1
|
Sohail A, Lu C, Xu P. Genetic and molecular mechanisms underlying the male sterility in rice. J Appl Genet 2025; 66:251-265. [PMID: 39627604 DOI: 10.1007/s13353-024-00923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 04/16/2025]
Abstract
Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China
| | - Chengkai Lu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| | - Peng Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| |
Collapse
|
2
|
Zhu L, Chen R, Huang Y, Liang G, Wu J, Guo H, Liu X, Lu Z. MORE FLORET1 Interacts with C-type Replication Protein A Complex and Regulates Male Meiosis in Rice. RICE (NEW YORK, N.Y.) 2025; 18:30. [PMID: 40285806 PMCID: PMC12033130 DOI: 10.1186/s12284-025-00791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Meiosis plays a pivotal role in plant reproduction, which is also crucial for enhancing genetic diversity. Although the impact of MOF1 on floral organ development and its negative regulation of the key tapetal gene PKS2 have been established, the specific function of MOF1 in male meiotic process remains elusive. In this study, we identified two mutant lines of MOF1 in Nipponbare background. Compared to the wild-type controls, MOF1 mutations resulted in significant reductions in seed setting rate and pollen fertility, partially attributed to its defects in the formation of male meiotic bivalents. RNA-seq analyses and RT-qPCR assays revealed that loss-of-function mutation of MOF1 didn't alter expression levels of 60 known meiotic-regulated genes, suggesting that MOF1 may not function as a transcriptional factor in its meiotic regulation. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated the protein-protein interactions among MOF1, RPA2c, RPA1c, as well as FAR1, among which RPA1c and RPA2c involved in meiotic bivalent formation. Furthermore, gene expression pattern analyses and subcellular localization studies indicated the co-expression among above interacted proteins in nucleus during anther development. Our findings provide a mechanistic insight into how MOF1 modulate male meiosis possibly through interactions with key meiotic proteins, facilitating a better understanding of male reproductive regulation.
Collapse
Affiliation(s)
- Lianjun Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rou Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Guobin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Haibin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Aloryi KD, Okpala NE, Amenyogbe MK, Bimpong D, Karikari B, Guo H, Bello SF, Akaba S, Yeboah A, Ahmed AR, Ngegba PM, Kamara N, Anyanwu JN, Essandoh DA, Qiu X, Tian X, Wang G, An T. Whole-genome meta-analysis coupled with haplotype analysis reveal new genes and functional haplotypes conferring pre-harvest sprouting in rice. BMC PLANT BIOLOGY 2025; 25:527. [PMID: 40275165 PMCID: PMC12023606 DOI: 10.1186/s12870-025-06551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Pre-harvest sprouting (PHS), which adversely impacts grain yield and quality, is controlled by seed dormancy genes. However, only a few dormancy-related genes have been characterized, and the effects of allelic variation in genes and the genetic basis of seed dormancy in rice remain largely unknown. Here, we performed a whole-genome meta-quantitative trait loci study to elucidate the genetic basis of seed dormancy in rice. RESULT One hundred and sixty-seven QTL were identified for PHS from which 134 were successfully projected onto the reference map yielding 20 consensus regions, meta-QTL (mQTL). The mean confidence interval of the mQTL was narrower (9.56-fold reduction) than that of the initial QTL. Six of the 20 identified mQTL were designated as breeders' mQTL based on their small confidence intervals, large phenotypic variance explained, and the involvement of high number of QTL. Further, we retrieved 559 high-confidence genes from breeders' mQTL regions conferring resistance to PHS. Comparative analysis of genes found in breeders' mQTL loci and an RNA-seq-based transcriptomic dataset discovered 34 common genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed a significant enrichment of the common genes in amino sugar and nucleotide sugar metabolism, carbon metabolism, and carbon fixation in photosynthetic organs. Combined in silico expression profiling and qRT-PCR validation showed that LOC_Os10g18364, LOC_Os10g21940, LOC_Os10g22590, and LOC_Os10g25140 exhibited high fold-change expression in PHS resistant cultivar (23xS-261) than PHS susceptible cultivar (23xS-262). Association analysis of these genes with germination rate index demonstrated that LOC_Os10g18364Hap1, LOC_Os10g21940Hap1, LOC_Os10g22590Hap1, and LOC_Os10g25140Hap1/Hap3 exhibited low germination rate (GR) in cultivars carrying these haplotypes. CONCLUSION In summary, this study delineates the genetic basis of PHS and provides a new set of target genes for improving PHS resistance. The natural variants identified in these genes and markers associated with breeders' mQTL serve as potential resources for incorporating PHS resistance in rice.
Collapse
Affiliation(s)
- Kelvin Dodzi Aloryi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
- Horticultural Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Nnaemeka Emmanuel Okpala
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mawuli Korsi Amenyogbe
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Daniel Bimpong
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Benjamin Karikari
- Département de phytologie, Université Laval, Québec, QC, Canada
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Hong Guo
- Zhejiang Industry Polytechnic College, Shaoxing, China
| | - Semiu Folaniyi Bello
- Agriculture Research Group, Organization of African Academic Doctors (OAAD), P. O. Box 25305-00100, Langata, Nairobi, Kenya
| | - Selorm Akaba
- School of Agriculture, University of Cape Coast, Cape Coast, Ghana
| | - Akwasi Yeboah
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Abdul Razak Ahmed
- Department of Plant Protection, Akdeniz University Dumlupinar Bulvari, Antalya, 07058, Türkiye
| | - Patrick Maada Ngegba
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | - Nabieu Kamara
- Sierra Leone Agricultural Research Institute, P.M.B 1313, Tower Hill, Freetown, 47235, Sierra Leone
| | | | - Danielle Ama Essandoh
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, 30602, USA
| | - Xianjin Qiu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Centre for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
4
|
Zhang Y, Lv F, Wan Z, Geng M, Chu L, Cai B, Zhuang J, Ge X, Schnittger A, Yang C. The synaptonemal complex stabilizes meiosis in allotetraploid Brassica napus and autotetraploid Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:581-597. [PMID: 39963072 PMCID: PMC11923410 DOI: 10.1111/nph.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/31/2025] [Indexed: 03/21/2025]
Abstract
Polyploidy plays a key role in genome evolution and crop improvement. The formation of bivalents rather than multivalents during meiosis of polyploids is essential to ensure meiotic stability and optimal fertility of the species. However, the mechanisms preventing multivalent recombination in polyploids remain obscure. We studied the role of the synaptonemal complex in polyploid meiosis by mutating the transverse filament component ZYP1 in allotetraploid Brassica napus and autotetraploid Arabidopsis. In B. napus, a mutation of all four ZYP1 copies results in multivalent pairing accompanied by pairing partner switches, nonhomologous recombination, and interlocks, leading to severe chromosome entanglement and fertility abortion. The presence of only one functional allele of ZYP1 compromises synapsis and multivalent associations occur at nonsynaptic regions. Moreover, the disruption of ZYP1 causes a complete shift from predominantly multivalent pairing to exclusively multivalent pairing in pachytene cells of synthetic autotetraploid Arabidopsis thaliana, resulting in a dramatic increase in the frequency of multivalents at metaphase I. We conclude that the ZYP1-mediated assembly of the synaptonemal complex facilitates the pairwise homologous pairing and recombination in both allopolyploid and autopolyploid species and plays a key role in ensuring a diploid-like bivalent formation in polyploid meiosis.
Collapse
Affiliation(s)
- Yashi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fei Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyang Wan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaowei Geng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Chu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowei Cai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jixin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Arp Schnittger
- Department of Developmental Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
5
|
Fan YJ, Du ZZ, He XY, Liu ZA, Zhuang JX, Xiao GA, Duan YY, Tan FQ, Xie KD, Jiao WB, Zhang F, Yang C, Guo WW, Wu XM. Somatic variations in the meiosis-specific gene CrMER3 confer seedlessness in a citrus bud sport. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39981730 DOI: 10.1111/jipb.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
Seedlessness is a most valuable trait in fruit crops for fresh consumption and processing. The mutations in essential meiosis genes are known to confer sterility and seed abortion in plants. However, defects in meiosis have rarely been reported in fruit crops. Here, we found meiosis defects caused sterility in a seedless citrus bud sport cultivar, with massive unpaired univalents during diakinesis, indicating a disruption in crossover formation. A non-functional CrMER3A-103 bp allele with a 103-bp deletion in the gene body, together with the other non-functional CrMER3a allele with a T deletion in exon, were identified in the seedless cultivar. The CrMER3 protein was undetectable at meiotic prophase I in the seedless cultivar, and knock out of CrMER3 resulted in sterility in precocious Mini-citrus. Therefore, the natural variation in CrMER3 is responsible for sterility and seedlessness in this bud sport cultivar. The CrMER3a allele originated from the primitive wild mandarin and was passed to cultivated mandarins. A Kompetitive Allele-Specific PCR (KASP) marker was developed to identify citrus germplasm with CrMER3a allele and to screen potential sterile and seedless hybrids in citrus cross breeding. Uncovering the natural mutations responsible for meiosis defects in citrus enhances our understanding of mechanisms controlling seedlessness in fruit crops and facilitates breeding of seedless varieties.
Collapse
Affiliation(s)
- Yan-Jie Fan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ze-Zhen Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xing-Yi He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zi-Ang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Xin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gong-Ao Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao-Yuan Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, France
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fei Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Xue F, Zhang J, Wu D, Sun S, Fu M, Wang J, Searle I, Gao H, Liang W. m 6A demethylase OsALKBH5 is required for double-strand break formation and repair by affecting mRNA stability in rice meiosis. THE NEW PHYTOLOGIST 2024; 244:2326-2342. [PMID: 39044689 DOI: 10.1111/nph.19976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is the most prevalent messenger RNA (mRNA) modification in eukaryotes and plays critical roles in the regulation of gene expression. m6A is a reversible RNA modification that is deposited by methyltransferases (writers) and removed by demethylases (erasers). The function of m6A erasers in plants is highly diversified and their roles in cereal crops, especially in reproductive development essential for crop yield, are largely unknown. Here, we demonstrate that rice OsALKBH5 acts as an m6A demethylase required for the normal progression of male meiosis. OsALKBH5 is a nucleo-cytoplasmic protein, highly enriched in rice anthers during meiosis, that associates with P-bodies and exon junction complexes, suggesting that it is involved in regulating mRNA processing and abundance. Mutations of OsALKBH5 cause reduced double-strand break (DSB) formation, severe defects in DSB repair, and delayed meiotic progression, leading to complete male sterility. Transcriptome analysis and m6A profiling indicate that OsALKBH5-mediated m6A demethylation stabilizes the mRNA level of multiple meiotic genes directly or indirectly, including several genes that regulate DSB formation and repair. Our study reveals the indispensable role of m6A metabolism in post-transcriptional regulation of meiotic progression in rice.
Collapse
Affiliation(s)
- Feiyang Xue
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiyu Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Iain Searle
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hongbo Gao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| |
Collapse
|
7
|
Zhou Y, Li Y, You H, Chen J, Wang B, Wen M, Zhang Y, Tang D, Shen Y, Yu H, Cheng Z. Kinesin-1-like protein PSS1 is essential for full-length homologous pairing and synapsis in rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:928-940. [PMID: 39283979 DOI: 10.1111/tpj.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Accepted: 08/28/2024] [Indexed: 11/01/2024]
Abstract
The pairing and synapsis of homologous chromosomes are crucial for their correct segregation during meiosis. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex can recruit kinesin protein at the nuclear envelope, affecting telomere bouquet formation and homologous pairing. Kinesin-1-like protein Pollen Semi-Sterility1 (PSS1) plays a pivotal role in male meiotic chromosomal behavior and is essential for fertility in rice. However, its exact role in meiosis, especially as kinesin involved in homologous pairing and synapsis, has not been fully elucidated. Here, we generated three pss1 mutants by genome editing technology to dissect PSS1 biological functions in meiosis. The pss1 mutants exhibit alterations in the radial microtubule organization at pachytene and manifest a deficiency in telomere clustering, which is critical for full-length homologous pairing. We reveal that PSS1 serves as a key mediator between chromosomes and cytoskeleton, thereby regulating microtubule organization and transmitting the force to nuclei to facilitate homologous chromosome pairing and synapsis in meiosis.
Collapse
Affiliation(s)
- Yue Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jiawei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minsi Wen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yansong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
8
|
Mimura M, Ono S, Somashekar H, Nonomura KI. Impact of protein domains on the MEL2 granule, a cytoplasmic ribonucleoprotein complex maintaining faithful meiosis progression in rice. THE NEW PHYTOLOGIST 2024; 243:2235-2250. [PMID: 39049570 DOI: 10.1111/nph.19968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/24/2024] [Indexed: 07/27/2024]
Abstract
Cytoplasmic ribonucleoprotein (RNP) granules are membraneless structures composed of various RNAs and proteins that play important roles in post-transcriptional regulation. While RNP granules are known to regulate the meiotic entry in some organisms, little is known about their roles in plants. In this study, we observed the cytoplasmic granular structures of rice RNA-binding protein MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2), which contributes to the control of meiotic entry timing, in leaf protoplasts and spore mother cells. We performed colocalization analysis with known cytoplasmic RNP factors, and domain deletion analysis to assess their impact on granule formation and meiosis progression. Conservation of MEL2 domains across plant species was also explored. Our results indicated that MEL2 granules colocalized with processing body and stress granule factors. The maintenance of granule properties modulated by LOTUS domain and the intrinsically disordered region (IDR) is essential for proper MEL2 function in meiosis progression. MEL2-like proteins widely found in plant kingdom conserved LOTUS domain followed by the IDR despite their diverse domain structures, suggesting the functional conservation of these domains among plant species. This study highlights the role of MEL2 granule dynamics and its impact on meiotic transition and progression.
Collapse
Affiliation(s)
- Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function & Phenomics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
9
|
Miao Y, You H, Liu H, Zhao Y, Zhao J, Li Y, Shen Y, Tang D, Liu B, Zhang K, Cheng Z. RETINOBLASTOMA RELATED 1 switches mitosis to meiosis in rice. PLANT COMMUNICATIONS 2024; 5:100857. [PMID: 38433446 PMCID: PMC11211523 DOI: 10.1016/j.xplc.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
The transition from mitosis to meiosis is a critical event in the reproductive development of all sexually reproducing species. However, the mechanisms that regulate this process in plants remain largely unknown. Here, we find that the rice (Oryza sativa L.) protein RETINOBLASTOMA RELATED 1 (RBR1) is essential to the transition from mitosis to meiosis. Loss of RBR1 function results in hyper-proliferative sporogenous-cell-like cells (SCLs) in the anther locules during early stages of reproductive development. These hyper-proliferative SCLs are unable to initiate meiosis, eventually stagnating and degrading at late developmental stages to form pollen-free anthers. These results suggest that RBR1 acts as a gatekeeper of entry into meiosis. Furthermore, cytokinin content is significantly increased in rbr1 mutants, whereas the expression of type-B response factors, particularly LEPTO1, is significantly reduced. Given the known close association of cytokinins with cell proliferation, these findings imply that hyper-proliferative germ cells in the anther locules may be attributed to elevated cytokinin concentrations and disruptions in the cytokinin pathway. Using a genetic strategy, the association between germ cell hyper-proliferation and disturbed cytokinin signaling in rbr1 has been confirmed. In summary, we reveal a unique role of RBR1 in the initiation of meiosis; our results clearly demonstrate that the RBR1 regulatory module is connected to the cytokinin signaling pathway and switches mitosis to meiosis in rice.
Collapse
Affiliation(s)
- Yongjie Miao
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Huixin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzi Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Department of Biology, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Department of Biology, College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
10
|
Zhang Z, Guo YY, Wang YC, Zhou L, Fan J, Mao YC, Yang YM, Zhang YF, Huang XH, Zhu J, Zhang C, Yang ZN. A point mutation in the meiotic crossover formation gene HEI10/TFS2 leads to thermosensitive genic sterility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:506-518. [PMID: 38169508 DOI: 10.1111/tpj.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.
Collapse
Affiliation(s)
- Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Yi Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
11
|
Castellani M, Zhang M, Thangavel G, Mata-Sucre Y, Lux T, Campoy JA, Marek M, Huettel B, Sun H, Mayer KFX, Schneeberger K, Marques A. Meiotic recombination dynamics in plants with repeat-based holocentromeres shed light on the primary drivers of crossover patterning. NATURE PLANTS 2024; 10:423-438. [PMID: 38337039 PMCID: PMC10954556 DOI: 10.1038/s41477-024-01625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Centromeres strongly affect (epi)genomic architecture and meiotic recombination dynamics, influencing the overall distribution and frequency of crossovers. Here we show how recombination is regulated and distributed in the holocentric plant Rhynchospora breviuscula, a species with diffused centromeres. Combining immunocytochemistry, chromatin analysis and high-throughput single-pollen sequencing, we discovered that crossover frequency is distally biased, in sharp contrast to the diffused distribution of hundreds of centromeric units and (epi)genomic features. Remarkably, we found that crossovers were abolished inside centromeric units but not in their proximity, indicating the absence of a canonical centromere effect. We further propose that telomere-led synapsis of homologues is the feature that best explains the observed recombination landscape. Our results hint at the primary influence of mechanistic features of meiotic pairing and synapsis rather than (epi)genomic features and centromere organization in determining the distally biased crossover distribution in R. breviuscula, whereas centromeres and (epi)genetic properties only affect crossover positioning locally.
Collapse
Affiliation(s)
- Marco Castellani
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gokilavani Thangavel
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yennifer Mata-Sucre
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Centre of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - José A Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Pomology, Estación Experimental de Aula Dei (EEAD), Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Magdalena Marek
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hequan Sun
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
12
|
Dluzewska J, Dziegielewski W, Szymanska-Lejman M, Gazecka M, Henderson IR, Higgins JD, Ziolkowski PA. MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism. Nat Commun 2023; 14:6716. [PMID: 37872134 PMCID: PMC10593791 DOI: 10.1038/s41467-023-42511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.
Collapse
Affiliation(s)
- Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Gazecka
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
13
|
Zhang T, Zhao SH, Wang Y, He Y. FIGL1 coordinates with dosage-sensitive BRCA2 in modulating meiotic recombination in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2107-2121. [PMID: 37293848 DOI: 10.1111/jipb.13541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Meiotic crossover (CO) formation between homologous chromosomes ensures their subsequent proper segregation and generates genetic diversity among offspring. In maize, however, the mechanisms that modulate CO formation remain poorly characterized. Here, we found that both maize BREAST CANCER SUSCEPTIBILITY PROTEIN 2 (BRCA2) and AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) act as positive factors of CO formation by controlling the assembly or/and stability of two conserved DNA recombinases RAD51 and DMC1 filaments. Our results revealed that ZmBRCA2 is not only involved in the repair of DNA double-stranded breaks (DSBs), but also regulates CO formation in a dosage-dependent manner. In addition, ZmFIGL1 interacts with RAD51 and DMC1, and Zmfigl1 mutants had a significantly reduced number of RAD51/DMC1 foci and COs. Further, simultaneous loss of ZmFIGL1 and ZmBRCA2 abolished RAD51/DMC1 foci and exacerbated meiotic defects compared with the single mutant Zmbrca2 or Zmfigl1. Together, our data demonstrate that ZmBRCA2 and ZmFIGL1 act coordinately to regulate the dynamics of RAD51/DMC1-dependent DSB repair to promote CO formation in maize. This conclusion is surprisingly different from the antagonistic roles of BRCA2 and FIGL1 in Arabidopsis, implying that, although key factors that control CO formation are evolutionarily conserved, specific characteristics have been adopted in diverse plant species.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuang-Hui Zhao
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Di Dio C, Serra H, Sourdille P, Higgins JD. ASYNAPSIS 1 ensures crossover fidelity in polyploid wheat by promoting homologous recombination and suppressing non-homologous recombination. FRONTIERS IN PLANT SCIENCE 2023; 14:1188347. [PMID: 37284727 PMCID: PMC10239940 DOI: 10.3389/fpls.2023.1188347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023]
Abstract
During meiosis, the chromosome axes and synaptonemal complex mediate chromosome pairing and homologous recombination to maintain genomic stability and accurate chromosome segregation. In plants, ASYNAPSIS 1 (ASY1) is a key component of the chromosome axis that promotes inter-homolog recombination, synapsis and crossover formation. Here, the function of ASY1 has been cytologically characterized in a series of hypomorphic wheat mutants. In tetraploid wheat, asy1 hypomorphic mutants experience a reduction in chiasmata (crossovers) in a dosage-specific manner, resulting in failure to maintain crossover (CO) assurance. In mutants with only one functional copy of ASY1, distal chiasmata are maintained at the expense of proximal and interstitial chiasmata, indicating that ASY1 is required to promote chiasma formation away from the chromosome ends. Meiotic prophase I progression is delayed in asy1 hypomorphic mutants and is arrested in asy1 null mutants. In both tetraploid and hexaploid wheat, single asy1 mutants exhibit a high degree of ectopic recombination between multiple chromosomes at metaphase I. To explore the nature of the ectopic recombination, Triticum turgidum asy1b-2 was crossed with wheat-wild relative Aegilops variabilis. Homoeologous chiasmata increased 3.75-fold in Ttasy1b-2/Ae. variabilis compared to wild type/Ae. variabilis, indicating that ASY1 suppresses chiasma formation between divergent, but related chromosomes. These data suggest that ASY1 promotes recombination along the chromosome arms of homologous chromosomes whilst suppressing recombination between non-homologous chromosomes. Therefore, asy1 mutants could be utilized to increase recombination between wheat wild relatives and elite varieties for expediting introgression of important agronomic traits.
Collapse
Affiliation(s)
- Chiara Di Dio
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| | - Heïdi Serra
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of Cereals, Unité Mixte de Recherche (UMR) 1095, The Institut National de la Recherche Agronomique (INRAE), Université Clermont Auvergne, Clermont-Ferrand, France
| | - James D. Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
15
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
16
|
Girard C, Zwicker D, Mercier R. The regulation of meiotic crossover distribution: a coarse solution to a century-old mystery? Biochem Soc Trans 2023:233030. [PMID: 37145037 DOI: 10.1042/bst20221329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Meiotic crossovers, which are exchanges of genetic material between homologous chromosomes, are more evenly and distantly spaced along chromosomes than expected by chance. This is because the occurrence of one crossover reduces the likelihood of nearby crossover events - a conserved and intriguing phenomenon called crossover interference. Although crossover interference was first described over a century ago, the mechanism allowing coordination of the fate of potential crossover sites half a chromosome away remains elusive. In this review, we discuss the recently published evidence supporting a new model for crossover patterning, coined the coarsening model, and point out the missing pieces that are still needed to complete this fascinating puzzle.
Collapse
Affiliation(s)
- Chloe Girard
- Université Paris-Saclay, Commissariat à l'Énergie Atomiques et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| |
Collapse
|
17
|
Kudryavtseva N, Ermolaev A, Pivovarov A, Simanovsky S, Odintsov S, Khrustaleva L. The Control of the Crossover Localization in Allium. Int J Mol Sci 2023; 24:ijms24087066. [PMID: 37108228 PMCID: PMC10138942 DOI: 10.3390/ijms24087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Aleksey Ermolaev
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Anton Pivovarov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Sergey Simanovsky
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prosp., Moscow 119071, Russia
| | - Sergey Odintsov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Ludmila Khrustaleva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| |
Collapse
|
18
|
Ziolkowski PA. Why do plants need the ZMM crossover pathway? A snapshot of meiotic recombination from the perspective of interhomolog polymorphism. PLANT REPRODUCTION 2023; 36:43-54. [PMID: 35819509 PMCID: PMC9958190 DOI: 10.1007/s00497-022-00446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/20/2022] [Indexed: 06/06/2023]
Abstract
At the heart of meiosis is crossover recombination, i.e., reciprocal exchange of chromosome fragments between parental genomes. Surprisingly, in most eukaryotes, including plants, several recombination pathways that can result in crossover event operate in parallel during meiosis. These pathways emerged independently in the course of evolution and perform separate functions, which directly translate into their roles in meiosis. The formation of one crossover per chromosome pair is required for proper chromosome segregation. This "obligate" crossover is ensured by the major crossover pathway in plants, and in many other eukaryotes, known as the ZMM pathway. The secondary pathways play important roles also in somatic cells and function mainly as repair mechanisms for DNA double-strand breaks (DSBs) not used for crossover formation. One of the consequences of the functional differences between ZMM and other DSB repair pathways is their distinct sensitivities to polymorphisms between homologous chromosomes. From a population genetics perspective, these differences may affect the maintenance of genetic variability. This might be of special importance when considering that a significant portion of plants uses inbreeding as a predominant reproductive strategy, which results in loss of interhomolog polymorphism. While we are still far from fully understanding the relationship between meiotic recombination pathways and genetic variation in populations, recent studies of crossovers in plants offer a new perspective.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
19
|
Mu N, Li Y, Li S, Shi W, Shen Y, Yang H, Zhang F, Tang D, Du G, You A, Cheng Z. MUS81 is required for atypical recombination intermediate resolution but not crossover designation in rice. THE NEW PHYTOLOGIST 2023; 237:2422-2434. [PMID: 36495065 DOI: 10.1111/nph.18668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.
Collapse
Affiliation(s)
- Na Mu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sanhe Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fanfan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
| | - Aiqing You
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, 225009, Yangzhou, China
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
21
|
Wang C, Qu S, Zhang J, Fu M, Chen X, Liang W. OsPRD2 is essential for double-strand break formation, but not spindle assembly during rice meiosis. FRONTIERS IN PLANT SCIENCE 2023; 13:1122202. [PMID: 36714725 PMCID: PMC9880466 DOI: 10.3389/fpls.2022.1122202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 06/06/2023]
Abstract
Meiotic recombination starts with the programmed formation of double-strand breaks (DSB) in DNA, which are catalyzed by SPO11, a type II topoisomerase that is evolutionarily conserved, and several other accessary proteins. Homologs of MEIOSIS INHIBITOR 4 (MEI4/REC24/PRD2) are proteins that are also essential for the generation of meiotic DSBs in budding yeast, mice and Arabidopsis thaliana. In Arabidopsis, the protein ARABIDOPSIS THALIANA PUTATIVE RECOMBINATION INITIATION DEFECTS 2/MULTIPOLAR SPINDLE 1 (AtPRD2/MPS1) has been shown to have additional roles in spindle assembly, indicating a functional diversification. Here we characterize the role of the rice MEI4/PRD2 homolog in meiosis. The osprd2 mutant was completely male and female sterile. In male meiocytes of osprd2, no γH2AX foci were detected and twenty-four univalents were produced at diakinesis, suggesting that OsPRD2 is essential for DSB generation. OsPRD2 showed a dynamic localization during meiosis. For instance, OsPRD2 foci first appeared as discrete signals across chromosome at leptotene, and then became confined to the centromeres during zygotene, suggesting that they might be involved in assembly of the spindle. However we did not observe any obvious aberrant morphologies in neither the organization of the bipolar spindle nor in the orientation of the kinetochore in the mutant. These findings suggest that in rice PRD2 might not be required for spindle assembly and organization, as it does in Arabidopsis. Taken together our results indicate that plant MEI4/PRD2 homologs do play a conserved role in the formation of meiotic DSBs in DNA, but that their involvement in bipolar spindle assembly is rather species-specific.
Collapse
Affiliation(s)
- Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Development Center of Plant Germplasm Resources, Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Somashekar H, Mimura M, Tsuda K, Nonomura KI. Rice GLUCAN SYNTHASE-LIKE5 promotes anther callose deposition to maintain meiosis initiation and progression. PLANT PHYSIOLOGY 2023; 191:400-413. [PMID: 36271865 PMCID: PMC9806566 DOI: 10.1093/plphys/kiac488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Callose is a plant cell wall polysaccharide whose deposition is spatiotemporally regulated in various developmental processes and environmental stress responses. The appearance of callose in premeiotic anthers is a prominent histological hallmark for the onset of meiosis in flowering plants; however, the biological role of callose in meiosis remains unknown. Here, we show that rice (Oryza sativa) GLUCAN SYNTHASE LIKE5 (OsGSL5), a callose synthase, localizes on the plasma membrane of pollen mother cells (PMCs) and is responsible for biogenesis of callose in anther locules through premeiotic and meiotic stages. In Osgsl5 mutant anthers mostly lacking callose deposition, aberrant PMCs accompanied by aggregated, unpaired, or multivalent chromosomes were frequently observed and, furthermore, a considerable number of mutant PMCs had untimely progress into meiosis compared to that of wild-type PMCs. Immunostaining of meiosis-specific protein HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS2 in premeiotic PMCs revealed precocious meiosis entry in Osgsl5 anthers. These findings provide insights into the function of callose in controlling the timing of male meiosis initiation and progression, in addition to roles in microsporogenesis, in flowering plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
23
|
Wang Y, Li SY, Wang YZ, He Y. ZmASY1 interacts with ZmPRD3 and is crucial for meiotic double-strand break formation in maize. THE NEW PHYTOLOGIST 2023; 237:454-470. [PMID: 36221195 DOI: 10.1111/nph.18528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
During meiosis, recombination-mediated pairing and synapsis of homologous chromosomes begin with programmed DNA double-strand breaks (DSBs). In yeast and mice, DSBs form in a tethered loop-axis complex, in which DSB sites are located within chromatin loops and tethered to the proteinaceous axial element (AE) by DSB-forming factors. In plants, the molecular connection between DSB sites and chromosome axes is poorly understood. By integrating genetic analysis, immunostaining technology, and protein-protein interaction studies, the putative factors linking DSB formation to chromosome axis were explored in maize meiosis. Here, we report that the AE protein ZmASY1 directly interacts with the DSB-forming protein ZmPRD3 in maize (Zea mays) and mediates DSB formation, synaptonemal complex assembly, and homologous recombination. ZmPRD3 also interacts with ZmPRD1, which plays a central role in organizing the DSB-forming complex. These results suggest that ZmASY1 and ZmPRD3 may work as a key module linking DSB sites to chromosome axes during DSB formation in maize. This mechanism is similar to that described in yeast and recently Arabidopsis involving the homologs Mer2/ZmPRD3 and HOP1/ZmASY1, thus indicating that the process of tethering DSBs in chromatin loops to the chromosome axes may be evolutionarily conserved in diverse taxa.
Collapse
Affiliation(s)
- Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Shu-Yue Li
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Ya-Zhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
24
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
25
|
Meiosis: Deciphering the dialog between recombination and the synaptonemal complex. Curr Biol 2022; 32:R1235-R1237. [DOI: 10.1016/j.cub.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Tian M, Cai X, Liu Y, Liucong M, Howard-Till R. A practical reference for studying meiosis in the model ciliate Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:595-608. [PMID: 37078080 PMCID: PMC10077211 DOI: 10.1007/s42995-022-00149-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/28/2022] [Indexed: 05/03/2023]
Abstract
Meiosis is a critical cell division program that produces haploid gametes for sexual reproduction. Abnormalities in meiosis are often causes of infertility and birth defects (e.g., Down syndrome). Most organisms use a highly specialized zipper-like protein complex, the synaptonemal complex (SC), to guide and stabilize pairing of homologous chromosomes in meiosis. Although the SC is critical for meiosis in many eukaryotes, there are organisms that perform meiosis without a functional SC. However, such SC-less meiosis is poorly characterized. To understand the features of SC-less meiosis and its adaptive significance, the ciliated protozoan Tetrahymena was selected as a model. Meiosis research in Tetrahymena has revealed intriguing aspects of the regulatory programs utilized in its SC-less meiosis, yet additional efforts are needed for obtaining an in-depth comprehension of mechanisms that are associated with the absence of SC. Here, aiming at promoting a wider application of Tetrahymena for meiosis research, we introduce basic concepts and core techniques for studying meiosis in Tetrahymena and then suggest future directions for expanding the current Tetrahymena meiosis research toolbox. These methodologies could be adopted for dissecting meiosis in poorly characterized ciliates that might reveal novel features. Such data will hopefully provide insights into the function of the SC and the evolution of meiosis from a unique perspective. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00149-8.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Human Genetics, CNRS, University of Montpellier, 34090 Montpellier, France
| | - Xia Cai
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yujie Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Mingmei Liucong
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Rachel Howard-Till
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA USA
| |
Collapse
|
27
|
3D multiple immunoimaging using whole male organs in rice. Sci Rep 2022; 12:15426. [PMID: 36104379 PMCID: PMC9475021 DOI: 10.1038/s41598-022-19373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
Spatiotemporal regulation of proteins and RNAs is essential for the precise development of reproductive tissues in many organisms. The anther, a prominent part of the male reproductive organ in plants, contains several somatic cell layers named the anther wall and, within it, the germ cells. Here, we successfully developed a simple 3D organ-immunoimaging technique for rice anthers, which distinguishes each individual cell from the four somatic cell layers and germ cells without the need for transformation, embedding, sectioning, or clearing. The 3D immunostaining method is also applicable to the intracellular localization of meiosis-specific proteins in meiocytes, as exemplified by MEL1, a germ cell-specific ARGONAUTE in the cytoplasm, and ZEP1, a pachytene marker on meiotic chromosomes. Our 3D multiple immunostaining method with single-cell and intracellular resolution will contribute to a comprehensive organ-level elucidation of molecular mechanisms and cellular connectivity.
Collapse
|
28
|
OsRAD51 Plays a Vital Role in Promoting Homologous Recombination in Rice Meiosis. Int J Mol Sci 2022; 23:ijms23179906. [PMID: 36077304 PMCID: PMC9456343 DOI: 10.3390/ijms23179906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Meiotic recombination plays a pivotal role in achieving accurate chromosomal segregation and increasing genetic diversity. In the homologous recombination pathway, the detailed mechanisms of how OsRAD51 and OsDMC1 work in rice meiosis remain to be explored. Here, we obtained different types of mutants for Osrad51a1, Osrad51a2, Osdmc1a, and Osdmc1b through CRISPR/Cas9. Both Osrad51a1 and Osrad51a2 exhibited normal vegetative growth and fertility. Osrad51 (Osrad51a1 Osrad51a2) mutant plants show normal vegetative growth but exhibit complete sterility, indicating that OsRAD51A1 and OsRAD51A2 are functionally redundant in rice fertility. In contrast to the wild type, Osrad51 chromosomes are not paired perfectly at pachytene and synaptonemal complex (SC) formation is deficient. Moreover, univalents and multivalent associations were observed at metaphase I, chromosome fragments presented at anaphase I, and crossover formation is basically suppressed in Osrad51 pollen mother cells (PMCs). OsRAD51 foci emerge at leptotene and disappear from late pachytene and chromosome localization of OsRAD51 depends on the formation of double-strand breaks (DSBs). Most OsRAD51 foci can co-localize with OsDMC1 signals. OsRAD51 is essential for the loading of OsDMC1 onto chromosomes, and vice versa. In addition, both OsRAD51 and OsDMC1 can interact with OsFIGL1 and OsBRCA2, two important components in rice meiosis. Moreover, the Osrad51 Osdmc1 (Osrad51a1 Osrad51a2 Osdmc1a Osdmc1b) quadruple mutant PMCs exhibited similar defective phenotypes as Osrad51 in homologous pairing, synapsis, and DSB repair. Taken together, our results suggest that the recombinases DMC1 and RAD51 may functionally depend on each other and play important roles in meiotic recombination during meiosis in rice.
Collapse
|
29
|
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
30
|
Jing J, Wu N, Xu W, Wang Y, Pawlowski WP, He Y. An F-box protein ACOZ1 functions in crossover formation by ensuring proper chromosome compaction during maize meiosis. THE NEW PHYTOLOGIST 2022; 235:157-172. [PMID: 35322878 DOI: 10.1111/nph.18116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Meiosis is an essential reproductive process to create new genetic variation. During early meiosis, higher order chromosome organization creates a platform for meiotic processes to ensure the accuracy of recombination and chromosome segregation. However, little is known about the regulatory mechanisms underlying dynamic chromosome organization in plant meiosis. Here, we describe abnormal chromosome organization in zygotene1 (ACOZ1), which encodes a canonical F-box protein in maize. In acoz1 mutant meiocytes, chromosomes maintain a leptotene-like state and never compact to a zygotene-like configuration. Telomere bouquet formation and homologous pairing are also distorted and installation of synaptonemal complex ZYP1 protein is slightly defective. Loading of early recombination proteins RAD51 and DMC1 is unaffected, indicating that ACOZ1 is not required for double strand break formation or repair. However, crossover formation is severely disturbed. The ACOZ1 protein localizes on the boundary of chromatin, rather directly to chromosomes. Furthermore, we identified that ACOZ1 interacts with SKP1 through its C-terminus, revealing that it acts as a subunit of the SCF E3 ubiquitin/SUMO ligase complex. Overall, our results suggest that ACOZ1 functions independently from the core meiotic recombination pathway to influence crossover formation by controlling chromosome compaction during maize meiosis.
Collapse
Affiliation(s)
- Juli Jing
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Nan Wu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| | - Wanyue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | | | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100094, China
| |
Collapse
|
31
|
Wang Y, Wang Y, Zang J, Chen H, He Y. ZmPRD1 is essential for double-strand break formation, but is not required for bipolar spindle assembly during maize meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3386-3400. [PMID: 35201286 DOI: 10.1093/jxb/erac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Homologs of PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) are known to be essential for meiotic double-strand break (DSB) formation in mouse (Mus musculus), Arabidopsis, and rice (Oryza sativa). Recent research has shown that rice PRD1 also plays an unanticipated role in meiotic bipolar spindle assembly, revealing that PRD1 has multiple functions in plant meiosis. In this study, we characterize the meiotic function of PRD1 in maize (Zea mays; ZmPRD1). Our results show that Zmprd1 mutant plants display normal vegetative growth but have complete male and female sterility. Meiotic DSB formation is fully abolished in mutant meiocytes, leading to failure in homologous pairing, synapsis, and recombination. ZmPRD1 exhibits a different pattern of chromosome localization compared to its rice homologs. The ZmPRD1 protein interacts with several DSB-forming proteins, but does not directly interact with the kinetochore proteins REC8 and SGO1. Possibly as a result of this, there are no significant abnormalities of bipolar spindle assembly in Zmprd1 meiocytes. Overall, our results demonstrate that ZmPRD1 is essential for DSB formation and homologous recombination in maize meiosis. However, the recently-identified function of PRD1 in bipolar spindle assembly during rice meiosis is not conserved in maize.
Collapse
Affiliation(s)
- Yazhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Xia Q, Dang J, Wang P, Liang S, Wei X, Li X, Xiang S, Sun H, Wu D, Jing D, Wang S, Xia Y, He Q, Guo Q, Liang G. Low Female Gametophyte Fertility Contributes to the Low Seed Formation of the Diploid Loquat [ Eriobotrya Japonica (Thunb.) Lindl.] Line H30-6. FRONTIERS IN PLANT SCIENCE 2022; 13:882965. [PMID: 35677248 PMCID: PMC9168767 DOI: 10.3389/fpls.2022.882965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Loquat is a widely grown subtropic fruit because of its unique ripening season, nutrient content, and smooth texture of its fruits. However, loquat is not well-received because the fruits contain many large seeds. Therefore, the development of seedless or few-seed loquat varieties is the main objective of loquat breeding. Polyploidization is an effective approach for few-seed loquat breeding, but the resource is rare. The few-seed loquat line H30-6 was derived from a seedy variety. Additionally, H30-6 was systematically studied for its fruit characteristics, gamete fertility, pollen mother cell (PMC) meiosis, stigma receptivity, in situ pollen germination, fruit set, and karyotype. The results were as follows. (1) H30-6 produced only 1.54 seeds per fruit and the fruit edible rate was 70.77%. The fruit setting rate was 14.44% under open pollination, and the other qualities were equivalent to those of two other seedy varieties. (2) The in vitro pollen germination rate was only 4.04 and 77.46% of the H30-6 embryo sacs were abnormal. Stigma receptivity and self-compatibility in H30-6 were verified by in situ pollen germination and artificial pollination. Furthermore, the seed numbers in the fruits of H30-6 did not significantly differ among any of the pollination treatments (from 1.59 ±0.14 to 2 ± 0.17). (3) The chromosome configuration at meiotic diakinesis of H30-6 was 6.87I + 9.99II + 1.07III +0.69IV +0.24V (H30-6), and a total of 89.55% of H30-6 PMCs presented univalent chromosomes. Furthermore, chromosome lagging was the main abnormal phenomenon. Karyotype analysis showed that chromosomes of H30-6 had no recognizable karyotype abnormalities leading to unusual synapsis on the large scale above. (4) The abnormal embryo sacs of H30-6 could be divided into three main types: those remaining in the tetrad stage (13.38%), those remaining in the binucleate embryo sac stage (1.41%), and those without embryo sacs (52.82%). Therefore, we conclude that the loquat line H30-6 is a potential few-seed loquat resource. The diploid loquat line H30-6 was with low gametophyte fertility, which may be driven by abnormal meiotic synapses. The low female gamete fertility was the main reason for the few seeds. This diploid loquat line provides a new possibility for breeding a few-seed loquat at the diploid level.
Collapse
Affiliation(s)
- Qingqing Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Senlin Liang
- Economic Crops of Ziyang City, Ziyang City, China
| | - Xu Wei
- America Citrus Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Xiaolin Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Suqiong Xiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Haiyan Sun
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Di Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shumin Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Xiao Y, Zhou Y, Shi J, Zhang D. OsGAMYBL2 is required for pollen maturation and germination in rice. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Fu H, Zhao J, Ren Z, Yang K, Wang C, Zhang X, Elesawi IE, Zhang X, Xia J, Chen C, Lu P, Chen Y, Liu H, Yu G, Liu B. Interfered chromosome pairing at high temperature promotes meiotic instability in autotetraploid Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1210-1228. [PMID: 34927688 PMCID: PMC8825311 DOI: 10.1093/plphys/kiab563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/04/2021] [Indexed: 05/03/2023]
Abstract
Changes in environmental temperature affect multiple meiotic processes in flowering plants. Polyploid plants derived from whole-genome duplication (WGD) have enhanced genetic plasticity and tolerance to environmental stress but face challenges in organizing and segregating doubled chromosome sets. In this study, we investigated the impact of increased environmental temperature on male meiosis in autotetraploid Arabidopsis (Arabidopsis thaliana). Under low to mildly increased temperatures (5°C-28°C), irregular chromosome segregation universally occurred in synthetic autotetraploid Columbia-0 (Col-0). Similar meiotic lesions occurred in autotetraploid rice (Oryza sativa L.) and allotetraploid canola (Brassica napus cv Westar), but not in evolutionarily derived hexaploid wheat (Triticum aestivum). At extremely high temperatures, chromosome separation and tetrad formation became severely disordered due to univalent formation caused by the suppression of crossing-over. We found a strong correlation between tetravalent formation and successful chromosome pairing, both of which were negatively correlated with temperature elevation, suggesting that increased temperature interferes with crossing-over predominantly by impacting homolog pairing. We also showed that loading irregularities of axis proteins ASY1 and ASY4 co-localize on the chromosomes of the syn1 mutant and the heat-stressed diploid and autotetraploid Col-0, revealing that heat stress affects the lateral region of synaptonemal complex (SC) by impacting the stability of the chromosome axis. Moreover, we showed that chromosome axis and SC in autotetraploid Col-0 are more sensitive to increased temperature than those in diploid Arabidopsis. Taken together, our data provide evidence suggesting that WGD negatively affects the stability and thermal tolerance of meiotic recombination in newly synthetic autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Huiqi Fu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Jiayi Zhao
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ziming Ren
- College of Agriculture and Biotechnology, Zhejiang University, Zhejiang 310058, China
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaohong Zhang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Xianhua Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jing Xia
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, College of Life Science, Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Guanghui Yu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
35
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
36
|
Miao Y, Shi W, Wang H, Xue Z, You H, Zhang F, Du G, Tang D, Li Y, Shen Y, Cheng Z. Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis. PLANT PHYSIOLOGY 2021; 187:1605-1618. [PMID: 34618076 PMCID: PMC8566244 DOI: 10.1093/plphys/kiab365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2021] [Indexed: 05/06/2023]
Abstract
Replication protein A (RPA), a single-stranded DNA-binding protein, plays essential role in homologous recombination. However, because deletion of RPA causes embryonic lethality in mammals, the exact function of RPA in meiosis remains unclear. In this study, we generated an rpa1a mutant using CRISPR/Cas9 technology and explored its function in rice (Oryza sativa) meiosis. In rpa1a, 12 bivalents were formed at metaphase I, just like in wild-type, but chromosome fragmentations were consistently observed at anaphase I. Fluorescence in situ hybridization assays indicated that these fragmentations were due to the failure of the recombination intermediates to resolve. Importantly, the mutant had a highly elevated chiasma number, and loss of RPA1a could completely restore the 12 bivalent formations in the zmm (for ZIP1-4, MSH4/5, and MER3) mutant background. Protein-protein interaction assays showed that RPA1a formed a complex with the methyl methansulfonate and UV sensitive 81 (and the Fanconi anemia complementation group M-Bloom syndrome protein homologs (RECQ4A)-Topoisomerase3α-RecQ-mediated genome instability 1 complex to regulate chiasma formation and processing of the recombination intermediates. Thus, our data establish a pivotal role for RPA1a in promoting the accurate resolution of recombination intermediates and in limiting redundant chiasma formation during rice meiosis.
Collapse
Affiliation(s)
- Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongjun Wang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanli You
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- Author for Communication:
| |
Collapse
|
37
|
Ren L, Zhao T, Zhao Y, Du G, Yang S, Mu N, Tang D, Shen Y, Li Y, Cheng Z. The E3 ubiquitin ligase DESYNAPSIS1 regulates synapsis and recombination in rice meiosis. Cell Rep 2021; 37:109941. [PMID: 34731625 DOI: 10.1016/j.celrep.2021.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Synaptonemal complex (SC) assembly and homologous recombination, the most critical events during prophase I, are the prerequisite for faithful meiotic chromosome segregation. However, the underlying regulatory mechanism remains largely unknown. Here, we reveal that a functional RING finger E3 ubiquitin ligase, DESYNAPSIS1 (DSNP1), plays significant roles in SC assembly and homologous recombination during rice meiosis. In the dsnp1 mutant, homologous synapsis is discontinuous and aberrant SC-like polycomplexes occur independent of coaligned homologous chromosomes. Accompanying the decreased foci of HEI10, ZIP4, and MER3 on meiotic chromosomes, the number of crossovers (COs) decreases dramatically in dsnp1 meiocytes. Furthermore, the absence of central elements largely restores the localization of non-ZEP1 ZMM proteins and the number of COs in the dsnp1 background. Collectively, DSNP1 stabilizes the canonical tripartite SC structure along paired homologous chromosomes and further promotes the formation of COs.
Collapse
Affiliation(s)
- Lijun Ren
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Tingting Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yangzi Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Shuying Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Na Mu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
38
|
Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, Sun T, Lin J, Wu M, Cheng Z, Wang K. Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2021; 12:757152. [PMID: 34675957 PMCID: PMC8523357 DOI: 10.3389/fpls.2021.757152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 05/24/2023]
Abstract
Manipulation of the distribution and frequency of meiotic recombination events to increase genetic diversity and disrupting genetic interference are long-standing goals in crop breeding. However, attenuation of genetic interference is usually accompanied by a reduction in recombination frequency and subsequent loss of plant fertility. In the present study, we generated null mutants of the ZEP1 gene, which encodes the central component of the meiotic synaptonemal complex (SC), in a hybrid rice using CRISPR/Cas9. The null mutants exhibited absolute male sterility but maintained nearly unaffected female fertility. By pollinating the zep1 null mutants with pollen from indica rice variety 93-11, we successfully conducted genetic analysis and found that genetic recombination frequency was greatly increased and genetic interference was completely eliminated in the absence of ZEP1. The findings provided direct evidence to support the controversial hypothesis that SC is involved in mediating interference. Additionally, the remained female fertility of the null mutants makes it possible to break linkage drag. Our study provides a potential approach to increase genetic diversity and fully eliminate genetic interference in rice breeding.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiwei Cao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Hua
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Sun
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jianrong Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mingguo Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
39
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
40
|
Zhang FG, Zhang RR, Gao JM. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl 2021; 23:580-589. [PMID: 34528517 PMCID: PMC8577265 DOI: 10.4103/aja202153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.
Collapse
Affiliation(s)
- Feng-Guo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Rui-Rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jin-Min Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
41
|
Gutiérrez Pinzón Y, González Kise JK, Rueda P, Ronceret A. The Formation of Bivalents and the Control of Plant Meiotic Recombination. FRONTIERS IN PLANT SCIENCE 2021; 12:717423. [PMID: 34557215 PMCID: PMC8453087 DOI: 10.3389/fpls.2021.717423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 06/06/2023]
Abstract
During the first meiotic division, the segregation of homologous chromosomes depends on the physical association of the recombined homologous DNA molecules. The physical tension due to the sites of crossing-overs (COs) is essential for the meiotic spindle to segregate the connected homologous chromosomes to the opposite poles of the cell. This equilibrated partition of homologous chromosomes allows the first meiotic reductional division. Thus, the segregation of homologous chromosomes is dependent on their recombination. In this review, we will detail the recent advances in the knowledge of the mechanisms of recombination and bivalent formation in plants. In plants, the absence of meiotic checkpoints allows observation of subsequent meiotic events in absence of meiotic recombination or defective meiotic chromosomal axis formation such as univalent formation instead of bivalents. Recent discoveries, mainly made in Arabidopsis, rice, and maize, have highlighted the link between the machinery of double-strand break (DSB) formation and elements of the chromosomal axis. We will also discuss the implications of what we know about the mechanisms regulating the number and spacing of COs (obligate CO, CO homeostasis, and interference) in model and crop plants.
Collapse
|
42
|
The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023613118. [PMID: 33723072 PMCID: PMC8000504 DOI: 10.1073/pnas.2023613118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Meiotic recombination promotes genetic diversity by shuffling parental chromosomes. As observed by the very first geneticists, crossovers inhibit the formation of another crossover nearby, an elusive phenomenon called crossover interference. Another intriguing observation is heterochiasmy, the marked difference in male and female crossover rates observed in many species. Here, we show that the synaptonemal complex, a structure that zips homologous chromosomes together during meiosis, is essential for crossover interference in Arabidopsis. This suggests that a signal that inhibits crossover formation nearby a first crossover propagates along this specific structure. Furthermore, in the absence of the synaptonemal complex, crossover frequencies become identical in both sexes, suggesting that heterochiasmy is due to variation of crossover interference imposed by the synaptonemal complex. Meiotic crossovers (COs) have intriguing patterning properties, including CO interference, the tendency of COs to be well-spaced along chromosomes, and heterochiasmy, the marked difference in male and female CO rates. During meiosis, transverse filaments transiently associate the axes of homologous chromosomes, a process called synapsis that is essential for CO formation in many eukaryotes. Here, we describe the spatial organization of the transverse filaments in Arabidopsis (ZYP1) and show it to be evolutionary conserved. We show that in the absence of ZYP1 (zyp1a zyp1b null mutants), chromosomes associate in pairs but do not synapse. Unexpectedly, in absence of ZYP1, CO formation is not prevented but increased. Furthermore, genome-wide analysis of recombination revealed that CO interference is abolished, with the frequent observation of close COs. In addition, heterochiasmy was erased, with identical CO rates in males and females. This shows that the tripartite synaptonemal complex is dispensable for CO formation and has a key role in regulating their number and distribution, imposing CO interference and heterochiasmy.
Collapse
|
43
|
Kuo P, Da Ines O, Lambing C. Rewiring Meiosis for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:708948. [PMID: 34349775 PMCID: PMC8328115 DOI: 10.3389/fpls.2021.708948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Meiosis is a specialized cell division that contributes to halve the genome content and reshuffle allelic combinations between generations in sexually reproducing eukaryotes. During meiosis, a large number of programmed DNA double-strand breaks (DSBs) are formed throughout the genome. Repair of meiotic DSBs facilitates the pairing of homologs and forms crossovers which are the reciprocal exchange of genetic information between chromosomes. Meiotic recombination also influences centromere organization and is essential for proper chromosome segregation. Accordingly, meiotic recombination drives genome evolution and is a powerful tool for breeders to create new varieties important to food security. Modifying meiotic recombination has the potential to accelerate plant breeding but it can also have detrimental effects on plant performance by breaking beneficial genetic linkages. Therefore, it is essential to gain a better understanding of these processes in order to develop novel strategies to facilitate plant breeding. Recent progress in targeted recombination technologies, chromosome engineering, and an increasing knowledge in the control of meiotic chromosome segregation has significantly increased our ability to manipulate meiosis. In this review, we summarize the latest findings and technologies on meiosis in plants. We also highlight recent attempts and future directions to manipulate crossover events and control the meiotic division process in a breeding perspective.
Collapse
Affiliation(s)
- Pallas Kuo
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD), Université Clermont Auvergne, UMR 6293 CNRS, U1103 INSERM, Clermont-Ferrand, France
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J Genet Genomics 2021; 48:485-496. [PMID: 34257043 DOI: 10.1016/j.jgg.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.
Collapse
|
45
|
Ning Y, Liu Q, Wang C, Qin E, Wu Z, Wang M, Yang K, Elesawi IE, Chen C, Liu H, Qin R, Liu B. Heat stress interferes with formation of double-strand breaks and homolog synapsis. PLANT PHYSIOLOGY 2021; 185:1783-1797. [PMID: 33793950 PMCID: PMC8133540 DOI: 10.1093/plphys/kiab012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 05/20/2023]
Abstract
Meiotic recombination (MR) drives novel combinations of alleles and contributes to genomic diversity in eukaryotes. In this study, we showed that heat stress (36°C-38°C) over the fertile threshold fully abolished crossover formation in Arabidopsis (Arabidopsis thaliana). Cytological and genetic studies in wild-type plants and syn1 and rad51 mutants suggested that heat stress reduces generation of SPO11-dependent double-strand breaks (DSBs). In support, the abundance of recombinase DMC1, which is required for MR-specific DSB repair, was significantly reduced under heat stress. In addition, high temperatures induced disassembly and/or instability of the ASY4- but not the SYN1-mediated chromosome axis. At the same time, the ASY1-associated lateral element of the synaptonemal complex (SC) was partially affected, while the ZYP1-dependent central element of SC was disrupted, indicating that heat stress impairs SC formation. Moreover, expression of genes involved in DSB formation; e.g. SPO11-1, PRD1, 2, and 3 was not impacted; however, recombinase RAD51 and chromosome axis factors ASY3 and ASY4 were significantly downregulated under heat stress. Taken together, these findings revealed that heat stress inhibits MR via compromised DSB formation and homolog synapsis, which are possible downstream effects of the impacted chromosome axis. Our study thus provides evidence shedding light on how increasing environmental temperature influences MR in Arabidopsis.
Collapse
Affiliation(s)
- Yingjie Ning
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Qingpei Liu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Chong Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Erdai Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Zhihua Wu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Minghui Wang
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ke Yang
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Ibrahim Eid Elesawi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Bing Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, China
- Author for communication:
| |
Collapse
|
46
|
ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021671118. [PMID: 33782125 PMCID: PMC8040812 DOI: 10.1073/pnas.2021671118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous ultrastructure required to ensure cross-over (CO) formation in the majority of sexually reproducing eukaryotes. It is composed of two lateral elements adjoined by transverse filaments. Even though the general structure of the SC is conserved throughout kingdoms, phenotypic differences between mutants perpetuate the enigmatic role of the SC. Here, we have used genetic and cytogenetic approaches to show that the transverse filament protein, ZYP1, acts on multiple pathways of meiotic recombination in Arabidopsis. ZYP1 is required for CO assurance, thus ensuring that every chromosome pair receives at least one CO. ZYP1 limits the number of COs and mediates CO interference, the phenomenon that reduces the probability of multiple COs forming close together. The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5. These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis. Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.
Collapse
|
47
|
Hofstatter PG, Thangavel G, Castellani M, Marques A. Meiosis Progression and Recombination in Holocentric Plants: What Is Known? FRONTIERS IN PLANT SCIENCE 2021; 12:658296. [PMID: 33968114 PMCID: PMC8100227 DOI: 10.3389/fpls.2021.658296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 05/02/2023]
Abstract
Differently from the common monocentric organization of eukaryotic chromosomes, the so-called holocentric chromosomes present many centromeric regions along their length. This chromosomal organization can be found in animal and plant lineages, whose distribution suggests that it has evolved independently several times. Holocentric chromosomes present an advantage: even broken chromosome parts can be correctly segregated upon cell division. However, the evolution of holocentricity brought about consequences to nuclear processes and several adaptations are necessary to cope with this new organization. Centromeres of monocentric chromosomes are involved in a two-step cohesion release during meiosis. To deal with that holocentric lineages developed different adaptations, like the chromosome remodeling strategy in Caenorhabditis elegans or the inverted meiosis in plants. Furthermore, the frequency of recombination at or around centromeres is normally very low and the presence of centromeric regions throughout the entire length of the chromosomes could potentially pose a problem for recombination in holocentric organisms. However, meiotic recombination happens, with exceptions, in those lineages in spite of their holocentric organization suggesting that the role of centromere as recombination suppressor might be altered in these lineages. Most of the available information about adaptations to meiosis in holocentric organisms is derived from the animal model C. elegans. As holocentricity evolved independently in different lineages, adaptations observed in C. elegans probably do not apply to other lineages and very limited research is available for holocentric plants. Currently, we still lack a holocentric model for plants, but good candidates may be found among Cyperaceae, a large angiosperm family. Besides holocentricity, chiasmatic and achiasmatic inverted meiosis are found in the family. Here, we introduce the main concepts of meiotic constraints and adaptations with special focus in meiosis progression and recombination in holocentric plants. Finally, we present the main challenges and perspectives for future research in the field of chromosome biology and meiosis in holocentric plants.
Collapse
|
48
|
Jing JL, Zhang T, Kao YH, Huang TH, Wang CJR, He Y. ZmMTOPVIB Enables DNA Double-Strand Break Formation and Bipolar Spindle Assembly during Maize Meiosis. PLANT PHYSIOLOGY 2020; 184:1811-1822. [PMID: 33077613 PMCID: PMC7723106 DOI: 10.1104/pp.20.00933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
The meiotic TopoVI B subunit (MTopVIB) plays an essential role in double-strand break formation in mouse (Mus musculus), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), and recent work reveals that rice MTopVIB also plays an unexpected role in meiotic bipolar spindle assembly, highlighting multiple functions of MTopVIB during rice meiosis. In this work, we characterized the meiotic TopVIB in maize (Zea mays; ZmMTOPVIB). The ZmmtopVIB mutant plants exhibited normal vegetative growth but male and female sterility. Meiotic double-strand break formation was abolished in mutant meiocytes. Despite normal assembly of axial elements, mutants showed severely affected synapsis and disrupted homologous pairing. Importantly, we showed that bipolar spindle assembly was also affected in ZmmtopVIB, resulting in triad and polyad formation. Overall, our results demonstrate that ZmMTOPVIB plays critical roles in double-strand break formation and homologous recombination. In addition, our results suggest that the function of MTOPVIB in bipolar spindle assembly is likely conserved across different monocots.
Collapse
Affiliation(s)
- Ju-Li Jing
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, 100094 Beijing, China
| | - Ting Zhang
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, 100094 Beijing, China
| | - Yu-Hsin Kao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Han Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | - Yan He
- Ministry of Education Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, College of Agronomy and Biotechnology, China Agricultural University, 100094 Beijing, China
| |
Collapse
|
49
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Liu C, Shen Y, Qin B, Wen H, Cheng J, Mao F, Shi W, Tang D, Du G, Li Y, Wu Y, Cheng Z. Oryza sativa RNA-Dependent RNA Polymerase 6 Contributes to Double-Strand Break Formation in Meiosis. THE PLANT CELL 2020; 32:3273-3289. [PMID: 32732308 PMCID: PMC7534469 DOI: 10.1105/tpc.20.00213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/26/2020] [Accepted: 07/29/2020] [Indexed: 05/05/2023]
Abstract
RNA-dependent RNA polymerase 6 (RDR6) is a core component of the small RNA biogenesis pathway, but its function in meiosis is unclear. Here, we report a new allele of OsRDR6 (Osrdr6-meiosis [Osrdr6-mei]), which causes meiosis-specific phenotypes in rice (Oryza sativa). In Osrdr6-mei, meiotic double-strand break (DSB) formation is partially blocked. We created a biallelic mutant with more severe phenotypes, Osrdr6-bi, by crossing Osrdr6-mei with a knockout mutant, Osrdr6-edit In Osrdr6-bi meiocytes, 24 univalents were observed, and no histone H2AX phosphorylation foci were detected. Compared with the wild type, the number of 21-nucleotide small RNAs in Osrdr6-mei was dramatically lower, while the number of 24-nucleotide small RNAs was significantly higher. Thousands of differentially methylated regions (DMRs) were discovered in Osrdr6-mei, implying that OsRDR6 plays an important role in DNA methylation. There were 457 genes downregulated in Osrdr6-mei, including three genes, CENTRAL REGION COMPONENT1, P31 comet , and O. sativa SOLO DANCERS, related to DSB formation. Interestingly, the downregulated genes were associated with a high level of 24-nucleotide small RNAs but less strongly associated with DMRs. Therefore, we speculate that the alteration in expression of small RNAs in Osrdr6 mutants leads to the defects in DSB formation during meiosis, which might not be directly dependent on RNA-directed DNA methylation.
Collapse
Affiliation(s)
- Changzhen Liu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Baoxiang Qin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Huili Wen
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawen Cheng
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Mao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|