1
|
Chen J, Zeng H, Yan F, Jiang Z, Chen J, Wang W, Zhu Q. Identification of the WRKY gene family in Bergenia purpurascens and functional analysis of BpWRKY13 under cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109832. [PMID: 40158477 DOI: 10.1016/j.plaphy.2025.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Bergenia purpurascens, a medicinal alpine plant, exhibits remarkable stress resilience. WRKY transcription factors are central regulators of plant stress responses, yet their family in B. purpurascens remains uncharacterized. Here, we identified 57 BpWRKY genes from B. purpurascens transcriptome data. Expression analysis revealed 11 BpWRKY genes differentially expressed under cold stress, with BpWRKY13 showing the strongest induction. To investigate its function, we overexpressed BpWRKY13 in Arabidopsis thaliana. Transgenic plants displayed significantly enhanced cold tolerance, evidenced by reduced leaf damage, increased survival, and elevated accumulation of proline and soluble proteins. Furthermore, transgenic plants exhibited increased activity of antioxidant enzymes and upregulation of cold-responsive genes. These findings indicate that BpWRKY13 confers cold tolerance by promoting osmoprotection and activating antioxidant defense mechanisms. This study provides a crucial foundation for understanding the BpWRKY gene family and highlights BpWRKY13 as a key regulator of cold resistance in B. purpurascens.
Collapse
Affiliation(s)
- Jingyu Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Hongyan Zeng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Feiyang Yan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zongxiang Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenqing Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiankun Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
2
|
Kang JE, Kim H, Song K, Choi C, Kim YJ, Hwang DJ, Chung EH. Arabidopsis WRKY55 Transcription Factor Enhances Soft Rot Disease Resistance with ORA59. THE PLANT PATHOLOGY JOURNAL 2024; 40:537-550. [PMID: 39397307 PMCID: PMC11471935 DOI: 10.5423/ppj.oa.08.2024.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
Pectobacterium is a major bacterial causal agent leading to soft rot disease in host plants. With the Arabidopsis-Pectobacterium pathosystem, we investigated the function of an Arabidopsis thaliana WRKY55 during defense responses to Pectobacterium carotovorum ssp. carotovorum (Pcc). Pcc-infection specifically induced WRKY55 gene expression. The overexpression of WRKY55 was resistant to the Pcc infection, while wrky55 knockout plants compromised the defense responses against Pcc. WRKY55 expression was mediated via Arabidopsis COI1-dependent signaling pathway showing that WRKY55 can contribute to the gene expression of jasmonic acid-mediated defense marker genes such as PDF1.2 and LOX2. WRKY55 physically interacts with Arabidopsis ORA59 facilitating the expression of PDF1.2</i. Our results suggest that WRKY55 can function as a positive regulator for resistance against Pcc in Arabidopsis.
Collapse
Affiliation(s)
- Ji Eun Kang
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Science and Natural Resources, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| | - Hyunsun Kim
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Kyungyoung Song
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju 54974, Korea
| | - Yun Ju Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Duk-Ju Hwang
- D.-J. Hwang, Phone) +82-33-339-5500, FAX) +82-33-339-5635, E-mail)
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Guo Y, Jiang Y, Wu M, Tu A, Yin J, Yang J. TaWRKY50-TaSARK7 module-mediated cysteine-rich protein phosphorylation suppresses the programmed cell death response to Chinese wheat mosaic virus infection. Virology 2024; 595:110071. [PMID: 38593594 DOI: 10.1016/j.virol.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).
Collapse
Affiliation(s)
- Yunfei Guo
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Dong X, Yu L, Zhang Q, Yang J, Gong Z, Niu X, Li H, Zhang X, Liu M, Jin C, Hu Y. Structural basis for the regulation of plant transcription factor WRKY33 by the VQ protein SIB1. Commun Biol 2024; 7:561. [PMID: 38734744 PMCID: PMC11088704 DOI: 10.1038/s42003-024-06258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The WRKY transcription factors play essential roles in a variety of plant signaling pathways associated with biotic and abiotic stress response. The transcriptional activity of many WRKY members are regulated by a class of intrinsically disordered VQ proteins. While it is known that VQ proteins interact with the WRKY DNA-binding domains (DBDs), also termed as the WRKY domains, structural information regarding VQ-WRKY interaction is lacking and the regulation mechanism remains unknown. Herein we report a solution NMR study of the interaction between Arabidopsis WRKY33 and its regulatory VQ protein partner SIB1. We uncover a SIB1 minimal sequence neccessary for forming a stable complex with WRKY33 DBD, which comprises not only the consensus "FxxhVQxhTG" VQ motif but also its preceding region. We demonstrate that the βN-strand and the extended βN-β1 loop of WRKY33 DBD form the SIB1 docking site, and build a structural model of the complex based on the NMR paramagnetic relaxation enhancement and mutagenesis data. Based on this model, we further identify a cluster of positively-charged residues in the N-terminal region of SIB1 to be essential for the formation of a SIB1-WRKY33-DNA ternary complex. These results provide a framework for the mechanism of SIB1-enhanced WRKY33 transcriptional activity.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu Yu
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Qiang Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Liu Z, Wang P, Wang Z, Wang C, Wang Y. Birch WRKY transcription factor, BpWRKY32, confers salt tolerance by mediating stomatal closing, proline accumulation, and reactive oxygen species scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108599. [PMID: 38583313 DOI: 10.1016/j.plaphy.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Plant WRKY transcription factors (TFs) play important roles in abiotic stress responses. However, how WRKY facilitate physiological changes to confer salt tolerance still needs to be studied. Here, we identified a WRKY TF from birch (Betula platyphylla Suk), BpWRKY32, which is significantly (P < 0.05) induced by salt stress. BpWRKY32 binds to W-box motif and is located in the nucleus. Under salt stress conditions, fresh weights (FW) of OE lines (BpWRKY32 overexpression lines) are increased by 66.36% than that of WT, while FW of knockout of BpWRKY32 (bpwrky32) lines are reduced by 39.49% compared with WT. BpWRKY32 regulates the expression of BpRHC1, BpNRT1, and BpMYB61 to reduce stomatal, and width-length ratio of the stomatal aperture in OE lines are reduced by 46.23% and 64.72% compared with in WT and bpwrky32 lines. BpWRKY32 induces P5CS expression, but inhibits P5CDH expression, leading to the proline content in OE lines are increased by 33.41% and 97.58% compared with WT and bpwrky32 lines. Additionally, BpWRKY32 regulates genes encoding SOD and POD family members, which correspondingly increases the activities of SOD and POD. These results suggested that BpWRKY32 regulates target genes to reduce the water loss rate, enhance the osmotic potential, and reduce the ROS accumulation, leading to improved salt tolerance.
Collapse
Affiliation(s)
- Zhujun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Pengyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhibo Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Goldberg A, O'Connor P, Gonzalez C, Ouren M, Rivera L, Radde N, Nguyen M, Ponce-Herrera F, Lloyd A, Gonzalez A. Genetic interaction between TTG2 and AtPLC1 reveals a role for phosphoinositide signaling in a co-regulated suite of Arabidopsis epidermal pathways. Sci Rep 2024; 14:9752. [PMID: 38679676 PMCID: PMC11056374 DOI: 10.1038/s41598-024-60530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.
Collapse
Grants
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- US National Science Foundation
Collapse
Affiliation(s)
- Aleah Goldberg
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Patrick O'Connor
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cassandra Gonzalez
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mason Ouren
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luis Rivera
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Noor Radde
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Nguyen
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Felipe Ponce-Herrera
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA.
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Chen J, Tao F, Xue Y, Xu B, Li X. Genome-Wide Identification of the WRKY Gene Family and Functional Characterization of CpWRKY5 in Cucurbita pepo. Int J Mol Sci 2024; 25:4177. [PMID: 38673762 PMCID: PMC11049939 DOI: 10.3390/ijms25084177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The WRKY gene family is crucial for regulating plant growth and development. However, the WRKY gene is rarely studied in naked kernel formation in hull-less Cucurbita pepo L. (HLCP), a natural mutant that lacks the seed coat. In this research, 76 WRKY genes were identified through bioinformatics-based methods in C. pepo, and their phylogenetics, conserved motifs, synteny, collinearity, and temporal expression during seed coat development were analyzed. The results showed that 76 CpWRKYs were identified and categorized into three main groups (I-III), with Group II further divided into five subgroups (IIa-IIe). Moreover, 31 segmental duplication events were identified in 49 CpWRKY genes. A synteny analysis revealed that C. pepo shared more collinear regions with cucumber than with melon. Furthermore, quantitative RT-PCR (qRT-PCR) results indicated the differential expression of CpWRKYs across different varieties, with notable variations in seed coat development between HLCP and CP being attributed to differences in CpWRKY5 expression. To investigate this further, CpWRKY5-overexpression tobacco plants were generated, resulting in increased lignin content and an upregulation of related genes, as confirmed by qRT-PCR. This study offers valuable insights for future functional investigations of CpWRKY genes and presents novel information for understanding the regulation mechanism of lignin synthesis.
Collapse
Affiliation(s)
- Junhong Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Tao
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yingyu Xue
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaowei Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (F.T.); (X.L.)
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
8
|
Chen C, Zhang M, Ma X, Meng Q, Zhuang K. Differential heat-response characteristics of two plastid isoforms of triose phosphate isomerase in tomato. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:650-661. [PMID: 37878418 PMCID: PMC10893939 DOI: 10.1111/pbi.14212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
Heat stress causes dysfunction of the carbon-assimilation metabolism. As a member of Calvin-Benson-Bassham (CBB) cycle, the chloroplast triose phosphate isomerases (TPI) catalyse the interconversion of glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). The tomato (Solanum lycopersicum) genome contains two individual SlTPI genes, Solyc10g054870 and Solyc01g111120, which encode the chloroplast-located proteins SlTPI1 and SlTPI2, respectively. The tpi1 and tpi2 single mutants had no visible phenotypes, but the leaves of their double mutant lines tpi1tpi2 had obviously reduced TPI activity and displayed chlorotic variegation, dysplasic chloroplasts and lower carbon-assimilation efficiency. In addition to altering carbon metabolism, proteomic data showed that the loss of both SlTPI1 and SlTPI2 severely affected photosystem proteins, reducing photosynthetic capacity. None of these phenotypes was evident in the tpi1 or tpi2 single mutants, suggesting that SlTPI1 and SlTPI2 are functionally redundant. However, the two proteins differed in their responses to heat stress; the protein encoded by the heat-induced SlTPI2 showed a higher level of thermotolerance than that encoded by the heat-suppressed SlTPI1. Notably, heat-induced transcription factors, SlWRKY21 and SlHSFA2/7, which negatively regulated SlTPI1 expression and positively regulated SlTPI2 expression, respectively. Our findings thus reveal that SlTPI1 and SlTPI2 have different thermostabilities and expression patterns in response to heat stress, which have the potential to be applied in thermotolerance strategies in crops.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
- College of Agriculture and BioengineeringHeze UniversityHe'zeShandongChina
| | - Meng Zhang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| | - Xiaocui Ma
- College of ForestryShandong Agricultural UniversityTai'anShandongChina
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anShandongChina
| |
Collapse
|
9
|
Mahiwal S, Pahuja S, Pandey GK. Review: Structural-functional relationship of WRKY transcription factors: Unfolding the role of WRKY in plants. Int J Biol Macromol 2024; 257:128769. [PMID: 38096937 DOI: 10.1016/j.ijbiomac.2023.128769] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
WRKY as the name suggests, are the transcription factors (TFs) that contain the signature WRKY domains, hence named after it. Since their discovery in 1994, they have been well studied in plants with exploration of approximately 74 WRKY genes in the model plant, Arabidopsis alone. However, the study of these transcription factors (TFs) is not just limited to model plant now. They have been studied widely in crop plants as well, because of their tremendous contribution in stress as well as in growth and development. Here, in this review, we describe the story of WRKY TFs from their identification to their origin, the binding mechanisms, structure and their contribution in regulating plant development and stress physiology. High throughput transcriptomics-based data also opened a doorway to understand the comprehensive and detailed functioning of WRKY TFs in plants. Indeed, the detailed functional role of each and every WRKY member in regulating the gene expression is required to pave the path to develop holistic understanding of their role in stress physiology and developmental processes in plants.
Collapse
Affiliation(s)
- Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
10
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
11
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
12
|
Wang S, Liu Y, Hao X, Wang Z, Chen Y, Qu Y, Yao H, Shen Y. AnWRKY29 from the desert xerophytic evergreen Ammopiptanthus nanus improves drought tolerance through osmoregulation in transgenic plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111851. [PMID: 37648116 DOI: 10.1016/j.plantsci.2023.111851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
As a significant transcription factor family in plants, WRKYs have a crucial role in responding to different adverse environments. They have been repeatedly demonstrated to contribute to drought resistance. However, no systematic exploration of the WRKY family has been reported in the evergreen shrub Ammopiptanthus nanus under drought conditions. Here, we showed that AnWRKY29 expression is strongly induced under drought stress. AnWRKY29 belongs to the group IIe of WRKY gene family. To characterize the function of AnWRKY29, we generated transgenic plants overexpressing this gene in Arabidopsis thaliana. We determined that AnWRKY29 overexpression of mainly improves the drought resistance of transgenic plants to water stress by reducing water loss, preventing electrolyte leakage, and increasing the absorption of inorganic ions. In addition, the AnWRKY29 transgenic plants synthesized more trehalose under water stress. The overexpression of AnWRKY29 also enhanced the antioxidant and osmoregulation capacity of transgenic plants by increasing the activities of catalase, peroxidase and superoxide dismutase, thus increasing the scavenging of reactive oxygen species and propylene glycol synthesis aldehyde oxidase. In summary, our study shows that AnWRKY29 plays an important role in the drought tolerance pathway in plants.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yue Qu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongjun Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, Beijing Forestry University, Beijing, China.
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
13
|
Zhou Q, Guo Z, Zhou X, Zhou L, Wang D, Bo K, Zhu P. Genome-Wide Identification and Characterization of the WRKY Gene Family in Cucurbita maxima. Genes (Basel) 2023; 14:2030. [PMID: 38002973 PMCID: PMC10671635 DOI: 10.3390/genes14112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
In higher plants, WRKY transcription factors are broadly involved in a variety of life activities and play an important role in both biotic and abiotic stress responses. However, little is known about the functions of WRKY genes in the popular species, such as Cucurbita maxima (pumpkin), which is planted worldwide. In the present study, 102 CmWRKY genes were identified in the C. maxima genome. Chromosome location, multiple sequence alignment, phylogenetic analysis, and synteny analysis of the CmWRKYs were performed. Notably, we found that silencing CmWRKY22 promoted cucumber mosaic virus (CMV) infection, whereas overexpression of CmWRKY22 inhibited the CMV infection. Subsequently, an electrophoretic mobility shift assay (EMSA) confirmed that CmWRKY22 was able to bind to the W-box at the promoter of CmPR1b, which is a responsive gene of the salicylic acid (SA) signaling pathway. In summary, this study has provided a foundation for the antiviral functions of WRKY transcription factors in C. maxima.
Collapse
Affiliation(s)
- Qin Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Ziqing Guo
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Xiaojun Zhou
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| | - Lei Zhou
- Anhui Provincial Key Laboratory of Melons and Vegetables Germplasm Resource Innovation and Intelligent Technology, Hefei 230031, China
| | - Duanhua Wang
- Hunan Vegetable Research Institute, Changsha 410125, China
| | - Kailiang Bo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pu Zhu
- Jinhua Academy of Agricultural Sciences, Jinhua 321000, China
| |
Collapse
|
14
|
Wang X, Li Z, Shi Y, Liu Z, Zhang X, Gong Z, Yang S. Strigolactones promote plant freezing tolerance by releasing the WRKY41-mediated inhibition of CBF/DREB1 expression. EMBO J 2023; 42:e112999. [PMID: 37622245 PMCID: PMC10548171 DOI: 10.15252/embj.2022112999] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Cold stress is a major abiotic stress that adversely affects plant growth and crop productivity. The C-REPEAT BINDING FACTOR/DRE BINDING FACTOR 1 (CBF/DREB1) transcriptional regulatory cascade plays a key role in regulating cold acclimation and freezing tolerance in Arabidopsis (Arabidopsis thaliana). Here, we show that max (more axillary growth) mutants deficient in strigolactone biosynthesis and signaling display hypersensitivity to freezing stress. Exogenous application of GR245DS , a strigolactone analog, enhances freezing tolerance in wild-type plants and strigolactone-deficient mutants and promotes the cold-induced expression of CBF genes. Biochemical analysis showed that the transcription factor WRKY41 serves as a substrate for the F-box E3 ligase MAX2. WRKY41 directly binds to the W-box in the promoters of CBF genes and represses their expression, negatively regulating cold acclimation and freezing tolerance. MAX2 ubiquitinates WRKY41, thus marking it for cold-induced degradation and thereby alleviating the repression of CBF expression. In addition, SL-mediated degradation of SMXLs also contributes to enhanced plant freezing tolerance by promoting anthocyanin biosynthesis. Taken together, our study reveals the molecular mechanism underlying strigolactones promote the cold stress response in Arabidopsis.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhuoyang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziyan Liu
- College of Plant Science and TechnologyBeijing University of AgricultureBeijingChina
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- College of Life Sciences, Institute of Life Science and Green DevelopmentHebei UniversityBaodingChina
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Wang L, Fu J, Shen Q, Wang Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37186469 DOI: 10.1111/tpj.16259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Phytoalexin is the main chemical weapon against disease pathogens in plants. Rice produces a number of phytoalexins to defend pathogens, most of which belong to diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-cluster genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, positively regulating rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by the CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis reveals that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-clustered genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate the corresponding gene expression. This study identified an extensive regulator (OsWRKY10) with the broad transcriptional regulation on rice diterpenoid phytoalexin biosynthesis, providing the insight to characterize regulation of rice chemical defense for improving disease resistance.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
16
|
Wang J, Lin Y, Yang J, Zhang Q, Liu M, Hu Y, Dong X. Solution structure of the DNA binding domain of Arabidopsis transcription factor WRKY11. Biochem Biophys Res Commun 2023; 653:133-139. [PMID: 36868077 DOI: 10.1016/j.bbrc.2023.02.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
The Arabidopsis WRKY11 (AtWRKY11) protein is an important transcription factor involved in plant response to biotic and abiotic stresses. Its DNA-binding domain specifically binds to gene promoter regions harboring the W-box consensus motif. Herein we report the high-resolution structure of the AtWRKY11 DNA-binding domain (DBD) determined by solution NMR spectroscopy. The results show that AtWRKY11-DBD adopts an all-β fold comprising five β-strands packed in an antiparallel topology, stabilized by a zinc-finger motif. Structural comparison reveals that the long β1-β2 loop shows the highest structural variation from other available WRKY domain structures. Moreover, this loop was further found to contribute to the binding between AtWRKY11-DBD and W-box DNA. Our current study provides atomic-level structural basis for further understanding the structure-function relationship of plant WRKY proteins.
Collapse
Affiliation(s)
- Jiannan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaling Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunfei Hu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Song G, Son S, Nam S, Suh EJ, Lee SI, Park SR. OsWRKY114 Is a Player in Rice Immunity against Fusarium fujikuroi. Int J Mol Sci 2023; 24:ijms24076604. [PMID: 37047576 PMCID: PMC10094899 DOI: 10.3390/ijms24076604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Every year, invasive pathogens cause significant damage to crops. Thus, identifying genes conferring broad-spectrum resistance to invading pathogens is critical for plant breeding. We previously demonstrated that OsWRKY114 contributes to rice (Oryza sativa L.) immunity against the bacterial pathovar Xanthomonas oryzae pv. oryzae (Xoo). However, it is not known whether OsWRKY114 is involved in defense responses to other pathogens. In this study, we revealed that OsWRKY114 enhances innate immunity in rice against the fungal pathogen Fusarium fujikuroi, which is the causal agent of bakanae disease. Transcript levels of various gibberellin-related genes that are required for plant susceptibility to F. fujikuroi were reduced in rice plants overexpressing OsWRKY114. Analysis of disease symptoms revealed increased innate immunity against F. fujikuroi in OsWRKY114-overexpressing rice plants. Moreover, the expression levels of OsJAZ genes, which encode negative regulators of jasmonic acid signaling that confer immunity against F. fujikuroi, were reduced in OsWRKY114-overexpressing rice plants. These results indicate that OsWRKY114 confers broad-spectrum resistance not only to Xoo but also to F. fujikuroi. Our findings provide a basis for developing strategies to mitigate pathogen attack and improve crop resilience to biotic stress.
Collapse
Affiliation(s)
- Giha Song
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Suhyeon Nam
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Eun-Jung Suh
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Soo In Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
18
|
Chen J, Xuan Y, Yi J, Xiao G, Yuan DP, Li D. Progress in rice sheath blight resistance research. FRONTIERS IN PLANT SCIENCE 2023; 14:1141697. [PMID: 37035075 PMCID: PMC10080073 DOI: 10.3389/fpls.2023.1141697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Rice sheath blight (ShB) disease poses a major threat to rice yield throughout the world. However, the defense mechanisms against ShB in rice remain largely unknown. ShB resistance is a typical quantitative trait controlled by multiple genes. With the rapid development of molecular methods, many quantitative trait loci (QTLs) related to agronomic traits, biotic and abiotic stresses, and yield have been identified by genome-wide association studies. The interactions between plants and pathogens are controlled by various plant hormone signaling pathways, and the pathways synergistically or antagonistically interact with each other, regulating plant growth and development as well as the defense response. This review summarizes the regulatory effects of hormones including auxin, ethylene, salicylic acid, jasmonic acid, brassinosteroids, gibberellin, abscisic acid, strigolactone, and cytokinin on ShB and the crosstalk between the various hormones. Furthermore, the effects of sugar and nitrogen on rice ShB resistance, as well as information on genes related to ShB resistance in rice and their effects on ShB are also discussed. In summary, this review is a comprehensive description of the QTLs, hormones, nutrition, and other defense-related genes related to ShB in rice. The prospects of targeting the resistance mechanism as a strategy for controlling ShB in rice are also discussed.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jianghui Yi
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dandan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
19
|
Ling J, Liu R, Hao Y, Li Y, Ping X, Yang Q, Yang Y, Lu X, Xie B, Zhao J, Mao Z. Comprehensive analysis of the WRKY gene family in Cucumis metuliferus and their expression profile in response to an early stage of root knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1143171. [PMID: 37021316 PMCID: PMC10067755 DOI: 10.3389/fpls.2023.1143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes (CmWRKY) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes (CmWRKY10 and CmWRKY28) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
21
|
Genome-Wide Identification of WRKY Family Genes and the Expression Profiles in Response to Nitrogen Deficiency in Poplar. Genes (Basel) 2022; 13:genes13122324. [PMID: 36553591 PMCID: PMC9777946 DOI: 10.3390/genes13122324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The fast-growing arbor poplar is widely distributed across the world and is susceptible to nitrogen availability. The WRKY transcription factor is an important regulatory node of stress tolerance as well as nutrient utilization. However, the potential response mechanism of WRKY genes toward nitrogen is poorly understood. Therefore, the identification of WRKY genes on the Populus trichocarpa genome was performed, and 98 PtWRKYs (i.e., PtWRKY1 to PtWRKY98) were identified. Phylogenetic analysis and the promoter cis-acting element detection revealed that PtWRKYs have multiple functions, including phosphorus and nitrogen homeostasis. By constructing multilayer-hierarchical gene regulatory networks (ML-hGRNs), it was predicted that many WRKY transcription factors were involved in the nitrogen response, such as PtWRKY33 and PtWRKY95. They mainly regulated the expression of primary nitrogen-responsive genes (NRGs), such as PtNRT2.5A, PtNR2 and PtGLT2. The integrative analysis of transcriptome and RT-qPCR results show that the expression levels of 6 and 15 PtWRKYs were regulated by nitrogen availability in roots and leaves, respectively, and those were also found in ML-hGRN. Our study demonstrates that PtWRKYs respond to nitrogen by regulating NRGs, which enriches the nitrate-responsive transcription factor network and helps to uncover the hub of nitrate and its related signaling regulation.
Collapse
|
22
|
Qin W, Wang N, Yin Q, Li H, Wu AM, Qin G. Activation tagging identifies WRKY14 as a repressor of plant thermomorphogenesis in Arabidopsis. MOLECULAR PLANT 2022; 15:1725-1743. [PMID: 36155833 DOI: 10.1016/j.molp.2022.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Increases in recorded high temperatures around the world are causing plant thermomorphogenesis and decreasing crop productivity. PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is a central positive regulator of plant thermomorphogenesis. However, the molecular mechanisms underlying PIF4-regulated thermomorphogenesis remain largely unclear. In this study, we identified ABNORMAL THERMOMORPHOGENESIS 1 (ABT1) as an important negative regulator of PIF4 and plant thermomorphogenesis. Overexpression of ABT1 in the activation tagging mutant abt1-D caused shorter hypocotyls and petioles under moderately high temperature (HT). ABT1 encodes WRKY14, which belongs to subgroup II of the WRKY transcription factors. Overexpression of ABT1/WRKY14 or its close homologs, including ABT2/WRKY35, ABT3/WRKY65, and ABT4/WRKY69in transgenic plants caused insensitivity to HT, whereas the quadruple mutant abt1 abt2 abt3 abt4 exhibited greater sensitivity to HT. ABTs were expressed in hypocotyls, cotyledons, shoot apical meristems, and leaves, but their expression were suppressed by HT. Biochemical assays showed that ABT1 can interact with TCP5, a known positive regulator of PIF4, and interrupt the formation of the TCP5-PIF4 complex and repress its transcriptional activation activity. Genetic analysis showed that ABT1 functioned antagonistically with TCP5, BZR1, and PIF4 in plant thermomorphogenesis. Taken together, our results identify ABT1/WRKY14 as a critical repressor of plant thermomorphogenesis and suggest that ABT1/WRKY14, TCP5, and PIF4 may form a sophisticated regulatory module to fine-tune PIF4 activity and temperature-dependent plant growth.
Collapse
Affiliation(s)
- Wenqi Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ning Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Qi Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China.
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
23
|
Zhang M, Zhao R, Huang K, Huang S, Wang H, Wei Z, Li Z, Bian M, Jiang W, Wu T, Du X. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:383-398. [PMID: 35996876 DOI: 10.1111/tpj.15950] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rice (Oryza sativa) is sensitive to low temperatures, which affects the yield and quality of rice. Therefore, uncovering the molecular mechanisms behind chilling tolerance is a critical task for improving cold tolerance in rice cultivars. Here, we report that OsWRKY63, a WRKY transcription factor with an unknown function, negatively regulates chilling tolerance in rice. OsWRKY63-overexpressing rice lines are more sensitive to cold stress. Conversely, OsWRKY63-knockout mutants generated using a CRISPR/Cas9 genome editing approach exhibited increased chilling tolerance. OsWRKY63 was expressed in all rice tissues, and OsWRKY63 expression was induced under cold stress, dehydration stress, high salinity stress, and ABA treatment. OsWRKY63 localized in the nucleus plays a role as a transcription repressor and downregulates many cold stress-related genes and reactive oxygen species scavenging-related genes. Molecular, biochemical, and genetic assays showed that OsWRKY76 is a direct target gene of OsWRKY63 and that its expression is suppressed by OsWRKY63. OsWRKY76-knockout lines had dramatically decreased cold tolerance, and the cold-induced expression of five OsDREB1 genes was repressed. OsWRKY76 interacted with OsbHLH148, transactivating the expression of OsDREB1B to enhance chilling tolerance in rice. Thus, our study suggests that OsWRKY63 negatively regulates chilling tolerance through the OsWRKY63-OsWRKY76-OsDREB1B transcriptional regulatory cascade in rice.
Collapse
Affiliation(s)
- Mingxing Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Ranran Zhao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Kai Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Shuangzhan Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Haitao Wang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhiqi Wei
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhao Li
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wenzhu Jiang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Tao Wu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
24
|
Huang Z, Song L, Xiao Y, Zhong X, Wang J, Xu W, Jiang CZ. Overexpression of Myrothamnus flabellifolia MfWRKY41 confers drought and salinity tolerance by enhancing root system and antioxidation ability in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:967352. [PMID: 35937333 PMCID: PMC9355591 DOI: 10.3389/fpls.2022.967352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Myrothamnus flabellifolia is the only woody resurrection plant discovered so far and could recover from extreme desiccation condition. However, few genes related to its strong drought tolerance have been characterized, and the underlying molecular mechanisms remains mysterious. Members of WRKY transcription factor family are effective in regulating abiotic stress responses or tolerance in various plants. An early dehydration-induced gene encoding a WRKY transcription factor namely MfWRKY41 was isolated from M. flabellifolia, which is homologous to AtWRKY41 of Arabidopsis. It contains a typical WRKY domain and zinc finger motif, and is located in the nucleus. Comparing to wild type, the four transgenic lines overexpressing MfWRKY41 showed better growth performance under drought and salt treatments, and exhibited higher chlorophyll content, lower water loss rate and stomatal aperture and better osmotic adjustment capacity. These results indicated that MfWRKY41 of M. flabellifolia positively regulates drought as well as salinity responses. Interestingly, the root system architecture, including lateral root number and primary root length, of the transgenic lines was enhanced by MfWRKY41 under both normal and stressful conditions, and the antioxidation ability was also significantly improved. Therefore, MfWRKY41 may have potential application values in genetic improvement of plant tolerance to drought and salinity stresses. The molecular mechanism involving in the regulatory roles of MfWRKY41 is worthy being explored in the future.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yao Xiao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiaojuan Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Jiatong Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA, United States
| |
Collapse
|
25
|
Fei J, Wang YS, Cheng H, Su YB, Zhong YJ, Zheng L. The Kandelia obovata transcription factor KoWRKY40 enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2022; 22:274. [PMID: 35659253 PMCID: PMC9166612 DOI: 10.1186/s12870-022-03661-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 05/27/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND WRKY transcription factors play key roles in plant development processes and stress response. Kandelia obovata is the most cold-resistant species of mangrove plants, which are the important contributors to coastal marine environment. However, there is little known about the WRKY genes in K. obovata. RESULTS In this study, a WRKY transcription factor gene, named KoWRKY40, was identified from mangrove plant K. obovata. The full-length cDNA of KoWRKY40 gene was 1420 nucleotide bases, which encoded 318 amino acids. The KoWRKY40 protein contained a typical WRKY domain and a C2H2 zinc-finger motif, which were common signatures to group II of WRKY family. The three-dimensional (3D) model of KoWRKY40 was formed by one α-helix and five β-strands. Evolutionary analysis revealed that KoWRKY40 has the closest homology with a WRKY protein from another mangrove plant Bruguiera gymnorhiza. The KoWRKY40 protein was verified to be exclusively located in nucleus of tobacco epidermis cells. Gene expression analysis demonstrated that KoWRKY40 was induced highly in the roots and leaves, but lowly in stems in K. obovata under cold stress. Overexpression of KoWRKY40 in Arabidopsis significantly enhanced the fresh weight, root length, and lateral root number of the transgenic lines under cold stress. KoWRKY40 transgenic Arabidopsis exhibited higher proline content, SOD, POD, and CAT activities, and lower MDA content, and H2O2 content than wild-type Arabidopsis under cold stress condition. Cold stress affected the expression of genes related to proline biosynthesis, antioxidant system, and the ICE-CBF-COR signaling pathway, including AtP5CS1, AtPRODH1, AtMnSOD, AtPOD, AtCAT1, AtCBF1, AtCBF2, AtICE1, AtCOR47 in KoWRKY40 transgenic Arabidopsis plants. CONCLUSION These results demonstrated that KoWRKY40 conferred cold tolerance in transgenic Arabidopsis by regulating plant growth, osmotic balance, the antioxidant system, and ICE-CBF-COR signaling pathway. The study indicates that KoWRKY40 is an important regulator involved in the cold stress response in plants.
Collapse
Affiliation(s)
- Jiao Fei
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Hao Cheng
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Bin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| | - Yong-Jia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
26
|
Grzechowiak M, Ruszkowska A, Sliwiak J, Urbanowicz A, Jaskolski M, Ruszkowski M. New aspects of DNA recognition by group II WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain. Int J Biol Macromol 2022; 213:589-601. [PMID: 35660042 DOI: 10.1016/j.ijbiomac.2022.05.186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 01/28/2023]
Abstract
WRKY transcription factors (TFs) constitute one of the largest families of plant TFs. Based on the organization of domains and motifs, WRKY TFs are divided into three Groups (I-III). The WRKY subgroup IIa includes three representatives in A. thaliana, AtWRKY18, AtWRKY40, and AtWRKY60, that participate in biotic and abiotic stress responses. Here we present crystal structures of the DNA binding domain (DBD) of AtWRKY18 alone and in the complex with a DNA duplex containing the WRKY-recognition sequence, W-box. Subgroup IIa WRKY TFs are known to form homo and heterodimers. Our data suggest that the dimerization interface of the full-length AtWRKY18 involves contacts between the DBD subunits. DNA binding experiments and structural analysis point out novel aspects of DNA recognition by WRKY TFs. In particular, AtWRKY18-DBD preferentially binds an overlapping tandem of W-boxes accompanied by a quasi-W-box motif. The binding of DNA deforms the B-type double helix, which suggests that the DNA fragment must be prone to form a specific structure. This can explain why despite the short W-box consensus, WRKY TFs can precisely control gene expression. Finally, this first experimental structure of a Group II WRKY TF allowed us to compare Group I-III representatives.
Collapse
Affiliation(s)
- Marta Grzechowiak
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Agnieszka Ruszkowska
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Joanna Sliwiak
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anna Urbanowicz
- Laboratory of Protein Engineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Mariusz Jaskolski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland; Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan 61-614, Poland
| | - Milosz Ruszkowski
- Department of Structural Biology of Eukaryotes, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland.
| |
Collapse
|
27
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
28
|
Fu Y, Li J, Wu H, Jiang S, Zhu Y, Liu C, Xu W, Li Q, Yang L. Analyses of Botrytis cinerea-responsive LrWRKY genes from Lilium regale reveal distinct roles of two LrWRKY transcription factors in mediating responses to B. cinerea. PLANT CELL REPORTS 2022; 41:995-1012. [PMID: 35195770 DOI: 10.1007/s00299-022-02833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Botrytis cinerea induced expression of 15 LrWRKY genes; overexpression of LrWRKY39 and LrWRKY41a increased resistance and susceptibility, respectively, to B. cinerea in a manner related to SA and JA signaling. WRKY transcription factors (TFs), a large family, play important roles in coping with biotic stresses. Lilium regale Wilson is a lily species with strong resistance to fungi and viruses; however, functional characterization of LrWRKY TFs remains very limited. Here, a total of 25 LrWRKY members were identified from the L. regale transcriptome, and 15 LrWRKY genes were significantly induced by Botrytis cinerea. Based on their structural features, B. cinerea-responsive LrWRKY genes could be classified into six subgroups (Groups I, IIa-d, and III), and sequence alignment showed that 12 LrWRKY proteins have a well-conserved WRKYGQK domain, while 3 LrWRKYs have a variant sequence (WRKYGKK or WRMYEQK). Quantitative RT-PCR analysis revealed tissue-specific expression of B. cinerea-responsive LrWRKY genes and their expression profiles in response to defense-related hormones salicylic acid (SA), methyl jasmonate (MeJA) and hydrogen peroxide. LrWRKY39 and LrWRKY41a, which encode two LrWRKY TFs with different three-dimensional (3D) models of the WRKY domain, were cloned, and both proteins were targeted to the nucleus. Overexpression of LrWRKY39 and LrWRKY41a in Arabidopsis thaliana increased the resistance and susceptibility to B. cinerea, respectively, compared to the wild type. Similar results were also observed in tobacco and lily (L. longiflorum 'Snow Queen') by transient transformation analyses. Their distinct roles may be related to changes in the transcript levels of SA-/JA-responsive genes. Our results provide new insights into B. cinerea-responsive LrWRKY members and the biological functions of two different 3D models of LrWRKY TFs in defense responses to B. cinerea infection.
Collapse
Affiliation(s)
- Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Juan Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Han Wu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Sijia Jiang
- Heilongjiang Forest Botanical Garden, Harbin, 150046, Heilongjiang Province, China
| | - Yiyong Zhu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Chunyu Liu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - WenJi Xu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China.
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
29
|
Tang J, Mei E, He M, Bu Q, Tian X. Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. PLANTA 2022; 255:92. [PMID: 35322309 DOI: 10.1007/s00425-022-03871-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
OsWRKY24 functions redundantly with OsWRKY53, while OsWRKY70 functions differently from OsWRKY53 in regulating grain size. Grain size is a key agronomic trait that affects grain yield and quality in rice (Oryza sativa L.). The transcription factor OsWRKY53 positively regulates grain size through brassinosteroid (BR) signaling and Mitogen-Activated Protein Kinase (MAPK) cascades. However, whether the OsWRKY53 homologs OsWRKY24 and OsWRKY70 also contribute to grain size which remains unknown. Here, we report that grain size in OsWRKY24 overexpression lines and oswrky24 mutants is similar to that of the wild type. However, the oswrky24 oswrky53 double mutant produced smaller grains than the oswrky53 single mutant, indicating functional redundancy between OsWRKY24 and OsWRKY53. In addition, OsWRKY70 overexpression lines displayed an enlarged leaf angle, reduced plant height, longer grains, and higher BR sensitivity, phenotypes similar to those of OsWRKY53 overexpression lines. Importantly, a systematic characterization of seed length in the oswrky70 single, the oswrky53 oswrky70 double and the oswrky24 oswrky53 oswrky70 triple mutant indicated that loss of OsWRKY70 also leads to increased seed length, suggesting that OsWRKY70 might play a role distinct from that of OsWRKY53 in regulating grain size. Taken together, these findings suggest that OsWRKY24 and OsWRKY70 regulate rice grain size redundantly and independently from OsWRKY53.
Collapse
Affiliation(s)
- Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enyang Mei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
30
|
Wen F, Wu X, Li T, Jia M, Liao L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum. BMC PLANT BIOLOGY 2022; 22:115. [PMID: 35287589 PMCID: PMC8919620 DOI: 10.1186/s12870-022-03511-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Akebia trifoliata, belonging to the Lardizabalaceae family, is a well-known Chinese traditional medicinal plant, susceptible to many diseases, such as anthracnose and powdery mildew. WRKY is one of the largest plant-specific transcription factor families and plays important roles in plant growth, development and stress response, especially in disease resistance. However, little was known about the numbers, characters, evolutionary relationship and expression of WRKY genes in A. trifoliata in response to plant disease due to lacking of A. trifoliata genome. RESULTS A total of 42 putative AktWRKY genes were identified based on the full-length transcriptome-sequencing data of A. trifoliata. Then 42 AktWRKY genes were divided into three major groups (Group I-III) based on the WRKY domains. Motif analysis showed members within same group shared a similar motif composition, implying a functional conservation. Tissue-specific expression analysis showed that AktWRKY genes could be detected in all tissues, while few AktWRKY genes were tissue specific. We further evaluated the expression of AktWRKY genes in three varieties in response to Colletotrichum acutatum by qRT-PCR. The expression patterns of AktWRKY genes were similar between C01 and susceptible variety I02, but distinctly different in resistant variety H05. In addition, it showed that more than 64 percentages of AktWRKY genes were differentially expressed during fungal infection in I02 and H05. Furthermore, Gene ontology (GO) analysis showed that AktWRKY genes were categorized into 26 functional groups under cellular components, molecular functions and biological processes, and a predicted protein interaction network was also constructed. CONCLUSIONS Results of bioinformation analysis and expression patterns implied that AktWRKYs might play multiple function in response to biotic stresses. Our study could facilitate to further investigate the function and regulatory mechanism of the WRKY in A. trifoliata during pathogen response.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
31
|
Wang C, Hao X, Wang Y, Maoz I, Zhou W, Zhou Z, Kai G. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. HORTICULTURE RESEARCH 2022; 9:uhac099. [PMID: 35795387 PMCID: PMC9250654 DOI: 10.1093/hr/uhac099] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Camptothecin is a chemotherapeutic drug widely used to treat various cancers. Ophiorrhiza pumila is an ideal plant model for the study of camptothecin production, with various advantages for studying camptothecin biosynthesis and regulation. The DNA-binding WRKY transcription factors have a key regulatory role in secondary metabolite biosynthesis in plants. However, little is currently known about their involvement in camptothecin biosynthesis in O. pumila. We identified 46 OpWRKY genes unevenly distributed on the 11 chromosomes of O. pumila. Phylogenetic and multiple sequence alignment analyses divided the OpWRKY proteins into three subfamilies. Based on spatial expression and co-expression, we targeted the candidate gene OpWRKY6. Overexpression of OpWRKY6 significantly reduced the accumulation of camptothecin compared with the control. Conversely, camptothecin accumulation increased in OpWRKY6 knockout lines. Further biochemical assays showed that OpWRKY6 negatively regulates camptothecin biosynthesis from both the iridoid and shikimate pathways by directly downregulating the gene expression of OpGES, Op10HGO, Op7DLH, and OpTDC. Our data provide direct evidence for the involvement of WRKYs in the regulation of camptothecin biosynthesis and offer valuable information for enriching the production of camptothecin in plant systems.
Collapse
Affiliation(s)
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Itay Maoz
- Department of Postharvest Science, ARO, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | - Wei Zhou
- Corresponding authors. E-mail: , ,
| | | | | |
Collapse
|
32
|
Wang J, Wang L, Yan Y, Zhang S, Li H, Gao Z, Wang C, Guo X. GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. PLANT CELL REPORTS 2021; 40:2135-2150. [PMID: 32888081 DOI: 10.1007/s00299-020-02590-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE We report that GhWRKY21, a WRKY transcription factor, plays essential roles in regulating the intensity of the drought-induced ABA signalling pathway by facilitating the expression of GhHAB in cotton (Gossypium hirsutum). Abscisic acid (ABA) is one of the most important plant hormones in response to abiotic stress. However, activation of the ABA signalling pathway often leads to growth inhibition. The mechanisms that regulate the intensity of ABA signals are poorly understood. Here, we isolated and analysed the cotton group IId WRKY transcription factor (TF) gene GhWRKY21. Functional analysis indicated that GhWRKY21 plays a negative role in the drought response of cotton. Silencing of GhWRKY21 in cotton dramatically increased drought tolerance, whereas ectopic GhWRKY21 overexpression in Nicotiana benthamiana decreased drought tolerance. Furthermore, the GhWRKY21-mediated drought tolerance was ABA dependent. To clarify the mechanism underlying the GhWRKY21-mediated regulation of drought tolerance, 17 clade-A-type type 2C protein phosphatase (PP2C) genes, which are negative regulators of ABA signalling, were identified in cotton. Notably, GhWRKY21 interacted specifically with the W-box element within the promoter of GhHAB and regulated its expression. Silencing of GhHAB in cotton yielded a phenotype similar to that of GhWRKY21-silenced cotton. These results suggest that GhWRKY21 regulates the intensity of ABA signals by facilitating the expression of GhHAB. In summary, these findings dramatically improve our understanding of the function of WRKY TFs and provide insights into the mechanism of ABA-mediated drought tolerance.
Collapse
Affiliation(s)
- Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Yan Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
33
|
Cheng Z, Luan Y, Meng J, Sun J, Tao J, Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. PLANTS 2021; 10:plants10102211. [PMID: 34686020 PMCID: PMC8541500 DOI: 10.3390/plants10102211] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.
Collapse
Affiliation(s)
- Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Yuting Luan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
- Correspondence: ; Tel.: +86-514-87997219; Fax: +86-514-87347537
| |
Collapse
|
34
|
Ma H, Yang T, Li Y, Zhang J, Wu T, Song T, Yao Y, Tian J. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. THE PLANT CELL 2021; 33:3309-3330. [PMID: 34270784 PMCID: PMC8505877 DOI: 10.1093/plcell/koab188] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 05/24/2023]
Abstract
Anthocyanin pigments contribute to plant coloration and are valuable sources of antioxidants in the human diet as components of fruits and vegetables. Their production is known to be induced by light in apple fruit (Malus domestica); however, the underlying molecular mechanism responsible for early-stage light-induced anthocyanin biosynthesis remains unclear. Here, we identified an ethylene response factor (ERF) protein, ERF109, involved in light-induced anthocyanin biosynthesis and found that it promotes coloration by directly binding to anthocyanin-related gene promoters. Promoter::β-glucuronidase reporter analysis and Hi-C sequencing showed that a long noncoding RNA, MdLNC499, located nearby MdERF109, induces the expression of MdERF109. A W-box cis-element in the MdLNC499 promoter was found to be regulated by a transcription factor, MdWRKY1. Transient expression in apple fruit and stable transformation of apple calli allowed us to reconstruct a MdWRKY1-MdLNC499-MdERF109 transcriptional cascade in which MdWRKY1 is activated by light to increase the transcription of MdLNC499, which in turn induces MdERF109. The MdERF109 protein induces the expression of anthocyanin-related genes and the accumulation of anthocyanins in the early stages of apple coloration. Our results provide a platform for better understanding the various regulatory mechanisms involved in light-induced apple fruit coloration.
Collapse
Affiliation(s)
- Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 102206, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
35
|
Shu P, Zhang S, Li Y, Wang X, Yao L, Sheng J, Shen L. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1-9. [PMID: 34087740 DOI: 10.1016/j.plaphy.2021.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
WRKY, as one of the largest families of transcription factors (TFs), binds to cis-acting elements of downstream genes to regulate biotic and abiotic stress. However, the role of SlWRKY46 in fungal disease response induced by Botrytis cinerea (B.cinerea) and potential mechanism remains obscure. To ascertain the role of SlWRKY46 in response to B.cinerea, we constructed SlWRKY46-overexpression plants, which were then inoculated with B.cinerea. SlWRKY46-overexpression plants were more susceptible to B.cinerea and accompanied by the inhibited activities of phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), chitinase (CHI), and β-1,3-glucanase (GLU). Additionally, SlWRKY46-overexpression plants showed the decreased activities of ascorbate peroxidase (APX), superoxide dismutase (SOD) and the content of H2O2, and the increased content of O2•-. Moreover, over-expression of SlWRKY46 suppressed the salicylic acid (SA) and jasmonic acid (JA) marker genes, pathogenesis related protein (PR1), and proteinase inhibitors (PI Ⅰ and PI Ⅱ) and consequently aggravated the disease symptoms. Therefore, we speculated that SlWRKY46 played negative regulatory roles in B. cinerea infection probably by inhibiting the activities of antioxidants and disease resistance enzymes, regulating SA and JA signaling pathways and modulating reactive oxygen (ROS) homeostasis.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shujuan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xinyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lan Yao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
36
|
Survey of Drought-Associated TAWRKY2-D1 Gene Diversity in Bread Wheat and Wheat Relatives. Mol Biotechnol 2021; 63:953-962. [PMID: 34131856 DOI: 10.1007/s12033-021-00350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Recent advances in plant genomics revealed numerous factors related to drought tolerance, including a family of WRKY transcription factors. The aim of this study was to evaluate polymorphism of the TaWRKY2-D1 across a range of bread wheat cultivars, interspecific hybrids, and wild wheat relatives within the Triticum genus as a potential molecular target for marker-assistant selection. The initial sequencing of the TaWRKY2-D1 gene in six Ukrainian commercial cultivars detected some sequence variations along the ~ 1.8 kb of gene promoter and the followed coding region composed of four exons and three introns. Based on the gained sequence information, five sets of primers covering different gene regions were designed to annotate theTaWRKY2-D1 genetic diversity in 202 wheat cultivars, including 77 accessions from the CIMMYT collection, 72 commercial varieties cultivated in Ukraine, and 53 hybrids and wild wheat species. The combination of developed DNA markers enabled effective and reproducible annotation of cultivars genetic diversity. The primers set targeting introns adjusted to the gene's exon 3, turned out to be the most informative for screening heterogeneity of the TaWRKY2-D1. The developed molecular markers represent effective, informative means for selecting drought tolerance germplasm donors to promote wheat breeding programs.
Collapse
|
37
|
Yuan H, Guo W, Zhao L, Yu Y, Chen S, Tao L, Cheng L, Kang Q, Song X, Wu J, Yao Y, Huang W, Wu Y, Liu Y, Yang X, Wu G. Genome-wide identification and expression analysis of the WRKY transcription factor family in flax (Linum usitatissimum L.). BMC Genomics 2021; 22:375. [PMID: 34022792 PMCID: PMC8141250 DOI: 10.1186/s12864-021-07697-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Members of the WRKY protein family, one of the largest transcription factor families in plants, are involved in plant growth and development, signal transduction, senescence, and stress resistance. However, little information is available about WRKY transcription factors in flax (Linum usitatissimum L.). RESULTS In this study, comprehensive genome-wide characterization of the flax WRKY gene family was conducted that led to prediction of 102 LuWRKY genes. Based on bioinformatics-based predictions of structural and phylogenetic features of encoded LuWRKY proteins, 95 LuWRKYs were classified into three main groups (Group I, II, and III); Group II LuWRKYs were further assigned to five subgroups (IIa-e), while seven unique LuWRKYs (LuWRKYs 96-102) could not be assigned to any group. Most LuWRKY proteins within a given subgroup shared similar motif compositions, while a high degree of motif composition variability was apparent between subgroups. Using RNA-seq data, expression patterns of the 102 predicted LuWRKY genes were also investigated. Expression profiling data demonstrated that most genes associated with cellulose, hemicellulose, or lignin content were predominantly expressed in stems, roots, and less in leaves. However, most genes associated with stress responses were predominantly expressed in leaves and exhibited distinctly higher expression levels in developmental stages 1 and 8 than during other stages. CONCLUSIONS Ultimately, the present study provides a comprehensive analysis of predicted flax WRKY family genes to guide future investigations to reveal functions of LuWRKY proteins during plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Hongmei Yuan
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Wendong Guo
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, 150040, China
| | - Lijuan Zhao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying Yu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Si Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lei Tao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lili Cheng
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Qinghua Kang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xixia Song
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Jianzhong Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yubo Yao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Wengong Huang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Ying Wu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Yan Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xue Yang
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Guangwen Wu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| |
Collapse
|
38
|
Kang G, Yan D, Chen X, Yang L, Zeng R. HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 171:151-160. [PMID: 33034379 DOI: 10.1111/ppl.13238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
WRKY group transcription factors of model plants and major crops are confirmed to play essential roles in stress responses, senescence, secondary metabolism processes and hormone signal transduction. Previous studies have identified 81 HbWRKY genes from Hevea brasiliensis (the Pará rubber tree), but the functions of HbWRKYs in response to abiotic stresses and leaf senescence are unclear. In this study, one novel group IIc WRKY transcription factor named HbWRKY82 was identified and characterized as a stress-associated WRKY in rubber tree. Transient expression and transcriptional activation analyses indicated that HbWRKY82 encoded a nuclear protein and functioned as a transcription activator. The transcription levels of HbWRKY82 were induced by exogenous Ethrel (ET) (ethylene releaser) and abscisic acid (ABA) stimulations, down-regulated in tapping panel dryness rubber trees, and also exhibits significant decrease during the progression of leaf senescence. Overexpression of HbWRKY82 in Arabidopsis improved the tolerance to dehydration and salinity, and decreased the sensitivity to exogenous ABA. Moreover, real-time quantitative PCR analysis demonstrated that HbWRKY82 regulated the transcriptional expression of several stress-responsive genes (DREB1A, ERD10, HKT1, P5CS, RD22, RD29B, SKOR), leaf senescence marker genes (EIN3, WRKY53, NAP), ROS-related genes (RbohD, CSD1, CSD2, FSD3) and hormone signaling genes (EIN3, ABF3, ABF4). Collectively, our findings suggested that HbWRKY82 might function as an important transcriptional regulator in ET- and ABA-mediated leaf senescence and abiotic stress responses, and also be involved in tapping panel dryness, latex flow and regeneration processes of rubber trees via participating in the ET and reactive oxygen species signaling pathways.
Collapse
Affiliation(s)
- Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China ' State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dong Yan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China ' State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xiaoli Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China ' State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Lifu Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China ' State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs, P. R. China ' State Key Laboratory Incubation Base for Cultivation & Physiology of Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
39
|
Li S, Hai J, Wang Z, Deng J, Liang T, Su L, Liu D. Lilium regale Wilson WRKY2 Regulates Chitinase Gene Expression During the Response to the Root Rot Pathogen Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:741463. [PMID: 34646290 PMCID: PMC8503523 DOI: 10.3389/fpls.2021.741463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Root rot, mainly caused by Fusarium oxysporum, is the most destructive disease affecting lily (Lilium spp.) production. The WRKY transcription factors (TFs) have important roles during plant immune responses. To clarify the effects of WRKY TFs on plant defense responses to pathogens, a WRKY gene (LrWRKY2) was isolated from Lilium regale Wilson, which is a wild lily species highly resistant to F. oxysporum. The expression of LrWRKY2, which encodes a nuclear protein, is induced by various hormones (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) and by F. oxysporum infection. In this study, LrWRKY2-overexpressing transgenic tobacco plants were more resistant to F. oxysporum than the wild-type plants. Moreover, the expression levels of jasmonic acid biosynthetic pathway-related genes (NtAOC, NtAOS, NtKAT, NtPACX, NtJMT, NtOPR, and NtLOX), pathogenesis-related genes (NtCHI, NtGlu2, and NtPR-1), and antioxidant stress-related superoxide dismutase genes (NtSOD, NtCu-ZnSOD, and MnSOD) were significantly up-regulated in LrWRKY2 transgenic tobacco lines. Additionally, the transient expression of a hairpin RNA targeting LrWRKY2 increased the susceptibility of L. regale scales to F. oxysporum. Furthermore, an F. oxysporum resistance gene (LrCHI2) encoding a chitinase was isolated from L. regale. An electrophoretic mobility shift assay demonstrated that LrWRKY2 can bind to the LrCHI2 promoter containing the W-box element. Yeast one-hybrid assay results suggested that LrWRKY2 can activate LrCHI2 transcription. An examination of transgenic tobacco transformed with LrWRKY2 and the LrCHI2 promoter revealed that LrWRKY2 activates the LrCHI2 promoter. Therefore, in L. regale, LrWRKY2 is an important positive regulator that contributes to plant defense responses to F. oxysporum by modulating LrCHI2 expression.
Collapse
|
40
|
Xiao Y, Feng J, Li Q, Zhou Y, Bu Q, Zhou J, Tan H, Yang Y, Zhang L, Chen W. IiWRKY34 positively regulates yield, lignan biosynthesis and stress tolerance in Isatis indigotica. Acta Pharm Sin B 2020; 10:2417-2432. [PMID: 33354511 PMCID: PMC7745056 DOI: 10.1016/j.apsb.2019.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/14/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Yield potential, pharmaceutical compounds production and stress tolerance capacity are 3 classes of traits that determine the quality of medicinal plants. The autotetraploid Isatis indigotica has greater yield, higher bioactive lignan accumulation and enhanced stress tolerance compared with its diploid progenitor. Here we show that the transcription factor IiWRKY34, with higher expression levels in tetraploid than in diploid I. indigotica, has large pleiotropic effects on an array of traits, including biomass growth rates, lignan biosynthesis, as well as salt and drought stress tolerance. Integrated analysis of transcriptome and metabolome profiling demonstrated that IiWRKY34 expression had far-reaching consequences on both primary and secondary metabolism, reprograming carbon flux towards phenylpropanoids, such as lignans and flavonoids. Transcript–metabolite correlation analysis was applied to construct the regulatory network of IiWRKY34 for lignan biosynthesis. One candidate target Ii4CL3, a key rate-limiting enzyme of lignan biosynthesis as indicated in our previous study, has been demonstrated to indeed be activated by IiWRKY34. Collectively, the results indicate that the differentially expressed IiWRKY34 has contributed significantly to the polyploidy vigor of I. indigotica, and manipulation of this gene will facilitate comprehensive improvements of I. indigotica herb.
Collapse
|
41
|
Xu YP, Xu H, Wang B, Su XD. Crystal structures of N-terminal WRKY transcription factors and DNA complexes. Protein Cell 2020; 11:208-213. [PMID: 31734872 PMCID: PMC7026264 DOI: 10.1007/s13238-019-00670-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Yong-Ping Xu
- State Key Laboratory of Protein and Plant Gene Research, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Hua Xu
- State Key Laboratory of Protein and Plant Gene Research, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Kang G, Yan D, Chen X, Li Y, Yang L, Zeng R. Molecular characterization and functional analysis of a novel WRKY transcription factor HbWRKY83 possibly involved in rubber production of Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:483-493. [PMID: 32827873 DOI: 10.1016/j.plaphy.2020.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
WRKY transcription factors play important roles in plant growth and developmental processes and various stress responses, and are also associated with jasmonic acid (JA) signaling in the regulation of secondary metabolite biosynthesis in plants. The regulatory networks mediated by WRKY proteins in the latex production of Hevea brasiliensis (the Pará rubber tree) are poorly understood. In this study, one novel WRKY gene (designated HbWRKY83) was identified from the latex of H. brasiliensis, and its functions were characterized via gene expression analysis in both the latex and HbWRKY83-overexpressing transgenic Arabidopsis. HbWRKY83 gene contains an open reading frame (ORF) of 921 bp encoding a 306-amino-acid protein which is clustered with group IIc WRKY TF. HbWRKY83 is a nuclear-localized protein with transcriptional activity. Real-time quantitative PCR analysis demonstrated that the transcription level of HbWRKY83 was up-regulated by exogenous methyl jasmonate, Ethrel (ethylene releaser) stimulation, and bark tapping (mechanical wounding). Compared with the wild-type plants, overexpression of HbWRKY83 improved the tolerance of transgenic Arabidopsis lines to drought and salt stresses by enhancing the expression levels of ethylene-insensitive3 transcription factors (EIN3s) and several stress-responsive genes, including Cu/Zn superoxide dismutases CSD1 (Cu/Zn-SOD1) and CSD2 (Cu/Zn-SOD2), related to reactive oxygen species scavenging. Additionally, these genes were also significantly up-regulated by bark tapping. In combination, these results suggest that HbWRKY83 might act as a positive regulator of rubber production by activating the expression of JA-, ethylene-, and wound-responsive genes in the laticiferous cells of rubber trees.
Collapse
Affiliation(s)
- Guijuan Kang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Dong Yan
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Xiaoli Chen
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yu Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lifu Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Rizhong Zeng
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture and Rural Affairs & Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| |
Collapse
|
43
|
Heterologous Expression of Dehydration-Inducible MfWRKY17 of Myrothamnus Flabellifolia Confers Drought and Salt Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:ijms21134603. [PMID: 32610467 PMCID: PMC7370056 DOI: 10.3390/ijms21134603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
As the only woody resurrection plant, Myrothamnus flabellifolia has a strong tolerance to drought and can survive long-term in a desiccated environment. However, the molecular mechanisms related to the stress tolerance of M. flabellifolia are largely unknown, and few tolerance-related genes previously identified had been functionally characterized. WRKYs are a group of unique and complex plant transcription factors, and have reported functions in diverse biological processes, especially in the regulation of abiotic stress tolerances, in various species. However, little is known about their roles in response to abiotic stresses in M. flabellifolia. In this study, we characterized a dehydration-inducible WRKY transcription factor gene, MfWRKY17, from M. flabellifolia. MfWRKY17 shows high degree of homology with genes from Vitis vinifera and Vitis pseudoreticulata, belonging to group II of the WRKY family. Unlike known WRKY17s in other organisms acting as negative regulators in biotic or abiotic stress responses, overexpression of MfWRKY17 in Arabidopsis significantly increased drought and salt tolerance. Further investigations indicated that MfWRKY17 participated in increasing water retention, maintaining chlorophyll content, and regulating ABA biosynthesis and stress-related gene expression. These results suggest that MfWRKY17 possibly acts as a positive regulator of stress tolerance in the resurrection plant M. flabellifolia.
Collapse
|
44
|
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genomics 2020; 21:339. [PMID: 32366323 PMCID: PMC7199342 DOI: 10.1186/s12864-020-6743-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
45
|
Li X, Tang Y, Zhou C, Zhang L, Lv J. A Wheat WRKY Transcription Factor TaWRKY46 Enhances Tolerance to Osmotic Stress in transgenic Arabidopsis Plants. Int J Mol Sci 2020; 21:ijms21041321. [PMID: 32075313 PMCID: PMC7072902 DOI: 10.3390/ijms21041321] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors play central roles in developmental processes and stress responses of wheat. Most WRKY proteins of the same group (Group III) have a similar function in abiotic stress responses in plants. TaWRKY46, a member of Group III, was up-regulated by PEG treatment. TaWRKY46-GFP fusion proteins localize to the nucleus in wheat mesophyll protoplasts. Overexpression of TaWRKY46 enhanced osmotic stress tolerance in transgenic Arabidopsis thaliana plants, which was mainly demonstrated by transgenic Arabidopsis plants forming higher germination rate and longer root length on 1/2 Murashige and Skoog (MS) medium containing mannitol. Furthermore, the expression of several stress-related genes (P5CS1, RD29B, DREB2A, ABF3, CBF2, and CBF3) was significantly increased in TaWRKY46-overexpressing transgenic Arabidopsis plants after mannitol treatment. Taken together, these findings proposed that TaWRKY46 possesses vital functions in improving drought tolerance through ABA-dependent and ABA-independent pathways when plants are exposed to adverse osmotic conditions. TaWRKY46 can be taken as a candidate gene for transgenic breeding against osmotic stress in wheat. It can further complement and improve the information of the WRKY family members of Group III.
Collapse
Affiliation(s)
| | | | | | | | - Jinyin Lv
- Correspondence: ; Tel.: +86-135-7219-6187
| |
Collapse
|
46
|
Cheng X, Zhao Y, Jiang Q, Yang J, Zhao W, Taylor IA, Peng YL, Wang D, Liu J. Structural basis of dimerization and dual W-box DNA recognition by rice WRKY domain. Nucleic Acids Res 2019; 47:4308-4318. [PMID: 30783673 PMCID: PMC6486541 DOI: 10.1093/nar/gkz113] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022] Open
Abstract
In rice, the critical regulator of the salicylic acid signalling pathway is OsWRKY45, a transcription factor (TF) of the WRKY TF family that functions by binding to the W-box of gene promoters, but the structural basis of OsWRKY45/W-box DNA recognition is unknown. Here, we show the crystal structure of the DNA binding domain of OsWRKY45 (OsWRKY45–DBD, i.e. the WRKY and zinc finger domain) in complex with a W-box DNA. Surprisingly, two OsWRKY45–DBD molecules exchange β4-β5 strands to form a dimer. The domain swapping occurs at the hinge region between the β3 and β4 strands, and is bridged and stabilized by zinc ion via coordinating residues from different chains. The dimer contains two identical DNA binding domains that interact with the major groove of W-box DNA. In addition to hydrophobic and direct hydrogen bonds, water mediated hydrogen bonds are also involved in base-specific interaction between protein and DNA. Finally, we discussed the cause and consequence of domain swapping of OsWRKY45–DBD, and based on our work and that of previous studies present a detailed mechanism of W-box recognition by WRKY TFs. This work reveals a novel dimerization and DNA-binding mode of WRKY TFs, and an intricate picture of the WRKY/W-box DNA recognition.
Collapse
Affiliation(s)
- Xiankun Cheng
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanxiang Zhao
- College of Plant Health and Medicine, and Key Lab of Integrated Crop Disease and Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingshan Jiang
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - You-Liang Peng
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China.,State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Dongli Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junfeng Liu
- MOA Key Laboratory of Plant Pathology, joint international Research Laboratory of Crop Molecular Breeding, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
47
|
Singh A, Sharma AK, Singh NK, Sonah H, Deshmukh R, Sharma TR. Understanding the Effect of Structural Diversity in WRKY Transcription Factors on DNA Binding Efficiency through Molecular Dynamics Simulation. BIOLOGY 2019; 8:biology8040083. [PMID: 31690005 PMCID: PMC6956055 DOI: 10.3390/biology8040083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 11/16/2022]
Abstract
A precise understanding of the molecular mechanism involved in stress conditions has great importance for crop improvement. Biomolecules, such as WRKY proteins, which are the largest transcription factor family that is widely distributed in higher plants, plays a significant role in plant defense response against various biotic and abiotic stressors. In the present study, an extensive homology-based three-dimensional model construction and subsequent interaction study of WRKY DNA-binding domain (DBD) in CcWRKY1 (Type I), CcWRKY51 (Type II), and CcWRKY70 (Type III) belonging to pigeonpea, a highly tolerant crop species, was performed. Evaluation of the generated protein models was done to check their reliability and accuracy based on the quantitative and qualitative parameters. The final model was subjected to investigate the comparative binding analysis of different types of WRKY–DBD with DNA-W-box (a cis-acting element) by protein–DNA docking and molecular dynamics (MD) simulation. The DNA binding specificity with WRKY variants was scrutinized through protein–DNA interaction using the HADDOCK server. The stability, as well as conformational changes of protein–DNA complex, was investigated through molecular dynamics (MD) simulations for 100 ns using GROMACS. Additionally, the comparative stability and dynamic behavior of each residue of the WRKY–DBD type were analyzed in terms of root mean square deviation (RMSD), root mean square fluctuation (RMSF)values of the backbone atoms for each frame taking the minimized structure as a reference. The details of DNA binding activity of three different types of WRKY–DBD provided here will be helpful to better understand the regulation of WRKY gene family members in plants.
Collapse
Affiliation(s)
- Akshay Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 226031, India.
| | - Ajay Kumar Sharma
- Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005, India.
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, Punjab, India.
| |
Collapse
|
48
|
Genome-Wide Computational Identification of Biologically Significant Cis-Regulatory Elements and Associated Transcription Factors from Rice. PLANTS 2019; 8:plants8110441. [PMID: 31652796 PMCID: PMC6918188 DOI: 10.3390/plants8110441] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/12/2023]
Abstract
The interactions between transcription factors (TFs) and cis-acting regulatory elements (CREs) provide crucial information on the regulation of gene expression. The determination of TF-binding sites and CREs experimentally is costly and time intensive. An in silico identification and annotation of TFs, and the prediction of CREs from rice are made possible by the availability of whole genome sequence and transcriptome data. In this study, we tested the applicability of two algorithms developed for other model systems for the identification of biologically significant CREs of co-expressed genes from rice. CREs were identified from the DNA sequences located upstream from the transcription start sites, untranslated regions (UTRs), and introns, and downstream from the translational stop codons of co-expressed genes. The biologically significance of each CRE was determined by correlating their absence and presence in each gene with that gene's expression profile using a meta-database constructed from 50 rice microarray data sets. The reliability of these methods in the predictions of CREs and their corresponding TFs was supported by previous wet lab experimental data and a literature review. New CREs corresponding to abiotic stresses, biotic stresses, specific tissues, and developmental stages were identified from rice, revealing new pieces of information for future experimental testing. The effectiveness of some-but not all-CREs was found to be affected by copy number, position, and orientation. The corresponding TFs that were most likely correlated with each CRE were also identified. These findings not only contribute to the prioritization of candidates for further analysis, the information also contributes to the understanding of the gene regulatory network.
Collapse
|
49
|
Identification, characterization and expression profiles of Fusarium udum stress-responsive WRKY transcription factors in Cajanus cajan under the influence of NaCl stress and Pseudomonas fluorescens OKC. Sci Rep 2019; 9:14344. [PMID: 31586089 PMCID: PMC6778267 DOI: 10.1038/s41598-019-50696-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/18/2019] [Indexed: 01/29/2023] Open
Abstract
The WRKY gene family has never been identified in pigeonpea (Cajanus cajan). Therefore, objective of the present study was to identify the WRKY gene family in pigeonpea and characterize the Fusarium udum stress-responsive WRKY genes under normal, NaCl-stressed and Pseudomonas fluorescens OKC (a plant growth-promoting bacterial strain) treated conditions. The aim was to characterize the Fusarium udum stress-responsive WRKY genes under some commonly occurring field conditions. We identified 97 genes in the WRKY family of pigeonpea, using computational prediction method. The gene family was then classified into three groups through phylogenetic analysis of the homologous genes from the representative plant species. Among the 97 identified WRKY genes 35 were further classified as pathogen stress responsive genes. Functional validation of the 35 WRKY genes was done through generating transcriptional profiles of the genes from root tissues of pigeonpea plants under the influence of P. fluorescens OKC after 24 h of stress application (biotic: Fusarium udum, abiotic: NaCl). The entire experiment was conducted in two pigeonpea cultivars Asha (resistant to F. udum) and Bahar (susceptible to F. udum) and the results were concluded on the basis of transcriptional regulation of the WRKY genes in both the pigeonpea cultivars. The results revealed that among the 35 tentatively identified biotic stress responsive CcWRKY genes, 26 were highly F. udum responsive, 17 were better NaCl responsive compared to F. udum and 11 were dual responsive to both F. udum and NaCl. Application of OKC was able to enhance transcript accumulation of the individual CcWRKY genes to both the stresses when applied individually but not in combined challenge of the two stresses. The results thus indicated that CcWRKY genes play a vital role in the defense signaling against F. udum and some of the F. udum responsive CcWRKYs (at least 11 in pigeonpea) are also responsive to abiotic stresses such as NaCl. Further, plant beneficial microbes such as P. fluorescens OKC also help pegionpea to defend itself against the two stresses (F. udum and NaCl) through enhanced expression of the stress responsive CcWRKY genes when the stresses are applied individually.
Collapse
|
50
|
Kanofsky K, Riggers J, Staar M, Strauch CJ, Arndt LC, Hehl R. A strong NF-κB p65 responsive cis-regulatory sequence from Arabidopsis thaliana interacts with WRKY40. PLANT CELL REPORTS 2019; 38:1139-1150. [PMID: 31197450 DOI: 10.1007/s00299-019-02433-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Transcription factors from mammals and plants, which play a role in innate immunity, interact with the same microbe-associated molecular pattern (MAMP)-responsive sequences from Arabidopsis thaliana. The interaction of mouse NF-κB p65 with MAMP-responsive sequences containing the core motif GACTTT of the WT-box was investigated. This revealed one sequence, derived from the promoter of the A. thaliana gene At1g76960, a gene with unknown function, to activate NF-κB p65 dependent reporter gene expression in plant cells very strongly. A bioinformatic analysis predicts three putative NF-κB p65 binding sites in this sequence and all three sites are required for reporter gene activation and binding. The sequence is one of the weakest MAMP-responsive sequences previously isolated, but the introduction of a GCC-box increases its MAMP responsivity in combination with upstream WT-box sequences. Although a bioinformatic analysis of the unmutated cis-sequence only predicts NF-κB p65 binding, A. thaliana WRKY40 was selected in a yeast one-hybrid screen. WRKY40, which is a transcriptional repressor, requires the sequence TTTTCTA for direct binding. This sequence is similar to the WK-box TTTTCCAC, previously shown to interact with tobacco NtWRKY12. In summary, this work supports the similarity in binding site recognition between NF-κB and WRKY factors.
Collapse
Affiliation(s)
- Konstantin Kanofsky
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Jasmin Riggers
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Marcel Staar
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Claudia Janina Strauch
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Laureen Christin Arndt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|