1
|
Wu X, Hu X, Bao Q, Sun Q, Yu P, Qi J, Zhang Z, Luo C, Wang Y, Lu W, Wu X. Genome-Wide Identification and Expression Analysis of NAC Gene Family Members in Seashore Paspalum Under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3595. [PMID: 39771292 PMCID: PMC11678376 DOI: 10.3390/plants13243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
The NAC gene family plays a crucial role in plant growth, development, and responses to biotic and abiotic stresses. Paspalum Vaginatum, a warm-season turfgrass with exceptional salt tolerance, can be irrigated with seawater. However, the NAC gene family in seashore paspalum remains poorly understood. In this study, genome-wide screening and identification were conducted based on the NAC (NAM) domain hidden Markov model in seashore paspalum, resulting in the identification of 168 PvNAC genes. A phylogenetic tree was constructed, and the genes were classified into 18 groups according to their topological structure. The physicochemical properties of the PvNAC gene family proteins, their conserved motifs and structural domains, cis-acting elements, intraspecific collinearity analysis, GO annotation analysis, and protein-protein interaction networks were analyzed. The results indicated that the majority of PvNAC proteins are hydrophilic and predominantly localized in the nucleus. The promoter regions of PvNACs are primarily enriched with light-responsive elements, ABRE motifs, MYB motifs, and others. Intraspecific collinearity analysis suggests that PvNACs may have experienced a large-scale gene duplication event. GO annotation indicated that PvNAC genes were essential for transcriptional regulation, organ development, and responses to environmental stimuli. Furthermore, the protein interaction network predicted that PvNAC73 interacts with proteins such as BZIP8 and DREB2A to form a major regulatory hub. The transcriptomic analysis investigates the expression patterns of NAC genes in both leaves and roots under varying durations of salt stress. The expression levels of 8 PvNACs in roots and leaves under salt stress were examined and increased to varying degrees under salt stress. The qRT-PCR results demonstrated that the expression levels of the selected genes were consistent with the FPKM value trends observed in the RNA-seq data. This study established a theoretical basis for understanding the molecular functions and regulatory mechanisms of the NAC gene family in seashore paspalum under salt stress.
Collapse
Affiliation(s)
- Xuanyang Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xiaochen Hu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Qinyan Bao
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730050, China
| | - Qi Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Pan Yu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Junxiang Qi
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Zixuan Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Chunrong Luo
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Yuzhu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Wenjie Lu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
| | - Xueli Wu
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.H.); (Q.B.); (Q.S.); (P.Y.); (J.Q.); (Z.Z.); (C.L.); (Y.W.); (W.L.)
- Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
2
|
Huang R, Dai M, Jiang S, Guo Z, Shi H. Chloroplast-localized PvBASS2 regulates salt tolerance in the C4 plant seashore paspalum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2782-2796. [PMID: 39058753 DOI: 10.1111/tpj.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BILE ACID SODIUM SYMPORTER FAMILY PROTEIN 2 (BASS2) is localized within chloroplast membranes, facilitating the translocation of pyruvate and Na+ from the cytosol to the plastid, where pyruvate supports isopentenyl diphosphate (IPP) synthesis via the methylerythritol phosphate pathway in C3 plants. Nevertheless, the biological function of BASS2 in C4 plants has not been well defined. This study unveils a previously unidentified role of PvBASS2 in Na+ and pyruvate transport in seashore paspalum (Paspalum vaginatum), a halophytic C4 grass, indicating a specific cellular function within this plant species. Data showed that overexpression of PvBASS2 in seashore paspalum attenuated salt tolerance, whereas its RNAi lines exhibited enhanced salt resistance compared to wild-type plants, suggesting a negative regulatory role of PvBASS2 in seashore paspalum salt tolerance. The constitutive overexpression of PvBASS2 was also found to reduce salt tolerance in Arabidopsis. Further study revealed that PvBASS2 negatively regulates seashore paspalum salt tolerance, possibly due to elevated Na+/K+ ratio, disrupted chloroplast structure, and reduced photosynthetic efficiency following exposure to salinity. Importantly, our subsequent investigations revealed that modulation of PvBASS2 expression in seashore paspalum influenced carbon dioxide assimilation, intermediary metabolites of the tricarboxylic acid cycle, and enzymatic activities under salinity treatment, which in turn led to alterations in free amino acid concentrations. Thus, this study reveals a role for BASS2 in the C4 plant seashore paspalum and enhances our comprehension of salt stress responses in C4 plants.
Collapse
Affiliation(s)
- Risheng Huang
- Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengtong Dai
- Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouzhen Jiang
- Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenfei Guo
- Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifan Shi
- Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Zhang W, Wang D, Cao D, Chen J, Wei X. Exploring the potentials of Sesuvium portulacastrum L. for edibility and bioremediation of saline soils. FRONTIERS IN PLANT SCIENCE 2024; 15:1387102. [PMID: 38916037 PMCID: PMC11194377 DOI: 10.3389/fpls.2024.1387102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.
Collapse
Affiliation(s)
- Wenbin Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dan Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Dingding Cao
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
4
|
Yang M, Zhou B, Song Z, Tan Z, Liu R, Luo Y, Guo Z, Lu S. A calmodulin-like protein PvCML9 negatively regulates salt tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108642. [PMID: 38643538 DOI: 10.1016/j.plaphy.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
Calmodulin-like proteins (CMLs) are unique Ca2+ sensors and play crucial roles in response to abiotic stress in plants. A salt-repressed PvCML9 from halophyte seashore paspalum (Paspalum vaginatum O. Swartz) was identified. PvCML9 was localized in the cytoplasm and nucleus and highly expressed in roots and stems. Overexpression of PvCML9 led to reduced salt tolerance in rice and seashore paspalum, whereas downregulating expression of PvCML9 showed increased salt tolerance in seashore paspalum as compared with the wild type (WT), indicating that PvCML9 regulated salt tolerance negatively. Na+ and K+ homeostasis was altered by PvCML9 expression. Lower level of Na+/K+ ratio in roots and shoots was maintained in PvCML9-RNAi lines compared with WT under salt stress, but higher level in overexpression lines. Moreover, higher levels of SOD and CAT activities and proline accumulation were observed in PvCML9-RNAi lines compared with WT under salt stress, but lower levels in overexpression lines, which altered ROS homeostasis. Based on the above data, mutation of its homolog gene OsCML9 in rice by CRISPR/Cas9 was performed. The mutant had enhanced salt tolerance without affecting rice growth and development, suggesting that OsCML9 gene is an ideal target gene to generate salt tolerant cultivars by genome editing in the future.
Collapse
Affiliation(s)
- Meizhen Yang
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Biyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhigang Song
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyu Tan
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Liu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yurong Luo
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoyun Lu
- College of Life Sciences, Guangdong Engineering Research Center for Grassland Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Li Y, Yang Q, Huang H, Guo Y, Sun Q, Guo Z, Shi H. Overexpression of PvWAK3 from seashore paspalum increases salt tolerance in transgenic Arabidopsis via maintenance of ion and ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108337. [PMID: 38199027 DOI: 10.1016/j.plaphy.2024.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass species with extreme salt tolerance, but investigations on its salt tolerance mechanism are limited. A salt induced PvWAK3 from halophyte seashore paspalum was identified in this study. Overexpression of PvWAK3 in Arabidopsis led to increased salt tolerance. Transgenic plants had higher levels of seed germination rate, root length, number of lateral roots, shoot weight, survival rate, Fv/Fm, ETR, and NPQ compared with the wild type (WT) under salt stress. Na+ content was increased and K+ content was decreased after salinity treatment, with lower levels of Na+ and Na+/K+ ratio but higher level of K+ in transgenic plants than in WT under salt stress. The improved maintenance of Na+ and K+ homeostasis was associated with the higher transcript levels of K + -Uptake Permease 4 (KUP4), Potassium Transport 2/3 (AKT2), Salt Overly Sensitive 1 (SOS1) and High-Affinity K + Transporter 5 (HAK5) in transgenic plants compared with WT. Superoxide dismutase (SOD), catalase (CAT) and ascorbate-peroxidase (APX) activities, proline concentration, and P5CS1 transcript were increased after salinity treatment, with higher levels in transgenic lines compared with WT, which led to reduced accumulation of O2·- and H2O2 under salt stress. It is suggested that PvWAK3 regulates salt tolerance positively, which is associated with promoted Na+ and K+ homeostasis, activated antioxidant enzymes, and proline biosynthesis under salt stress.
Collapse
Affiliation(s)
- Yixin Li
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qian Yang
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hanmei Huang
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yawen Guo
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiguo Sun
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, China.
| | - Zhenfei Guo
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Haifan Shi
- College of Grassland Science, Key Laboratory of State Forestry and Grassland Administration on Grass Germplasm Resources Innovation and Utilization in the Middle and Lower Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Atta K, Mondal S, Gorai S, Singh AP, Kumari A, Ghosh T, Roy A, Hembram S, Gaikwad DJ, Mondal S, Bhattacharya S, Jha UC, Jespersen D. Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection. FRONTIERS IN PLANT SCIENCE 2023; 14:1241736. [PMID: 37780527 PMCID: PMC10540871 DOI: 10.3389/fpls.2023.1241736] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
Improper use of water resources in irrigation that contain a significant amount of salts, faulty agronomic practices such as improper fertilization, climate change etc. are gradually increasing soil salinity of arable lands across the globe. It is one of the major abiotic factors that inhibits overall plant growth through ionic imbalance, osmotic stress, oxidative stress, and reduced nutrient uptake. Plants have evolved with several adaptation strategies at morphological and molecular levels to withstand salinity stress. Among various approaches, harnessing the crop genetic variability across different genepools and developing salinity tolerant crop plants offer the most sustainable way of salt stress mitigation. Some important major genetic determinants controlling salinity tolerance have been uncovered using classical genetic approaches. However, its complex inheritance pattern makes breeding for salinity tolerance challenging. Subsequently, advances in sequence based breeding approaches and functional genomics have greatly assisted in underpinning novel genetic variants controlling salinity tolerance in plants at the whole genome level. This current review aims to shed light on physiological, biochemical, and molecular responses under salt stress, defense mechanisms of plants, underlying genetics of salt tolerance through bi-parental QTL mapping and Genome Wide Association Studies, and implication of Genomic Selection to breed salt tolerant lines.
Collapse
Affiliation(s)
- Kousik Atta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Saptarshi Mondal
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | - Shouvik Gorai
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Aditya Pratap Singh
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
- School of Agriculture, GIET University, Gunupur, Rayagada, Odisha, India
| | - Amrita Kumari
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Tuhina Ghosh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arkaprava Roy
- ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR- National Institute of Biotic Stress Management, Raipur, India
| | - Suryakant Hembram
- WBAS (Research), Government of West Bengal, Field Crop Research Station, Burdwan, India
| | | | - Subhasis Mondal
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | | | | | - David Jespersen
- Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| |
Collapse
|
7
|
Liu H, Todd JL, Luo H. Turfgrass Salinity Stress and Tolerance-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:925. [PMID: 36840273 PMCID: PMC9961807 DOI: 10.3390/plants12040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Turfgrasses are ground cover plants with intensive fibrous roots to encounter different edaphic stresses. The major edaphic stressors of turfgrasses often include soil salinity, drought, flooding, acidity, soil compaction by heavy traffic, unbalanced soil nutrients, heavy metals, and soil pollutants, as well as many other unfavorable soil conditions. The stressors are the results of either naturally occurring soil limitations or anthropogenic activities. Under any of these stressful conditions, turfgrass quality will be reduced along with the loss of economic values and ability to perform its recreational and functional purposes. Amongst edaphic stresses, soil salinity is one of the major stressors as it is highly connected with drought and heat stresses of turfgrasses. Four major salinity sources are naturally occurring in soils: recycled water as the irrigation, regular fertilization, and air-borne saline particle depositions. Although there are only a few dozen grass species from the Poaceae family used as turfgrasses, these turfgrasses vary from salinity-intolerant to halophytes interspecifically and intraspecifically. Enhancement of turfgrass salinity tolerance has been a very active research and practical area as well in the past several decades. This review attempts to target new developments of turfgrasses in those soil salinity stresses mentioned above and provides insight for more promising turfgrasses in the future with improved salinity tolerances to meet future turfgrass requirements.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jason L. Todd
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Sustek-Sánchez F, Rognli OA, Rostoks N, Sõmera M, Jaškūnė K, Kovi MR, Statkevičiūtė G, Sarmiento C. Improving abiotic stress tolerance of forage grasses - prospects of using genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1127532. [PMID: 36824201 PMCID: PMC9941169 DOI: 10.3389/fpls.2023.1127532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Due to an increase in the consumption of food, feed, and fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to obtain high-yielding crops that can adapt to future climate changes. Currently, the main feed source used for ruminant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for feed are widely distributed and tend to suffer under unfavorable environmental conditions. Genome editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes while maintaining precision and low off-target frequency mutations. In this review, we provide an overview of forage grass species that have been subjected to genome editing. We offer a perspective view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate change and abiotic stresses for developing forage grass cultivars with improved adaptation to the future climatic conditions. Genome editing will contribute towards developing safe and sustainable food systems.
Collapse
Affiliation(s)
- Ferenz Sustek-Sánchez
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Odd Arne Rognli
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nils Rostoks
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Merike Sõmera
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristina Jaškūnė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Mallikarjuna Rao Kovi
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Gražina Statkevičiūtė
- Laboratory of Genetics and Physiology, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Lithuania
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
9
|
Koteyeva NK, Voznesenskaya EV, Berim A, Gang DR, Edwards GE. Structural diversity in salt excreting glands and salinity tolerance in Oryza coarctata, Sporobolus anglicus and Urochondra setulosa. PLANTA 2022; 257:9. [PMID: 36482224 DOI: 10.1007/s00425-022-04035-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Unlike the bicellular glands characteristic of all known excreting grasses, unique single-celled salt glands were discovered in the only salt tolerant species of the genus Oryza, Oryza coarctata. Salt tolerance has evolved frequently in a large number of grass lineages with distinct difference in mechanisms. Mechanisms of salt tolerance were studied in three species of grasses characterized by salt excretion: C3 wild rice species Oryza coarctata, and C4 species Sporobolus anglicus and Urochondra setulosa. The leaf anatomy and ultrastructure of salt glands, pattern of salt excretion, gas exchange, accumulation of key photosynthetic enzymes, leaf water content and osmolality, and levels of some osmolytes, were compared when grown without salt, with 200 mM NaCl versus 200 mM KCl. Under salt treatments, there was little effect on the capacity for CO2 assimilation, while stomatal conductance decreased with a reduction in water loss by transpiration and an increase in water use efficiency. All three species accumulate compatible solutes but with drastic differences in osmolyte composition. Having high capacity for salt excretion, they have distinct structural differences in the salt excreting machinery. S. anglicus and U. setulosa have bicellular glands while O. coarctata has unique single-celled salt glands with a partitioning membrane system that are responsible for salt excretion rather than multiple hairs as previously suggested. The features of physiological responses and salt excretion indicate similar mechanisms are involved in providing tolerance and excretion of Na+ and K+.
Collapse
Affiliation(s)
- Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg, 197376, Russia
| | - Anna Berim
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-4236, USA
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
10
|
Hu X, Hao J, Pan L, Xu T, Ren L, Chen Y, Tang M, Liao L, Wang Z. Genome-wide analysis of tandem duplicated genes and their expression under salt stress in seashore paspalum. FRONTIERS IN PLANT SCIENCE 2022; 13:971999. [PMID: 36247543 PMCID: PMC9562133 DOI: 10.3389/fpls.2022.971999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Seashore paspalum (Paspalum vaginatum) is a halophytic, warm-season grass which is closely related to various grain crops. Gene duplication plays an important role in plant evolution, conferring significant plant adaptation at the genomic level. Here, we identified 2,542 tandem duplicated genes (TDGs) in the P. vaginatum genome and estimated the divergence time of pairs of TDGs based on synonymous substitution rates (Ks). Expression of P. vaginatum TDGs resulted in enrichment in many GO terms and KEGG pathways when compared to four other closely-related species. The GO terms included: "ion transmembrane transporter activity," "anion transmembrane transporter activity" and "cation transmembrane transport," and KEGG pathways included "ABC transport." RNA-seq analysis of TDGs showed tissue-specific expression under salt stress, and we speculated that P. vaginatum leaves became adapted to salt stress in the earlier whole-genome duplication (WGD; ~83.3 million years ago; Ma), whereas the entire P. vaginatum plant acquired a large number of TDGs related to salt stress in the second WGD (~23.3 Ma). These results can be used as a reference resource to accelerate salt-resistance research in other grasses and crops.
Collapse
Affiliation(s)
- Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Jiangshan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- School of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Ling Pan
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Tao Xu
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Longzhou Ren
- College of Tropical Crops, Hainan University, Haikou, China
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Yu Chen
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Minqiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiyong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| |
Collapse
|
11
|
Hao JS, Xing JF, Hu X, Wang ZY, Tang MQ, Liao L. Distribution Pattern of N6-Methyladenine DNA Modification in the Seashore Paspalum ( Paspalum vaginatum) Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:922152. [PMID: 35873961 PMCID: PMC9302377 DOI: 10.3389/fpls.2022.922152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenine (6mA) DNA modification has been detected in several eukaryotic organisms, in some of them, it plays important role in the regulation process of stress-resistance response. However, the genome-wide distribution patterns and potential functions of 6mA DNA modification in halophyte Seashore paspalum (Paspalum vaginatum) remain largely unknown. Here, we examined the 6mA landscape in the P. vaginatum genome by adopting single molecule real-time sequencing technology and found that 6mA modification sites were broadly distributed across the P. vaginatum genome. We demonstrated distinct 6mA methylation levels and 6mA distribution patterns in different types of transcription genes, which hinted at different epigenetic rules. Furthermore, the moderate 6mA density genes in P. vaginatum functionally correlated with stress resistance, which also maintained a higher transcriptional level. On the other hand, a specific 6mA distribution pattern in the gene body and near TSS was observed in gene groups with higher RNA expression, which maybe implied some kind of regularity between 6mA site distribution and the protein coding genes transcription was possible. Our study provides new insights into the association between 6mA methylation and gene expression, which may also contribute to key agronomic traits in P. vaginatum.
Collapse
Affiliation(s)
- Jiang-Shan Hao
- College of Tropical Crops, Hainan University, Haikou, China
- Jinhua Polytechnic, Jinhua, China
| | - Jian-Feng Xing
- College of Tropical Crops, Hainan University, Haikou, China
| | - Xu Hu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhi-Yong Wang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Min-Qiang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, China
| | - Li Liao
- College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
12
|
Goad DM, Kellogg EA, Baxter I, Olsen KM. Intraspecific variation in elemental accumulation and its association with salt tolerance in Paspalum vaginatum. G3 GENES|GENOMES|GENETICS 2021; 11:6337975. [PMID: 34568927 PMCID: PMC8473978 DOI: 10.1093/g3journal/jkab275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022]
Abstract
Abstract
Most plant species, including most crops, perform poorly in salt-affected soils because high sodium levels are cytotoxic and can disrupt the uptake of water and important nutrients. Halophytes are species that have evolved adaptations to overcome these challenges and may be a useful source of knowledge for salt tolerance mechanisms and genes that may be transferable to crop species. The salt content of saline habitats can vary dramatically by location, providing ample opportunity for different populations of halophytic species to adapt to their local salt concentrations; however, the extent of this variation, and the physiology and polymorphisms that drive it, remain poorly understood. Differential accumulation of inorganic elements between genotypes or populations may play an important role in local salinity adaptation. To test this, we investigated the relationships between population structure, tissue ion concentrations, and salt tolerance in 17 “fine-textured” genotypes of the halophytic turfgrass seashore paspalum (Paspalum vaginatum Swartz). A high-throughput ionomics pipeline was used to quantify the shoot concentration of 18 inorganic elements across three salinity treatments. We found a significant relationship between population structure and ion accumulation, with strong correlations between principal components derived from genetic and ionomic data. Additionally, genotypes with higher salt tolerance accumulated more K and Fe and less Ca than less tolerant genotypes. Together these results indicate that differences in ion accumulation between P. vaginatum populations may reflect locally adapted salt stress responses.
Collapse
Affiliation(s)
- David M Goad
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|