1
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Zhang W, Shi Y, Jiang C, Song X, Tuskan GA, Zeng W, Zhang J, Lu M. The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. Int J Mol Sci 2022; 23:ijms23105581. [PMID: 35628391 PMCID: PMC9145908 DOI: 10.3390/ijms23105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Leaf morphogenesis requires precise regulation of gene expression to achieve organ separation and flat-leaf form. The poplar KNOTTED-like homeobox gene PagKNAT2/6b could change plant architecture, especially leaf shape, in response to drought stress. However, its regulatory mechanism in leaf development remains unclear. In this work, gene expression analyses of PagKNAT2/6b suggested that PagKNAT2/6b was highly expressed during leaf development. Moreover, the leaf shape changes along the adaxial-abaxial, medial-lateral, and proximal-distal axes caused by the mis-expression of PagKNAT2/6b demonstrated that its overexpression (PagKNAT2/6b OE) and SRDX dominant repression (PagKNAT2/6b SRDX) poplars had an impact on the leaf axial development. The crinkle leaf of PagKNAT2/6b OE was consistent with the differential expression gene PagBOP1/2a (BLADE-ON-PETIOLE), which was the critical gene for regulating leaf development. Further study showed that PagBOP1/2a was directly activated by PagKNAT2/6b through a novel cis-acting element "CTCTT". Together, the PagKNAT2/6b-PagBOP1/2a module regulates poplar leaf morphology by affecting axial development, which provides insights aimed at leaf shape modification for further improving the drought tolerance of woody plants.
Collapse
Affiliation(s)
- Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yifan Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Yangxin Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA;
| | - Wei Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- Correspondence: (J.Z.); (M.L.)
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (Y.Z.); (Y.Z.); (W.Z.); (Y.S.); (C.J.); (W.Z.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
- Correspondence: (J.Z.); (M.L.)
| |
Collapse
|
3
|
Jia P, Xing L, Zhang C, Zhang D, Ma J, Zhao C, Han M, Ren X, An N. MdKNOX19, a class II knotted-like transcription factor of apple, plays roles in ABA signalling/sensitivity by targeting ABI5 during organ development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110701. [PMID: 33288014 DOI: 10.1016/j.plantsci.2020.110701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
The ABI5 transcription factor, which is a core component of the ABA signaling pathway, affects various plant processes, including seed development and germination and responses to environmental cues. The knotted1-like homeobox (KNOX) transcription factor has crucial functions related to plant development, including the regulation of various hormones. In this study, an ABA-responsive KNOX gene, MdKNOX19, was identified in apple (Malus domestica). The overexpression of MdKNOX19 increased the ABA sensitivity of apple calli, resulting in a dramatic up-regulation in the transcription of the Arabidopsis ABI5-like MdABI5 gene. Additionally, MdKNOX19 overexpression in Micro-Tom adversely affected fruit size and seed yield as well as enhanced ABA sensitivity and up-regulated SlABI5 transcription during seed germination and early seedling development. An examination of MdKNOX19-overexpressing Arabidopsis plants also revealed severe defects in seed development and up-regulated expression of ABA-responsive genes. Furthermore, we further confirmed that MdKNOX19 binds directly to the MdABI5 promoter to activate expression. Our findings suggest MdKNOX19 is a positive regulator of ABI5 expression, and the conserved module MdKNOX19-MdABI5-ABA may contribute to organ development.
Collapse
Affiliation(s)
- Peng Jia
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Libo Xing
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Chenguang Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Juanjuan Ma
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Na An
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China; College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Shwartz I, Levy M, Ori N, Bar M. Hormones in tomato leaf development. Dev Biol 2016; 419:132-142. [PMID: 27339291 DOI: 10.1016/j.ydbio.2016.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Collapse
Affiliation(s)
- Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|