1
|
Li X, Weng Y, Chen Y, Liu K, Liu Y, Zhang K, Shi L, He S, Liu Z. CaARP1/CaSGT1 Module Regulates Vegetative Growth and Defense Response of Pepper Plants against Phytophthora capsici. PLANTS (BASEL, SWITZERLAND) 2024; 13:2849. [PMID: 39458796 PMCID: PMC11511434 DOI: 10.3390/plants13202849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Pepper (Capsicum annuum L.) suffers severe quality and yield loss from oomycete diseases caused by Phytophthora capsici. CaSGT1 was previously determined to positively regulate the immune response of pepper plants against P. capsici, but by which mechanism remains elusive. In the present study, the potential interacting proteins of CaSGT1 were isolated from pepper using a yeast two-hybrid system, among which CaARP1 was determined to interact with CaSGT1 via bimolecular fluorescence complementation (BiFC) and microscale thermophoresis (MST) assays. CaARP1 belongs to the auxin-repressed protein family, which is well-known to function in modulating plant growth. The transcriptional and protein levels of CaARP1 were both significantly induced by infection with P. capsici. Silencing of CaARP1 promotes the vegetative growth of pepper plants and attenuates its disease resistance to P. capsici, as well as compromising the hypersensitive response-like cell death in pepper leaves induced by PcINF1, a well-characterized typical PAMP from P. capsici. Chitin-induced transient expression of CaARP1 in pepper leaves enhanced its disease resistance to P. capsici, which is amplified by CaSGT1 co-expression as a positive regulator. Taken together, our result revealed that CaARP1 plays a dual role in the pepper, negatively regulating the vegetative growth and positively regulating plant immunity against P. capsici in a manner associated with CaSGT1.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yahong Weng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yufeng Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kaisheng Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanyan Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224002, China
| | - Kan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lanping Shi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuilin He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqin Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Yuan HY, Caron CT, Ramsay L, Fratini R, de la Vega MP, Vandenberg A, Weller JL, Bett KE. Genetic and gene expression analysis of flowering time regulation by light quality in lentil. ANNALS OF BOTANY 2021; 128:481-496. [PMID: 34185828 PMCID: PMC8414921 DOI: 10.1093/aob/mcab083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Flowering time is important due to its roles in plant adaptation to different environments and subsequent formation of crop yield. Changes in light quality affect a range of developmental processes including flowering time, but little is known about light quality-induced flowering time control in lentil. This study aims to investigate the genetic basis for differences in flowering response to light quality in lentil. METHODS We explored variation in flowering time caused by changes in red/far-red-related light quality environments of a lentil interspecific recombinant inbred line (RIL) population developed from a cross between Lens culinaris cv. Lupa and L. orientalis accession BGE 016880. A genetic linkage map was constructed and then used for identifying quantitative trait loci (QTLs) associated with flowering time regulation under different light quality environments. Differential gene expression analysis through transcriptomic study and RT-qPCR were used to identify potential candidate genes. KEY RESULTS QTL mapping located 13 QTLs controlling flower time under different light quality environments, with phenotypic variance explained ranging from 1.7 to 62.9 %. Transcriptomic profiling and gene expression analysis for both parents of this interspecific RIL population identified flowering-related genes showing environment-specific differential expression (flowering DEGs). One of these, a member of the florigen gene family FTa1 (LcFTa1), was located close to three major QTLs. Furthermore, gene expression results suggested that two other florigen genes (LcFTb1 and LcFTb2), MADS-box transcription factors such as LcAGL6/13d, LcSVPb, LcSOC1b and LcFULb, as well as bHLH transcription factor LcPIF6 and Gibberellin 20 oxidase LcGA20oxC,G may also be involved in the light quality response. CONCLUSIONS Our results show that a major component of flowering time sensitivity to light quality is tightly linked to LcFTa1 and associated with changes in its expression. This work provides a foundation for crop improvement of lentil with better adaptation to variable light environments.
Collapse
Affiliation(s)
- Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Carolyn T Caron
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Larissa Ramsay
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Fratini
- Area de Genética, Departamento de Biología Molecular, Universidad de León, León, Spain
| | | | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - James L Weller
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|