
Wang P, Zhou J, Sun W, Li H, Rehman S, Xu C, Li D, Zhuge Q. Poplar CCR4-associated factor PtCAF1I is necessary for poplar development and defense response. Int J Biol Macromol 2023:125090. [PMID: 37247707 DOI: 10.1016/j.ijbiomac.2023.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Poplar is one of the most widely used tree species in afforestation projects. CCR4 associated factor 1 (CAF1) is a major member of CCR4-NOT and plays an important role in eukaryotic mRNA deadenylation. However, its role in poplar remains unclear. In this study, the full-length cDNA of the PtCAF1I gene was cloned from the poplar by screening the highly expressed PtCAF1I gene in the identified PtCAF1 gene family by poplar sterilization. PtCAF1I was localized in the nucleus. Through sequence alignment, it was found that the PtCAF1I sequence contains three motifs and is highly similar to the CAF1 protein sequence of other species. In the quantitative expression analysis of tissues, the expression of PtCAF1I in different tissues of Populus trichocarpa, 'Nanlin895', and Shanxinyang was not much different. In addition, the analysis of the expression of the PtCAF1I gene under different stress treatments showed that PtCAF1I responded to abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl, PEG6000, hydrogen peroxide (H2O2) and cold stress to different degrees. To study the potential biological functions of PtCAF1I, 6 transgenic lines were obtained through transformation using an Agrobacterium tumefaciens infection system. The transcriptome sequencing results showed that DEGs were mainly concentrated in pathways of phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, carbon metabolism, and carotenoid biosynthesis. Compared with WT poplar, the contents of cellulose, hemicellulose, lignin, total sugar, and flavonoids, and the cell wall thickness of PtCAF1I overexpression poplars were significantly higher. Under Septotinia populiperda treatment, transgenic poplars clearly exhibited certain disease resistance. Meanwhile, upregulation of the expression of JA and SA pathway-related genes also contributed to improving the disease tolerance of transgenic poplar. In conclusion, our results suggest that PtCAF1I plays an important role in the growth and development of poplars and their resistance to pathogens.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Xu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Wang Z, Zhu Y, Liu Z, Li H, Tang X, Jiang Y. Comparative analysis of tissue-specific genes in maize based on machine learning models: CNN performs technically best, LightGBM performs biologically soundest. Front Genet 2023; 14:1190887. [PMID: 37229198 PMCID: PMC10203421 DOI: 10.3389/fgene.2023.1190887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: With the advancement of RNA-seq technology and machine learning, training large-scale RNA-seq data from databases with machine learning models can generally identify genes with important regulatory roles that were previously missed by standard linear analytic methodologies. Finding tissue-specific genes could improve our comprehension of the relationship between tissues and genes. However, few machine learning models for transcriptome data have been deployed and compared to identify tissue-specific genes, particularly for plants. Methods: In this study, an expression matrix was processed with linear models (Limma), machine learning models (LightGBM), and deep learning models (CNN) with information gain and the SHAP strategy based on 1,548 maize multi-tissue RNA-seq data obtained from a public database to identify tissue-specific genes. In terms of validation, V-measure values were computed based on k-means clustering of the gene sets to evaluate their technical complementarity. Furthermore, GO analysis and literature retrieval were used to validate the functions and research status of these genes. Results: Based on clustering validation, the convolutional neural network outperformed others with higher V-measure values as 0.647, indicating that its gene set could cover as many specific properties of various tissues as possible, whereas LightGBM discovered key transcription factors. The combination of three gene sets produced 78 core tissue-specific genes that had previously been shown in the literature to be biologically significant. Discussion: Different tissue-specific gene sets were identified due to the distinct interpretation strategy for machine learning models and researchers may use multiple methodologies and strategies for tissue-specific gene sets based on their goals, types of data, and computational resources. This study provided comparative insight for large-scale data mining of transcriptome datasets, shedding light on resolving high dimensions and bias difficulties in bioinformatics data processing.
Collapse
Affiliation(s)
- Zijie Wang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Yuzhi Zhu
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Zhule Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Hongfu Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Xinqiang Tang
- School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China
| | - Yi Jiang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Xu Y, Chen S, Xue M, Chen X, Liu Z, Wei X, Gao JP, Chen C. Mapping and validation of quantitative trait loci associated with dorsal aleurone thickness in rice (Oryza sativa). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:117. [PMID: 37093272 DOI: 10.1007/s00122-023-04368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Mapping of QTLs for dorsal aleurone thickness (DAT) was performed using chromosome segment substitution lines in rice. Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple environments. As a specified endosperm cell type, the aleurone has an abundance of various nutrients. Increasing the number of aleurone layers is a practicable way of developing highly nutritious cereals. Identifying genes that can increase aleurone thickness is useful for the breeding of aleurone traits to improve the nutritional and health values of rice. Here, we found that iodine staining could efficiently distinguish the aleurone layers, which revealed great variation of the aleurone thickness in rice, especially at the dorsal side of the seed. Therefore, we used a population of chromosome segmental substitution lines (CSSLs) derived from Koshihikari and Nona Bokra for quantitative trait locus (QTL) analysis of the dorsal aleurone thickness (DAT). Three QTLs, qDAT3.1, qDAT3.2, and qDAT7.1, were detected in multiple seasons. Among these, qDAT3.2 colocalizes with Hd6 and Hd16, two QTLs previously identified to regulate the heading date of Koshihikari, explaining the negative correlation between the DAT and days to heading (DTH) in rice. We also provide evidence that early-heading ensures the filling of rice seed under a relatively high temperature to promote aleurone thickening. qDAT7.1, the most stable QTL expressed in different environments, functions independently from heading date. Although Nona Bokra has a lower DAT, its qDAT7.1 allele significantly increased DAT in rice, which was further validated using two near-isogenic lines (NILs). These findings pave the way for further gene cloning of aleurone-related QTLs and may aid the development of highly nutritious rice.
Collapse
Affiliation(s)
- Yiwen Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Siming Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Mingming Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xingyu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Zhibo Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Xuefeng Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Ji-Ping Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
8
|
Wang J, Wang H, Li K, Liu X, Cao X, Zhou Y, Huang C, Peng Y, Hu X. Characterization and Transcriptome Analysis of Maize Small-Kernel Mutant smk7a in Different Development Stages. PLANTS (BASEL, SWITZERLAND) 2023; 12:354. [PMID: 36679067 PMCID: PMC9866416 DOI: 10.3390/plants12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The kernel serves as a storage organ for various nutrients and determines the yield and quality of maize. Understanding the mechanisms regulating kernel development is important for maize production. In this study, a small-kernel mutant smk7a of maize was characterized. Cytological observation suggested that the development of the endosperm and embryo was arrested in smk7a in the early development stage. Biochemical tests revealed that the starch, zein protein, and indole-3-acetic acid (IAA) contents were significantly lower in smk7a compared with wild-type (WT). Consistent with the defective development phenotype, transcriptome analysis of the kernels 12 and 20 days after pollination (DAP) revealed that the starch, zein, and auxin biosynthesis-related genes were dramatically downregulated in smk7a. Genetic mapping indicated that the mutant was controlled by a recessive gene located on chromosome 2. Our results suggest that disrupted nutrition accumulation and auxin synthesis cause the defective endosperm and embryo development of smk7a.
Collapse
Affiliation(s)
- Jing Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongwu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Kun Li
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Liu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoxiong Cao
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Zhou
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Huang
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojiao Hu
- National Engineering Research Center of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Liu J, Wu MW, Liu CM. Cereal Endosperms: Development and Storage Product Accumulation. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:255-291. [PMID: 35226815 DOI: 10.1146/annurev-arplant-070221-024405] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The persistent triploid endosperms of cereal crops are the most important source of human food and animal feed. The development of cereal endosperms progresses through coenocytic nuclear division, cellularization, aleurone and starchy endosperm differentiation, and storage product accumulation. In the past few decades, the cell biological processes involved in endosperm formation in most cereals have been described. Molecular genetic studies performed in recent years led to the identification of the genes underlying endosperm differentiation, regulatory network governing storage product accumulation, and epigenetic mechanism underlying imprinted gene expression. In this article, we outline recent progress in this area and propose hypothetical models to illustrate machineries that control aleurone and starchy endosperm differentiation, sugar loading, and storage product accumulations. A future challenge in this area is to decipher the molecular mechanisms underlying coenocytic nuclear division, endosperm cellularization, and programmed cell death.
Collapse
Affiliation(s)
- Jinxin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Ming-Wei Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Wu H, Becraft PW, Dannenhoffer JM. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:852082. [PMID: 35330868 PMCID: PMC8940253 DOI: 10.3389/fpls.2022.852082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Philip W. Becraft
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Philip W. Becraft,
| | | |
Collapse
|
11
|
Wu H, Becraft PW. Comparative transcriptomics and network analysis define gene coexpression modules that control maize aleurone development and auxin signaling. THE PLANT GENOME 2021; 14:e20126. [PMID: 34323399 DOI: 10.1002/tpg2.20126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The naked endosperm1 (nkd1), naked endosperm2 (nkd2), and thick aleurone1 (thk1) genes are important regulators of maize (Zea mays L.) endosperm development. Double mutants of nkd1 and nkd2 (nkd1,2) show multiple aleurone (AL) cell layers with disrupted AL cell differentiation, whereas mutants of thk1 cause multiple cell layers of fully differentiated AL cells. Here, we conducted a comparative analysis of nkd1,2 and thk1 mutant endosperm transcriptomes to study how these factors regulate gene networks to control AL layer specification and cell differentiation. Weighted gene coexpression network analysis was incorporated with published laser capture microdissected transcriptome datasets to identify a coexpression module associated with AL development. In this module, both Nkd1,2+ and Thk1+ appear to regulate cell cycle and division, whereas Nkd1,2+, but not Thk1+, regulate auxin signaling. Further investigation of nkd1,2 differentially expressed genes combined with published putative targets of auxin response factors (ARFs) identified 61 AL-preferential genes that may be directly activated by NKD-modulated ARFs. All 61 genes were upregulated in nkd1,2 mutant and the enriched Gene Ontology terms suggested that they are associated with hormone crosstalk, lipid metabolism, and developmental growth. Expression of a transgenic DR5-red fluorescent protein auxin reporter was significantly higher in nkd1,2 mutant endosperm than in wild type, supporting the prediction that Nkd1,2+ negatively regulate auxin signaling in developing AL. Overall, these results suggest that Nkd1,2+ and Thk1+ may normally restrict AL development to a single cell layer by limiting cell division, and that Nkd1,2+ restrict auxin signaling in the AL to maintain normal cell patterning and differentiation processes.
Collapse
Affiliation(s)
- Hao Wu
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
| | - Philip W Becraft
- Dep. of Genetics, Development & Cell Biology, IA State Univ., Ames, IA, 50011, USA
- Agronomy Dep., IA State Univ., Ames, IA, 50011, USA
| |
Collapse
|
12
|
Takafuji Y, Shimizu-Sato S, Ta KN, Suzuki T, Nosaka-Takahashi M, Oiwa T, Kimura W, Katoh H, Fukai M, Takeda S, Sato Y, Hattori T. High-resolution spatiotemporal transcriptome analyses during cellularization of rice endosperm unveil the earliest gene regulation critical for aleurone and starchy endosperm cell fate specification. JOURNAL OF PLANT RESEARCH 2021; 134:1061-1081. [PMID: 34279738 DOI: 10.1007/s10265-021-01329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The major tissues of the cereal endosperm are the starchy endosperm (SE) in the inner and the aleurone layer (AL) at the outer periphery. The fates of the cells that comprise these tissues are determined according to positional information; however, our understanding of the underlying molecular mechanisms remains limited. Here, we conducted a high-resolution spatiotemporal analysis of the rice endosperm transcriptome during early cellularization. In rice, endosperm cellularization proceeds in a concentric pattern from a primary alveolus cell layer, such that developmental progression can be defined by the number of cell layers. Using laser-capture microdissection to obtain precise tissue sections, transcriptomic changes were followed through five histologically defined stages of cellularization from the syncytial to 3-cell layer (3 L) stage. In addition, transcriptomes were compared between the inner and the outermost peripheral cell layers. Large differences in the transcriptomes between stages and between the inner and the peripheral cells were found. SE attributes were expressed at the alveolus-cell-layer stage but were preferentially activated in the inner cell layers that resulted from periclinal division of the alveolus cell layer. Similarly, AL attributes started to be expressed only after the 2 L stage and were localized to the outermost peripheral cell layer. These results indicate that the first periclinal division of the alveolus cell layer is asymmetric at the transcriptome level, and that the cell-fate-specifying positional cues and their perception system are already operating before the first periclinal division. Several genes related to epidermal identity (i.e., type IV homeodomain-leucine zipper genes and wax biosynthetic genes) were also found to be expressed at the syncytial stage, but their expression was localized to the outermost peripheral cell layer from the 2 L stage onward. We believe that our findings significantly enhance our knowledge of the mechanisms underlying cell fate specification in rice endosperm.
Collapse
Affiliation(s)
- Yoshinori Takafuji
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Sae Shimizu-Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Kim Nhung Ta
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Toshiya Suzuki
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Misuzu Nosaka-Takahashi
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Tetsuro Oiwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Wakana Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Hirokazu Katoh
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mao Fukai
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Yutaka Sato
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Tsukaho Hattori
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
13
|
Li DQ, Wu XB, Wang HF, Feng X, Yan SJ, Wu SY, Liu JX, Yao XF, Bai AN, Zhao H, Song XF, Guo L, Zhang SY, Liu CM. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice. MOLECULAR PLANT 2021; 14:1343-1361. [PMID: 34015460 DOI: 10.1016/j.molp.2021.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/27/2021] [Accepted: 05/15/2021] [Indexed: 05/09/2023]
Abstract
Cereal endosperm comprises an outer aleurone and an inner starchy endosperm. Although these two tissues have the same developmental origin, they differ in morphology, cell fate, and storage product accumulation, with the mechanism largely unknown. Here, we report the identification and characterization of rice thick aleurone 1 (ta1) mutant that shows an increased number of aleurone cell layers and increased contents of nutritional factors including proteins, lipids, vitamins, dietary fibers, and micronutrients. We identified that the TA1 gene, which is expressed in embryo, aleurone, and subaleurone in caryopses, encodes a mitochondrion-targeted protein with single-stranded DNA-binding activity named OsmtSSB1. Cytological analyses revealed that the increased aleurone cell layers in ta1 originate from a developmental switch of subaleurone toward aleurone instead of starchy endosperm in the wild type. We found that TA1/OsmtSSB1 interacts with mitochondrial DNA recombinase RECA3 and DNA helicase TWINKLE, and downregulation of RECA3 or TWINKLE also leads to ta1-like phenotypes. We further showed that mutation in TA1/OsmtSSB1 causes elevated illegitimate recombinations in the mitochondrial genome, altered mitochondrial morphology, and compromised energy supply, suggesting that the OsmtSSB1-mediated mitochondrial function plays a critical role in subaleurone cell-fate determination in rice.
Collapse
Affiliation(s)
- Dong-Qi Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xiao-Ba Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Hai-Feng Wang
- Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xue Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Juan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sheng-Yang Wu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jin-Xin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Ai-Ning Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Lin Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shi-Yong Zhang
- Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100864, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
He Y, Yang Q, Yang J, Wang YF, Sun X, Wang S, Qi W, Ma Z, Song R. shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize. Genetics 2021; 218:6261937. [PMID: 34009311 DOI: 10.1093/genetics/iyab070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Minerals are stored in the aleurone layer and embryo during maize seed development, but how they affect endosperm development and activity is unclear. Here, we cloned the gene underlying the classic maize kernel mutant shrunken4 (sh4) and found that it encodes the YELLOW STRIPE-LIKE oligopeptide metal transporter ZmYSL2. sh4 kernels had a shrunken phenotype with developmental defects in the aleurone layer and starchy endosperm cells. ZmYSL2 showed iron and zinc transporter activity in Xenopus laevis oocytes. Analysis using a specific antibody indicated that ZmYSL2 predominately accumulated in the aleurone and sub-aleurone layers in endosperm and the scutellum in embryos. Specific iron deposition was observed in the aleurone layer in wild-type kernels. In sh4, however, the outermost monolayer of endosperm cells failed to accumulate iron and lost aleurone cell characteristics, indicating that proper functioning of ZmYSL2 and iron accumulation are essential for aleurone cell development. Transcriptome analysis of sh4 endosperm revealed that loss of ZmYSL2 function affects the expression of genes involved in starch synthesis and degradation processes, which is consistent with the delayed development and premature degradation of starch grains in sh4 kernels. Therefore, ZmYSL2 is critical for aleurone cell development and starchy endosperm cell activity during maize seed development.
Collapse
Affiliation(s)
- Yonghui He
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qing Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoliang Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Dai D, Ma Z, Song R. Maize kernel development. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:2. [PMID: 37309525 PMCID: PMC10231577 DOI: 10.1007/s11032-020-01195-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 06/14/2023]
Abstract
Maize (Zea mays) is a leading cereal crop in the world. The maize kernel is the storage organ and the harvest portion of this crop and is closely related to its yield and quality. The development of maize kernel is initiated by the double fertilization event, leading to the formation of a diploid embryo and a triploid endosperm. The embryo and endosperm are then undergone independent developmental programs, resulting in a mature maize kernel which is comprised of a persistent endosperm, a large embryo, and a maternal pericarp. Due to the well-characterized morphogenesis and powerful genetics, maize kernel has long been an excellent model for the study of cereal kernel development. In recent years, with the release of the maize reference genome and the development of new genomic technologies, there has been an explosive expansion of new knowledge for maize kernel development. In this review, we overviewed recent progress in the study of maize kernel development, with an emphasis on genetic mapping of kernel traits, transcriptome analysis during kernel development, functional gene cloning of kernel mutants, and genetic engineering of kernel traits.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|