1
|
Tressel LG, Shrestha B, Lee C, Choi IS, Ruhlman TA, Cardoso D, Wojciechowski MF, Jansen RK. Plastid-nuclear coevolution of ribosomal protein genes in papilionoid legumes. Mol Phylogenet Evol 2025; 204:108281. [PMID: 39733867 DOI: 10.1016/j.ympev.2024.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
In plants, cellular function is orchestrated by three distinct genomes located within the nucleus, mitochondrion, and plastid. These genomes are interdependent, requiring tightly coordinated maintenance and expression. Plastids host several multisubunit protein complexes encoded by both the plastid and nuclear genomes. To investigate plastid-nuclear coevolution, this study focused on plastid ribosomal protein genes that are encoded by both plastid and nuclear genomes from 50 taxa across 15 of the 22 early branching major clades of the legume subfamily Papilionoideae. Comparative analysis of substitution rates was conducted across five gene sets: nuclear-encoded plastid-targeted ribosomal protein genes (NuCpRP), nuclear-encoded cytosol-targeted ribosomal genes (NuCyRP), other nuclear-encoded plastid-targeted genes that are not involved in ribosomes (NuCpOT), plastid-encoded ribosomal protein genes (CpRP) and plastid-encoded photosynthesis genes (CpPS).1 Elevated nonsynonymous substitution rates (dN) and ratios of nonsynonymous to synonymous substitution rates (dN/dS; ω) were observed in both CpRP and NuCpRP compared to the other gene sets. Significant differences in dN for CpRP and NuCpRP were found between the papilionoid 50-kb inversion clade and other legumes. Using coevolution statistics and evolutionary rate covariation, strong signals of cytonuclear coevolution were identified, where nonsynonymous substitutions in CpRP and NuCpRP genes co-occur along the same branches of the Papilionoideae phylogeny. Increased ω in a few CpRP genes was due to intensified positive selection whereas most of the CpRP and NuCpRP increased ω was caused by relaxed purifying selection. This pattern not only underscores the role of cytonuclear incompatibility in driving speciation but also highlights its constraints on the genetic enhancement of papilionoid crop species.
Collapse
Affiliation(s)
- Lydia G Tressel
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Bikash Shrestha
- DOE, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaehee Lee
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - In-Su Choi
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon, South Korea
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Domingos Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, RJ, Brazil
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Wang Q, Su Z, Chen J, Chen W, He Z, Wei S, Yang J, Zou J. HaMADS3, HaMADS7, and HaMADS8 are involved in petal prolongation and floret symmetry establishment in sunflower ( Helianthus annuus L.). PeerJ 2024; 12:e17586. [PMID: 38974413 PMCID: PMC11225715 DOI: 10.7717/peerj.17586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
The development of floral organs, crucial for the establishment of floral symmetry and morphology in higher plants, is regulated by MADS-box genes. In sunflower, the capitulum is comprised of ray and disc florets with various floral organs. In the sunflower long petal mutant (lpm), the abnormal disc (ray-like) floret possesses prolongated petals and degenerated stamens, resulting in a transformation from zygomorphic to actinomorphic symmetry. In this study, we investigated the effect of MADS-box genes on floral organs, particularly on petals, using WT and lpm plants as materials. Based on our RNA-seq data, 29 MADS-box candidate genes were identified, and their roles on floral organ development, especially in petals, were explored, by analyzing the expression levels in various tissues in WT and lpm plants through RNA-sequencing and qPCR. The results suggested that HaMADS3, HaMADS7, and HaMADS8 could regulate petal development in sunflower. High levels of HaMADS3 that relieved the inhibition of cell proliferation, together with low levels of HaMADS7 and HaMADS8, promoted petal prolongation and maintained the morphology of ray florets. In contrast, low levels of HaMADS3 and high levels of HaMADS7 and HaMADS8 repressed petal extension and maintained the morphology of disc florets. Their coordination may contribute to the differentiation of disc and ray florets in sunflower and maintain the balance between attracting pollinators and producing offspring. Meanwhile, Pearson correlation analysis between petal length and expression levels of MADS-box genes further indicated their involvement in petal prolongation. Additionally, the analysis of cis-acting elements indicated that these three MADS-box genes may regulate petal development and floral symmetry establishment by regulating the expression activity of HaCYC2c. Our findings can provide some new understanding of the molecular regulatory network of petal development and floral morphology formation, as well as the differentiation of disc and ray florets in sunflower.
Collapse
Affiliation(s)
- Qian Wang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhou Su
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jing Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Weiying Chen
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhuoyuan He
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Shuhong Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jun Yang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jian Zou
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
3
|
Sloan DB, Conover JL, Grover CE, Wendel JF, Sharbrough J. Polyploid plants take cytonuclear perturbations in stride. THE PLANT CELL 2024; 36:829-839. [PMID: 38267606 PMCID: PMC10980399 DOI: 10.1093/plcell/koae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin L Conover
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
4
|
Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be'ery A, Faigenboim-Doron A, Yamamoto E, Panzarová K, Kashkush K, Shental N, Fridman E. Cytonuclear interactions modulate the plasticity of photosynthetic rhythmicity and growth in wild barley. PHYSIOLOGIA PLANTARUM 2024; 176:e14192. [PMID: 38351880 DOI: 10.1111/ppl.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
In plants, the contribution of the plasmotype (mitochondria and chloroplast) in controlling the circadian clock plasticity and possible consequences on cytonuclear genetic makeup have yet to be fully elucidated. A genome-wide association study in the wild barley (Hordeum vulgare ssp. spontaneum) B1K collection identified overlap with our previously mapped DRIVERS OF CLOCKS (DOCs) loci in wild-cultivated interspecific population. Moreover, we identified non-random segregation and epistatic interactions between nuclear DOCs loci and the chloroplastic RpoC1 gene, indicating an adaptive value for specific cytonuclear gene combinations. Furthermore, we show that DOC1.1, which harbours the candidate SIGMA FACTOR-B (SIG-B) gene, is linked with the differential expression of SIG-B and CCA1 genes and contributes to the circadian gating response to heat. High-resolution temporal growth and photosynthesis measurements of B1K also link the DOCs loci to differential growth, Chl content and quantum yield. To validate the involvement of the Plastid encoded polymerase (PEP) complex, we over-expressed the two barley chloroplastic RpoC1 alleles in Arabidopsis and identified significant differential plasticity under elevated temperatures. Finally, enhanced clock plasticity of de novo ENU (N-Ethyl-N-nitrosourea) -induced barley rpoB1 mutant further implicates the PEP complex as a key player in regulating the circadian clock output. Overall, this study highlights the contribution of specific cytonuclear interaction between rpoC1 (PEP gene) and SIG-B with distinct circadian timing regulation under heat, and their pleiotropic effects on growth implicate an adaptive value.
Collapse
Affiliation(s)
- Lalit Dev Tiwari
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Schewach Bodenheimer
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avital Be'ery
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Eiji Yamamoto
- Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana, Israel
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
5
|
Lynch M. Mutation pressure, drift, and the pace of molecular coevolution. Proc Natl Acad Sci U S A 2023; 120:e2306741120. [PMID: 37364099 PMCID: PMC10319038 DOI: 10.1073/pnas.2306741120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Most aspects of the molecular biology of cells involve tightly coordinated intermolecular interactions requiring specific recognition at the nucleotide and/or amino acid levels. This has led to long-standing interest in the degree to which constraints on interacting molecules result in conserved vs. accelerated rates of sequence evolution, with arguments commonly being made that molecular coevolution can proceed at rates exceeding the neutral expectation. Here, a fairly general model is introduced to evaluate the degree to which the rate of evolution at functionally interacting sites is influenced by effective population sizes (Ne), mutation rates, strength of selection, and the magnitude of recombination between sites. This theory is of particular relevance to matters associated with interactions between organelle- and nuclear-encoded proteins, as the two genomic environments often exhibit dramatic differences in the power of mutation and drift. Although genes within low Ne environments can drive the rate of evolution of partner genes experiencing higher Ne, rates exceeding the neutral expectation require that the former also have an elevated mutation rate. Testable predictions, some counterintuitive, are presented on how patterns of coevolutionary rates should depend on the relative intensities of drift, selection, and mutation.
Collapse
Affiliation(s)
- Michael Lynch
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ85287
| |
Collapse
|
6
|
Postel Z, Mauri T, Lensink MF, Touzet P. What is the potential impact of genetic divergence of plastid ribosomal genes between Silene nutans lineages in hybrids? An in silico approach using the 3D structure of the plastid ribosome. FRONTIERS IN PLANT SCIENCE 2023; 14:1167478. [PMID: 37223795 PMCID: PMC10201985 DOI: 10.3389/fpls.2023.1167478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/25/2023]
Abstract
Introduction Following the integration of cyanobacteria into the eukaryotic cells, many genes were transferred from the plastid to the nucleus. As a result, plastid complexes are encoded both by plastid and nuclear genes. Tight co-adaptation is required between these genes as plastid and nuclear genomes differ in several characteristics, such as mutation rate and inheritance patterns. Among these are complexes from the plastid ribosome, composed of two main subunits: a large and a small one, both composed of nuclear and plastid gene products. This complex has been identified as a potential candidate for sheltering plastid-nuclear incompatibilities in a Caryophyllaceae species, Silene nutans. This species is composed of four genetically differentiated lineages, which exhibit hybrid breakdown when interlineage crosses are conducted. As this complex is composed of numerous interacting plastid-nuclear gene pairs, in the present study, the goal was to reduce the number of gene pairs that could induce such incompatibilities. Method We used the previously published 3D structure of the spinach ribosome to further elucidate which of the potential gene pairs might disrupt plastid-nuclear interactions within this complex. After modeling the impact of the identified mutations on the 3D structure, we further focused on one strongly mutated plastid-nuclear gene pair: rps11-rps21. We used the centrality measure of the mutated residues to further understand if the modified interactions and associated modified centralities might be correlated with hybrid breakdown. Results and discussion This study highlights that lineage-specific mutations in essential plastid and nuclear genes might disrupt plastid-nuclear protein interactions of the plastid ribosome and that reproductive isolation correlates with changes in residue centrality values. Because of this, the plastid ribosome might be involved in hybrid breakdown in this system.
Collapse
Affiliation(s)
- Zoé Postel
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Théo Mauri
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
7
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
8
|
Ceriotti LF, Gatica-Soria L, Sanchez-Puerta MV. Cytonuclear coevolution in a holoparasitic plant with highly disparate organellar genomes. PLANT MOLECULAR BIOLOGY 2022; 109:673-688. [PMID: 35359176 DOI: 10.1007/s11103-022-01266-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Contrasting substitution rates in the organellar genomes of Lophophytum agree with the DNA repair, replication, and recombination gene content. Plastid and nuclear genes whose products form multisubunit complexes co-evolve. The organellar genomes of the holoparasitic plant Lophophytum (Balanophoraceae) show disparate evolution. In the plastid, the genome has been severely reduced and presents a > 85% AT content, while in the mitochondria most protein-coding genes have been replaced by homologs acquired by horizontal gene transfer (HGT) from their hosts (Fabaceae). Both genomes carry genes whose products form multisubunit complexes with those of nuclear genes, creating a possible hotspot of cytonuclear coevolution. In this study, we assessed the evolutionary rates of plastid, mitochondrial and nuclear genes, and their impact on cytonuclear evolution of genes involved in multisubunit complexes related to lipid biosynthesis and proteolysis in the plastid and those in charge of the oxidative phosphorylation in the mitochondria. Genes from the plastid and the mitochondria (both native and foreign) of Lophophytum showed extremely high and ordinary substitution rates, respectively. These results agree with the biased loss of plastid-targeted proteins involved in angiosperm organellar repair, replication, and recombination machinery. Consistent with the high rate of evolution of plastid genes, nuclear-encoded subunits of plastid complexes showed disproportionate increases in non-synonymous substitution rates, while those of the mitochondrial complexes did not show different rates than the control (i.e. non-organellar nuclear genes). Moreover, the increases in the nuclear-encoded subunits of plastid complexes were positively correlated with the level of physical interaction they possess with the plastid-encoded ones. Overall, these results suggest that a structurally-mediated compensatory factor may be driving plastid-nuclear coevolution in Lophophytum, and that mito-nuclear coevolution was not altered by HGT.
Collapse
Affiliation(s)
- Luis F Ceriotti
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - Leonardo Gatica-Soria
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- Facultad de Ciencias Agrarias, IBAM, Universidad Nacional de Cuyo, CONICET, Almirante Brown 500, Chacras de Coria, M5528AHB, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, M5502JMA, Mendoza, Argentina.
| |
Collapse
|
9
|
Camus MF, Alexander-Lawrie B, Sharbrough J, Hurst GDD. Inheritance through the cytoplasm. Heredity (Edinb) 2022; 129:31-43. [PMID: 35525886 PMCID: PMC9273588 DOI: 10.1038/s41437-022-00540-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.
Collapse
Affiliation(s)
- M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, England
| |
Collapse
|
10
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Gatica-Soria LM, Ceriotti LF, Garcia LE, Virginia Sanchez-Puerta M. Native and foreign mitochondrial and nuclear encoded proteins conform the OXPHOS complexes of a holoparasitic plant. Gene 2022; 817:146176. [PMID: 35031426 DOI: 10.1016/j.gene.2021.146176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022]
Abstract
The intimate contact between the holoparasitic plant Lophophytum mirabile (Balanophoraceae) and its host plant (Fabaceae) facilitates the exchange of genetic information, increasing the frequency of horizontal gene transfer (HGT). Lophophytum stands out because it acquired a large number of mitochondrial genes (greater than 20) from its legume host that replaced the majority of the native homologs. These foreign genes code for proteins that form multisubunit enzyme complexes, such as those in the oxidative phosphorylation system (OXPHOS) and cytochrome c maturation (ccm) system, together with dozens of nuclear-encoded subunits. However, the existence and the origin of the nuclear subunits that form the major part of the OXPHOS and ccm system in Lophophytum remain unknown. It was proposed that nuclear-encoding genes whose products interact with foreign mitochondrial proteins are also foreign, minimizing the incompatibilities that could arise in the assembly and functioning of these multiprotein complexes. We identified a nearly complete set of OXPHOS and ccm system subunits evolving under selective constraints in the transcriptome of Lophophytum, indicating that OXPHOS is functional and resembles that of free-living angiosperms. Maximum Likelihood phylogenetic analyses revealed a single case of HGT in the nuclear genes, which results in mosaic OXPHOS and ccm system in Lophophytum. These observations raise new questions about the evolution and physiology of this parasitic plant. A putative case of cooperation between two foreign (one mitochondrial and one nuclear) genes is presented.
Collapse
Affiliation(s)
- Leonardo M Gatica-Soria
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, Universidad Nacional de Cuyo, M5502JMA Mendoza, Argentina.
| |
Collapse
|
12
|
Dalla Costa TP, Silva MC, de Santana Lopes A, Gomes Pacheco T, de Oliveira JD, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. PLANTA 2022; 255:57. [PMID: 35113261 DOI: 10.1007/s00425-022-03841-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The plastome of Melocactus glaucescens shows unique rearrangements, IR expansion, and unprecedented gene losses in Cactaceae. Our data indicate tRNA import from the cytosol to the plastids in this species. Cactaceae represents one of the richest families in keystone species of arid and semiarid biomes. This family shows various specific features comprehending morphology, anatomy, and metabolism, which allow them to grow under unfavorable environmental conditions. The subfamily Cactoideae contains the most divergence of species, which are highly variable in growth habit and morphology. This subfamily includes the endangered species Melocactus glaucescens (tribe Cereeae), which is a cactus endemic to the biome Caatinga in Brazil. Aiming to analyze the plastid evolution and develop molecular markers, we sequenced and analyzed in detail the plastome of M. glaucescens. Our analyses revealed that the M. glaucescens plastome is the most divergent among the species of the family Cactaceae sequenced so far. We characterized here unique rearrangements, expanded IRs containing an unusual set of genes, and several gene losses. Some genes related to the ndh complex were lost during the plastome evolution, while others have lost their functionality. Additionally, the loss of three tRNA genes (trnA-UGC, trnV-UAC, and trnV-GAC) suggests tRNA import from the cytosol to the plastids in M. glaucescens. Moreover, we identified high gene divergence, several putative positive signatures, and possible unique RNA-editing sites. Furthermore, we mapped 169 SSRs in the plastome of M. glaucescens, which are helpful to access the genetic diversity of natural populations and conservation strategies. Finally, our data provide new insights into the evolution of plastids in Cactaceae, which is an outstanding lineage adapted to extreme environmental conditions and a notorious example of the atypical evolution of plastomes.
Collapse
Affiliation(s)
- Tanara P Dalla Costa
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maria C Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José D de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Valter A de Baura
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
13
|
Postel Z, Poux C, Gallina S, Varré JS, Godé C, Schmitt E, Meyer E, Van Rossum F, Touzet P. Reproductive isolation among lineages of Silene nutans (Caryophyllaceae): A potential involvement of plastid-nuclear incompatibilities. Mol Phylogenet Evol 2022; 169:107436. [DOI: 10.1016/j.ympev.2022.107436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
|
14
|
Abdel-Ghany SE, LaManna LM, Harroun HT, Maliga P, Sloan DB. Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex. PLANT MOLECULAR BIOLOGY 2022; 108:277-287. [PMID: 35039977 DOI: 10.1007/s11103-022-01241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Replacing the native clpP1 gene in the Nicotiana plastid genome with homologs from different donor species showed that the extent of genetic incompatibilities depended on the rate of sequence evolution. The plastid caseinolytic protease (Clp) complex plays essential roles in maintaining protein homeostasis and comprises both plastid-encoded and nuclear-encoded subunits. Despite the Clp complex being retained across green plants with highly conserved protein sequences in most species, examples of extremely accelerated amino acid substitution rates have been identified in numerous angiosperms. The causes of these accelerations have been the subject of extensive speculation but still remain unclear. To distinguish among prevailing hypotheses and begin to understand the functional consequences of rapid sequence divergence in Clp subunits, we used plastome transformation to replace the native clpP1 gene in tobacco (Nicotiana tabacum) with counterparts from another angiosperm genus (Silene) that exhibits a wide range in rates of Clp protein sequence evolution. We found that antibiotic-mediated selection could drive a transgenic clpP1 replacement from a slowly evolving donor species (S. latifolia) to homoplasmy but that clpP1 copies from Silene species with accelerated evolutionary rates remained heteroplasmic, meaning that they could not functionally replace the essential tobacco clpP1 gene. These results suggest that observed cases of rapid Clp sequence evolution are a source of epistatic incompatibilities that must be ameliorated by coevolutionary responses between plastid and nuclear subunits.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Lisa M LaManna
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Haleakala T Harroun
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
15
|
Shestibratov KA, Baranov OY, Mescherova EN, Kiryanov PS, Panteleev SV, Mozharovskaya LV, Krutovsky KV, Padutov VE. Structure and Phylogeny of the Curly Birch Chloroplast Genome. Front Genet 2021; 12:625764. [PMID: 34671379 PMCID: PMC8521055 DOI: 10.3389/fgene.2021.625764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Curly birch [Betula pendula var. carelica (Merckl.) Hämet-Ahti] is a relatively rare variety of silver birch (B. pendula Roth) that occurs mainly in Northern Europe and northwest part of Russia (Karelia). It is famous for the beautiful decorative texture of wood. Abnormal xylogenesis underlying this trait is heritable, but its genetic mechanism has not yet been fully understood. The high number of potentially informative genetic markers can be identified through sequencing nuclear and organelle genomes. Here, the de novo assembly, complete nucleotide sequence, and annotation of the chloroplast genome (plastome) of curly birch are presented for the first time. The complete plastome length is 160,523 bp. It contains 82 genes encoding structural and enzymatic proteins, 37 transfer RNAs (tRNAs), and eight ribosomal RNAs (rRNAs). The chloroplast DNA (cpDNA) is AT-rich containing 31.5% of A and 32.5% of T nucleotides. The GC-rich regions represent inverted repeats IR1 and IR2 containing genes of rRNAs (5S, 4.5S, 23S, and 16S) and tRNAs (trnV, trnI, and trnA). A high content of GC was found in rRNA (55.2%) and tRNA (53.2%) genes, but only 37.0% in protein-coding genes. In total, 384 microsatellite or simple sequence repeat (SSR) loci were found, mostly with mononucleotide motifs (92% of all loci) and predominantly A or T motifs (94% of all mononucleotide motifs). Comparative analysis of cpDNA in different plant species revealed high structural and functional conservatism in organization of the angiosperm plastomes, while the level of differences depends on the phylogenetic relationship. The structural and functional organization of plastome in curly birch was similar to cpDNA in other species of woody plants. Finally, the identified cpDNA sequence variation will allow to develop useful genetic markers.
Collapse
Affiliation(s)
- Konstantin A Shestibratov
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia.,Forestry Faculty, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia
| | - Oleg Yu Baranov
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Eugenia N Mescherova
- Forest Biotechnology Group, Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Pavel S Kiryanov
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Stanislav V Panteleev
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Ludmila V Mozharovskaya
- Laboratory of Genomics and Bioinformatics, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| | - Konstantin V Krutovsky
- Forestry Faculty, G. F. Morozov Voronezh State University of Forestry and Technologies, Voronezh, Russia.,Department of Forest Genetics and Forest Tree Breeding, George-August University of Göttingen, Göttingen, Germany.,Laboratory of Population Genetics, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Vladimir E Padutov
- Department of Genetics, Tree Breeding and Biotechnology, Forest Research Institute, National Academy of Sciences of Belarus, Gomel, Belarus
| |
Collapse
|
16
|
Zupok A, Kozul D, Schöttler MA, Niehörster J, Garbsch F, Liere K, Fischer A, Zoschke R, Malinova I, Bock R, Greiner S. A photosynthesis operon in the chloroplast genome drives speciation in evening primroses. THE PLANT CELL 2021; 33:2583-2601. [PMID: 34048579 PMCID: PMC8408503 DOI: 10.1093/plcell/koab155] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/27/2021] [Indexed: 05/09/2023]
Abstract
Genetic incompatibility between the cytoplasm and the nucleus is thought to be a major factor in species formation, but mechanistic understanding of this process is poor. In evening primroses (Oenothera spp.), a model plant for organelle genetics and population biology, hybrid offspring regularly display chloroplast-nuclear incompatibility. This usually manifests in bleached plants, more rarely in hybrid sterility or embryonic lethality. Hence, most of these incompatibilities affect photosynthetic capability, a trait that is under selection in changing environments. Here we show that light-dependent misregulation of the plastid psbB operon, which encodes core subunits of photosystem II and the cytochrome b6f complex, can lead to hybrid incompatibility, and this ultimately drives speciation. This misregulation causes an impaired light acclimation response in incompatible plants. Moreover, as a result of their different chloroplast genotypes, the parental lines differ in photosynthesis performance upon exposure to different light conditions. Significantly, the incompatible chloroplast genome is naturally found in xeric habitats with high light intensities, whereas the compatible one is limited to mesic habitats. Consequently, our data raise the possibility that the hybridization barrier evolved as a result of adaptation to specific climatic conditions.
Collapse
Affiliation(s)
| | | | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Julia Niehörster
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Frauke Garbsch
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Karsten Liere
- Institut für Biologie/Molekulare Genetik, Humboldt-Universität zu Berlin, Berlin, D-10115, Germany
| | - Axel Fischer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Reimo Zoschke
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Irina Malinova
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, D-14476, Germany
| | | |
Collapse
|
17
|
Forsythe ES, Williams AM, Sloan DB. Genome-wide signatures of plastid-nuclear coevolution point to repeated perturbations of plastid proteostasis systems across angiosperms. THE PLANT CELL 2021; 33:980-997. [PMID: 33764472 PMCID: PMC8226287 DOI: 10.1093/plcell/koab021] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/16/2021] [Indexed: 05/05/2023]
Abstract
Nuclear and plastid (chloroplast) genomes experience different mutation rates, levels of selection, and transmission modes, yet key cellular functions depend on their coordinated interactions. Functionally related proteins often show correlated changes in rates of sequence evolution across a phylogeny [evolutionary rate covariation (ERC)], offering a means to detect previously unidentified suites of coevolving and cofunctional genes. We performed phylogenomic analyses across angiosperm diversity, scanning the nuclear genome for genes that exhibit ERC with plastid genes. As expected, the strongest hits were highly enriched for genes encoding plastid-targeted proteins, providing evidence that cytonuclear interactions affect rates of molecular evolution at genome-wide scales. Many identified nuclear genes functioned in post-transcriptional regulation and the maintenance of protein homeostasis (proteostasis), including protein translation (in both the plastid and cytosol), import, quality control, and turnover. We also identified nuclear genes that exhibit strong signatures of coevolution with the plastid genome, but their encoded proteins lack organellar-targeting annotations, making them candidates for having previously undescribed roles in plastids. In sum, our genome-wide analyses reveal that plastid-nuclear coevolution extends beyond the intimate molecular interactions within chloroplast enzyme complexes and may be driven by frequent rewiring of the machinery responsible for maintenance of plastid proteostasis in angiosperms.
Collapse
Affiliation(s)
- Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
18
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
19
|
Choi K, Weng ML, Ruhlman TA, Jansen RK. Extensive variation in nucleotide substitution rate and gene/intron loss in mitochondrial genomes of Pelargonium. Mol Phylogenet Evol 2020; 155:106986. [PMID: 33059063 DOI: 10.1016/j.ympev.2020.106986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/16/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Geraniaceae organelle genomes have been shown to exhibit several highly unusual features compared to most other photosynthetic angiosperms. This includes massively rearranged plastomes with considerable size variation, extensive gene and intron loss, accelerated rates of nucleotide substitutions in both mitogenomes and plastomes, and biparental inheritance and cytonuclear incompatibility of the plastome. Most previous studies have focused on plastome evolution with mitogenome comparisons limited to only a few taxa or genes. In this study, mitogenomes and transcriptomes were examined for 27 species of Geraniales, including 13 species of Pelargonium. Extensive gene and intron losses were detected across the Geraniales with Pelargonium representing the most gene depauperate lineage in the family. Plotting these events on the Geraniaceae phylogenetic tree showed that gene losses occurred multiple times, whereas intron losses more closely reflected the relationships among taxa. In addition, P. australe acquired an intron by horizontal transfer. Comparisons of nucleotide substitution rates in Pelargonium showed that synonymous changes in nuclear genes were much lower than in mitochondrial genes. This is in contrast to the previously published studies that indicated that nuclear genes have 16 fold higher rates than mitochondrial genes across angiosperms. Elevated synonymous substitutions occurred for each mitochondrial gene in Pelargonium with the highest values 783 and 324 times higher than outgroups and other Geraniaceae, respectively. Pelargonium is one of four unrelated genera of angiosperms (Ajuga, Plantago and Silene) that have experienced highly accelerated nucleotide substitutions in mitogenomes. It is distinct from most angiosperms in also having elevated substitution rates in plastid genes but the cause of rate accelerations in Pelargonium plastomes and mitogenomes may be different.
Collapse
Affiliation(s)
- KyoungSu Choi
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Center for Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Nucleotide substitution rates of diatom plastid encoded protein genes are positively correlated with genome architecture. Sci Rep 2020; 10:14358. [PMID: 32873883 PMCID: PMC7462845 DOI: 10.1038/s41598-020-71473-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/17/2020] [Indexed: 01/02/2023] Open
Abstract
Diatoms are the largest group of heterokont algae with more than 100,000 species. As one of the single-celled photosynthetic organisms that inhabit marine, aquatic and terrestrial ecosystems, diatoms contribute ~ 45% of global primary production. Despite their ubiquity and environmental significance, very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored patterns of nucleotide substitution rates of diatom plastids across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. The highest substitution rate was lineage-specific within the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes and individual genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have lower synonymous and nonsynonymous substitutions rates than those involved in transcription and translation. Significant positive correlations were identified between substitution rates and measures of genomic rearrangements, including indels and inversions, which is a similar result to what was found in legume plants. This work advances the understanding of the molecular evolution of diatom plastomes and provides a foundation for future studies.
Collapse
|
21
|
Hill GE. Mitonuclear Compensatory Coevolution. Trends Genet 2020; 36:403-414. [PMID: 32396834 DOI: 10.1016/j.tig.2020.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 01/03/2023]
Abstract
In bilaterian animals, the mitochondrial genome is small, haploid, does not typically recombine, and is subject to accumulation of deleterious alleles via Muller's ratchet. These basic features of the genomic architecture present a paradox: mutational erosion of these genomes should lead to decline in mitochondrial function over time, yet no such decline is observed. Compensatory coevolution, whereby the nuclear genome evolves to compensate for the deleterious alleles in the mitochondrial genome, presents a potential solution to the paradox of Muller's ratchet without loss of function. Here, I review different proposed forms of mitonuclear compensatory coevolution. Empirical evidence from diverse eukaryotic taxa supports the mitonuclear compensatory coevolution hypothesis, but the ubiquity and importance of such compensatory coevolution remains a topic of debate.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Science, 331 Funchess Hall, Auburn University, Auburn, AL 36849-5414, USA.
| |
Collapse
|
22
|
Postel Z, Touzet P. Cytonuclear Genetic Incompatibilities in Plant Speciation. PLANTS 2020; 9:plants9040487. [PMID: 32290056 PMCID: PMC7238192 DOI: 10.3390/plants9040487] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation.
Collapse
|
23
|
Park S, An B, Park S. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Sci Rep 2020; 10:2720. [PMID: 32066766 PMCID: PMC7026143 DOI: 10.1038/s41598-020-59547-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/30/2020] [Indexed: 01/08/2023] Open
Abstract
The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
24
|
Bogdanova VS. Genetic and Molecular Genetic Basis of Nuclear-Plastid Incompatibilities. PLANTS (BASEL, SWITZERLAND) 2019; 9:E23. [PMID: 31878042 PMCID: PMC7020172 DOI: 10.3390/plants9010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 01/21/2023]
Abstract
Genetic analysis of nuclear-cytoplasm incompatibilities is not straightforward and requires an elaborated experimental design. A number of species have been genetically studied, but notable advances in genetic mapping of nuclear loci involved in nuclear-plastid incompatibility have been achieved only in wheat and pea. This review focuses on the study of the genetic background underlying nuclear-plastid incompatibilities, including cases where the molecular genetic basis of such incompatibility has been unveiled, such as in tobacco, Oenothera, pea, and wheat.
Collapse
Affiliation(s)
- Vera S Bogdanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
25
|
Bdolach E, Prusty MR, Faigenboim-Doron A, Filichkin T, Helgerson L, Schmid KJ, Greiner S, Fridman E. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. PLANT, CELL & ENVIRONMENT 2019; 42:3105-3120. [PMID: 31272129 DOI: 10.1111/pce.13606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.
Collapse
Affiliation(s)
- Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Tanya Filichkin
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Laura Helgerson
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
26
|
Barrett CF, Sinn BT, Kennedy AH. Unprecedented Parallel Photosynthetic Losses in a Heterotrophic Orchid Genus. Mol Biol Evol 2019; 36:1884-1901. [PMID: 31058965 PMCID: PMC6736286 DOI: 10.1093/molbev/msz111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heterotrophic plants are evolutionary experiments in genomic, morphological, and physiological change. Yet, genomic sampling gaps exist among independently derived heterotrophic lineages, leaving unanswered questions about the process of genome modification. Here, we have sequenced complete plastid genomes for all species of the leafless orchid genus Hexalectris, including multiple individuals for most, and leafy relatives Basiphyllaea and Bletia. Our objectives are to determine the number of independent losses of photosynthesis and to test hypotheses on the process of genome degradation as a result of relaxed selection. We demonstrate four to five independent losses of photosynthesis in Hexalectris based on degradation of the photosynthetic apparatus, with all but two species displaying evidence of losses, and variation in gene loss extending below the species level. Degradation in the atp complex is advanced in Hexalectris warnockii, whereas only minimal degradation (i.e., physical loss) has occurred among some "housekeeping" genes. We find genomic rearrangements, shifts in Inverted Repeat boundaries including complete loss in one accession of H. arizonica, and correlations among substitutional and genomic attributes. Our unprecedented finding of multiple, independent transitions to a fully mycoheterotrophic lifestyle in a single genus reveals that the number of such transitions among land plants is likely underestimated. This study underscores the importance of dense taxon sampling, which is highly informative for advancing models of genome evolution in heterotrophs. Mycoheterotrophs such as Hexalectris provide forward-genetic opportunities to study the consequences of radical genome evolution beyond what is possible with mutational studies in model organisms alone.
Collapse
Affiliation(s)
- Craig F Barrett
- Department of Biology, West Virginia University, Morgantown, WV
| | - Brandon T Sinn
- Department of Biology, West Virginia University, Morgantown, WV
| | - Aaron H Kennedy
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA-APHIS, Beltsville, MD
| |
Collapse
|
27
|
Forsythe ES, Sharbrough J, Havird JC, Warren JM, Sloan DB. CyMIRA: The Cytonuclear Molecular Interactions Reference for Arabidopsis. Genome Biol Evol 2019; 11:2194-2202. [PMID: 31282937 PMCID: PMC6685490 DOI: 10.1093/gbe/evz144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
The function and evolution of eukaryotic cells depend upon direct molecular interactions between gene products encoded in nuclear and cytoplasmic genomes. Understanding how these cytonuclear interactions drive molecular evolution and generate genetic incompatibilities between isolated populations and species is of central importance to eukaryotic biology. Plants are an outstanding system to investigate such effects because of their two different genomic compartments present in the cytoplasm (mitochondria and plastids) and the extensive resources detailing subcellular targeting of nuclear-encoded proteins. However, the field lacks a consistent classification scheme for mitochondrial- and plastid-targeted proteins based on their molecular interactions with cytoplasmic genomes and gene products, which hinders efforts to standardize and compare results across studies. Here, we take advantage of detailed knowledge about the model angiosperm Arabidopsis thaliana to provide a curated database of plant cytonuclear interactions at the molecular level. CyMIRA (Cytonuclear Molecular Interactions Reference for Arabidopsis) is available at http://cymira.colostate.edu/ and https://github.com/dbsloan/cymira and will serve as a resource to aid researchers in partitioning evolutionary genomic data into functional gene classes based on organelle targeting and direct molecular interaction with cytoplasmic genomes and gene products. It includes 11 categories (and 27 subcategories) of different cytonuclear complexes and types of molecular interactions, and it reports residue-level information for cytonuclear contact sites. We hope that this framework will make it easier to standardize, interpret, and compare studies testing the functional and evolutionary consequences of cytonuclear interactions.
Collapse
Affiliation(s)
| | | | - Justin C Havird
- Department of Integrative Biology, University of Texas, Austin
| | | | | |
Collapse
|
28
|
Shrestha B, Weng ML, Theriot EC, Gilbert LE, Ruhlman TA, Krosnick SE, Jansen RK. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Mol Phylogenet Evol 2019; 138:53-64. [PMID: 31129347 DOI: 10.1016/j.ympev.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
Plastid genomes (plastomes) of photosynthetic angiosperms are for the most part highly conserved in their organization, mode of inheritance and rates of nucleotide substitution. A small number of distantly related lineages share a syndrome of features that deviate from this general pattern, including extensive genomic rearrangements, accelerated rates of nucleotide substitution, biparental inheritance and plastome-genome incompatibility. Previous studies of plastomes in Passiflora with limited taxon sampling suggested that the genus exhibits this syndrome. To examine this phenomenon further, 15 new plastomes from Passiflora were sequenced and combined with previously published data to examine the phylogenetic relationships, genome organization and evolutionary rates across all five subgenera and the sister genus Adenia. Phylogenomic analyses using 68 protein-coding genes shared by Passiflora generated a fully resolved and strongly supported tree that is congruent with previous phylogenies based on a few plastid and nuclear loci. This phylogeny was used to examine the distribution of plastome rearrangements across Passiflora. Multiple gene and intron losses and inversions were identified in Passiflora with some occurring in parallel and others that extended across the Passifloraceae. Furthermore, extensive expansions and contractions of the inverted repeat (IR) were uncovered and in some cases this resulted in exclusion of all ribosomal RNA genes from the IR. The most highly rearranged lineage was subgenus Decaloba, which experienced extensive IR expansion that incorporated up to 25 protein-coding genes usually located in large single copy region. Nucleotide substitution rate analyses of 68 protein-coding genes across the genus showed lineage- and locus-specific acceleration. Significant increase in dS, dN and dN/dS was detected for clpP across the genus and for ycf4 in certain lineages. Significant increases in dN and dN/dS for ribosomal subunits and plastid-encoded RNA polymerase genes were detected in the branch leading to the expanded IR-clade in subgenus Decaloba. This subgenus displays the syndrome of unusual features, making it an ideal system to investigate the dynamic evolution of angiosperm plastomes.
Collapse
Affiliation(s)
- Bikash Shrestha
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Mao-Lun Weng
- Department of Biology, Westfield State University, Westfield, MA, USA
| | - Edward C Theriot
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Lawrence E Gilbert
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Shawn E Krosnick
- Department of Biology, Tennessee Tech University, Cookeville, TN, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA; Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
29
|
Williams AM, Friso G, van Wijk KJ, Sloan DB. Extreme variation in rates of evolution in the plastid Clp protease complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:243-259. [PMID: 30570818 DOI: 10.1111/tpj.14208] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 05/08/2023]
Abstract
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi-subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid-encoded gene (clpP1) and multiple nuclear genes. TheclpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid-encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history ofclpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find thatclpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns andRNA-editing sites) within seed plants. AlthoughclpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genusSilene, which has highly elevated and heterogeneous rates ofclpP1 evolution. We confirmed thatclpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear-encoded Clp subunits, even in one of the most divergentSilene species. Additionally, there is a tight correlation between amino acid substitution rates inclpP1 and the nuclear-encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.
Collapse
Affiliation(s)
- Alissa M Williams
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Giulia Friso
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Daniel B Sloan
- Department of Biology, Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
30
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
31
|
Havird JC, Trapp P, Miller CM, Bazos I, Sloan DB. Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage. Genome Biol Evol 2018; 9:323-336. [PMID: 28164243 PMCID: PMC5381668 DOI: 10.1093/gbe/evx010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding mechanisms of coevolution between nuclear and mitochondrial (mt) genomes is a defining challenge in eukaryotic genetics. The angiosperm genus Silene is a natural system to investigate the causes and consequences of mt mutation rate variation because closely related species have highly divergent rates. In Silene species with fast-evolving mtDNA, nuclear genes that encode mitochondrially targeted proteins (N-mt genes) are also fast-evolving. This correlation could indicate positive selection to compensate for mt mutations, but might also result from a recent relaxation of selection. To differentiate between these interpretations, we used phylogenetic and population-genetic methods to test for positive and relaxed selection in three classes of N-mt genes (oxidative phosphorylation genes, ribosomal genes, and “RRR” genes involved in mtDNA recombination, replication, and repair). In all three classes, we found that species with fast-evolving mtDNA had: 1) elevated dN/dS, 2) an excess of nonsynonymous divergence relative to levels of intraspecific polymorphism, which is a signature of positive selection, and 3) no clear signals of relaxed selection. “Control” genes exhibited comparatively few signs of positive selection. These results suggest that high mt mutation rates can create selection on N-mt genes and that relaxed selection is an unlikely cause of recent accelerations in the evolution of N-mt genes. Because mt-RRR genes were found to be under positive selection, it is unlikely that elevated mt mutation rates in Silene were caused by inactivation of these mt-RRR genes. Therefore, the causes of extreme increases in angiosperm mt mutation rates remain uncertain.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Paul Trapp
- Department of Biology, Colorado State University, Fort Collins, CO
| | | | - Ioannis Bazos
- Department of Ecology and Systematics, National and Kapodistrian University of Athens, Panepistimiopolis, Greece
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
32
|
Fishman L, Sweigart AL. When Two Rights Make a Wrong: The Evolutionary Genetics of Plant Hybrid Incompatibilities. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:707-731. [PMID: 29505737 DOI: 10.1146/annurev-arplant-042817-040113] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hybrids between flowering plant species often exhibit reduced fitness, including sterility and inviability. Such hybrid incompatibilities create barriers to genetic exchange that can promote reproductive isolation between diverging populations and, ultimately, speciation. Additionally, hybrid breakdown opens a window into hidden molecular and evolutionary processes occurring within species. Here, we review recent work on the mechanisms and origins of hybrid incompatibility in flowering plants, including both diverse genic interactions and chromosomal incompatibilities. Conflict and coevolution among and within plant genomes contributes to the evolution of some well-characterized genic incompatibilities, but duplication and drift also play important roles. Inversions, while contributing to speciation by suppressing recombination, rarely cause underdominant sterility. Translocations cause severe F1 sterility by disrupting meiosis in heterozygotes, making their fixation in outcrossing sister species a paradox. Evolutionary genomic analyses of both genic and chromosomal incompatibilities, in the context of population genetic theory, can explicitly test alternative scenarios for their origins.
Collapse
Affiliation(s)
- Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA;
| | - Andrea L Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;
| |
Collapse
|
33
|
Zhao N, Wang Y, Hua J. The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool. Int J Mol Sci 2018; 19:ijms19020547. [PMID: 29439501 PMCID: PMC5855769 DOI: 10.3390/ijms19020547] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/06/2018] [Indexed: 11/30/2022] Open
Abstract
Intergenomic gene transfer (IGT) is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies) contribute to gene transfer by mediating recombination in the recipient genome.
Collapse
Affiliation(s)
- Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education, College of Agronomy and Biotechnology , China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Piot A, Hackel J, Christin PA, Besnard G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. PLANTA 2018; 247:255-266. [PMID: 28956160 DOI: 10.1007/s00425-017-2781-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate that rbcL underwent strong positive selection during the C 3 -C 4 photosynthetic transitions in PACMAD grasses, in particular the 3' end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified. Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3-C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3-C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.
Collapse
Affiliation(s)
- Anthony Piot
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jan Hackel
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
35
|
Park S, Ruhlman TA, Weng ML, Hajrah NH, Sabir JS, Jansen RK. Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium. Genome Biol Evol 2017; 9:1766-1780. [PMID: 28854633 PMCID: PMC5570028 DOI: 10.1093/gbe/evx124] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Geraniaceae have emerged as a model system for investigating the causes and consequences of variation in plastid and mitochondrial genomes. Incredible structural variation in plastid genomes (plastomes) and highly accelerated evolutionary rates have been reported in selected lineages and functional groups of genes in both plastomes and mitochondrial genomes (mitogenomes), and these phenomena have been implicated in cytonuclear incompatibility. Previous organelle genome studies have included limited sampling of Geranium, the largest genus in the family with over 400 species. This study reports on rates and patterns of nucleotide substitutions in plastomes and mitogenomes of 17 species of Geranium and representatives of other Geraniaceae. As detected across other angiosperms, substitution rates in the plastome are 3.5 times higher than the mitogenome in most Geranium. However, in the branch leading to Geranium brycei/Geranium incanum mitochondrial genes experienced significantly higher dN and dS than plastid genes, a pattern that has only been detected in one other angiosperm. Furthermore, rate accelerations differ in the two organelle genomes with plastomes having increased dN and mitogenomes with increased dS. In the Geranium phaeum/Geranium reflexum clade, duplicate copies of clpP and rpoA genes that experienced asymmetric rate divergence were detected in the single copy region of the plastome. In the case of rpoA, the branch leading to G. phaeum/G. reflexum experienced positive selection or relaxation of purifying selection. Finally, the evolution of acetyl-CoA carboxylase is unusual in Geraniaceae because it is only the second angiosperm family where both prokaryotic and eukaryotic ACCases functionally coexist in the plastid.
Collapse
Affiliation(s)
- Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
- Department of Biology and Microbiology, South Dakota State University
| | - Nahid H. Hajrah
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamal S.M. Sabir
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin
- Genomic and Biotechnology Research Group, Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
36
|
Weng ML, Ruhlman TA, Jansen RK. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. THE NEW PHYTOLOGIST 2017; 214:842-851. [PMID: 27991660 DOI: 10.1111/nph.14375] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 05/23/2023]
Abstract
For species with minor inverted repeat (IR) boundary changes in the plastid genome (plastome), nucleotide substitution rates were previously shown to be lower in the IR than the single copy regions (SC). However, the impact of large-scale IR expansion/contraction on plastid nucleotide substitution rates among closely related species remains unclear. We included plastomes from 22 Pelargonium species, including eight newly sequenced genomes, and used both pairwise and model-based comparisons to investigate the impact of the IR on sequence evolution in plastids. Ten types of plastome organization with different inversions or IR boundary changes were identified in Pelargonium. Inclusion in the IR was not sufficient to explain the variation of nucleotide substitution rates. Instead, the rate heterogeneity in Pelargonium plastomes was a mixture of locus-specific, lineage-specific and IR-dependent effects. Our study of Pelargonium plastomes that vary in IR length and gene content demonstrates that the evolutionary consequences of retaining these repeats are more complicated than previously suggested.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57006, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA
- Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
37
|
Sloan DB, Havird JC, Sharbrough J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol Ecol 2017; 26:2212-2236. [PMID: 27997046 PMCID: PMC6534505 DOI: 10.1111/mec.13959] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co-evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
38
|
Grewe F, Zhu A, Mower JP. Loss of a Trans-Splicing nad1 Intron from Geraniaceae and Transfer of the Maturase Gene matR to the Nucleus in Pelargonium. Genome Biol Evol 2016; 8:3193-3201. [PMID: 27664178 PMCID: PMC5174742 DOI: 10.1093/gbe/evw233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial nad1 gene of seed plants has a complex structure, including four introns in cis or trans configurations and a maturase gene (matR) hosted within the final intron. In the geranium family (Geraniaceae), however, sequencing of representative species revealed that three of the four introns, including one in a trans configuration and another that hosts matR, were lost from the nad1 gene in their common ancestor. Despite the loss of the host intron, matR has been retained as a freestanding gene in most genera of the family, indicating that this maturase has additional functions beyond the splicing of its host intron. In the common ancestor of Pelargonium, matR was transferred to the nuclear genome, where it was split into two unlinked genes that encode either its reverse transcriptase or maturase domain. Both nuclear genes are transcribed and contain predicted mitochondrial targeting signals, suggesting that they express functional proteins that are imported into mitochondria. The nuclear localization and split domain structure of matR in the Pelargonium nuclear genome offers a unique opportunity to assess the function of these two domains using transgenic approaches.
Collapse
Affiliation(s)
- Felix Grewe
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska.,Integrative Research Center, The Field Museum of Natural History, Chicago, Illinois
| | - Andan Zhu
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska.,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska .,Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
39
|
Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes. Genetics 2016; 204:1507-1522. [PMID: 27707788 DOI: 10.1534/genetics.116.188268] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/04/2016] [Indexed: 11/18/2022] Open
Abstract
Rates of sequence evolution in plastid genomes are generally low, but numerous angiosperm lineages exhibit accelerated evolutionary rates in similar subsets of plastid genes. These genes include clpP1 and accD, which encode components of the caseinolytic protease (CLP) and acetyl-coA carboxylase (ACCase) complexes, respectively. Whether these extreme and repeated accelerations in rates of plastid genome evolution result from adaptive change in proteins (i.e., positive selection) or simply a loss of functional constraint (i.e., relaxed purifying selection) is a source of ongoing controversy. To address this, we have taken advantage of the multiple independent accelerations that have occurred within the genus Silene (Caryophyllaceae) by examining phylogenetic and population genetic variation in the nuclear genes that encode subunits of the CLP and ACCase complexes. We found that, in species with accelerated plastid genome evolution, the nuclear-encoded subunits in the CLP and ACCase complexes are also evolving rapidly, especially those involved in direct physical interactions with plastid-encoded proteins. A massive excess of nonsynonymous substitutions between species relative to levels of intraspecific polymorphism indicated a history of strong positive selection (particularly in CLP genes). Interestingly, however, some species are likely undergoing loss of the native (heteromeric) plastid ACCase and putative functional replacement by a duplicated cytosolic (homomeric) ACCase. Overall, the patterns of molecular evolution in these plastid-nuclear complexes are unusual for anciently conserved enzymes. They instead resemble cases of antagonistic coevolution between pathogens and host immune genes. We discuss a possible role of plastid-nuclear conflict as a novel cause of accelerated evolution.
Collapse
|
40
|
Weng ML, Ruhlman TA, Jansen RK. Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae. Genome Biol Evol 2016; 8:1824-38. [PMID: 27190001 PMCID: PMC4943186 DOI: 10.1093/gbe/evw115] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plastids and mitochondria have many protein complexes that include subunits encoded by organelle and nuclear genomes. In animal cells, compensatory evolution between mitochondrial and nuclear-encoded subunits was identified and the high mitochondrial mutation rates were hypothesized to drive compensatory evolution in nuclear genomes. In plant cells, compensatory evolution between plastid and nucleus has rarely been investigated in a phylogenetic framework. To investigate plastid–nuclear coevolution, we focused on plastid ribosomal protein genes that are encoded by plastid and nuclear genomes from 27 Geraniales species. Substitution rates were compared for five sets of genes representing plastid- and nuclear-encoded ribosomal subunit proteins targeted to the cytosol or the plastid as well as nonribosomal protein controls. We found that nonsynonymous substitution rates (dN) and the ratios of nonsynonymous to synonymous substitution rates (ω) were accelerated in both plastid- (CpRP) and nuclear-encoded subunits (NuCpRP) of the plastid ribosome relative to control sequences. Our analyses revealed strong signals of cytonuclear coevolution between plastid- and nuclear-encoded subunits, in which nonsynonymous substitutions in CpRP and NuCpRP tend to occur along the same branches in the Geraniaceae phylogeny. This coevolution pattern cannot be explained by physical interaction between amino acid residues. The forces driving accelerated coevolution varied with cellular compartment of the sequence. Increased ω in CpRP was mainly due to intensified positive selection whereas increased ω in NuCpRP was caused by relaxed purifying selection. In addition, the many indels identified in plastid rRNA genes in Geraniaceae may have contributed to changes in plastid subunits.
Collapse
Affiliation(s)
- Mao-Lun Weng
- Department of Biology, University of Maryland, College Park Department of Integrative Biology, University of Texas, Austin
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin Department of Biological Sciences, Biotechnology Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Blazier JC, Ruhlman TA, Weng ML, Rehman SK, Sabir JSM, Jansen RK. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement. Sci Rep 2016; 6:24595. [PMID: 27087667 PMCID: PMC4834550 DOI: 10.1038/srep24595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.
Collapse
Affiliation(s)
- J Chris Blazier
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Sumaiyah K Rehman
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas, Austin, TX 78712, USA.,Biotechnology Research Group, Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Zhang J, Ruhlman TA, Sabir JSM, Blazier JC, Weng ML, Park S, Jansen RK. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity. Genome Biol Evol 2016; 8:622-34. [PMID: 26893456 PMCID: PMC4824065 DOI: 10.1093/gbe/evw033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Jamal S M Sabir
- The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
| | - Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
43
|
Pfannschmidt T, Blanvillain R, Merendino L, Courtois F, Chevalier F, Liebers M, Grübler B, Hommel E, Lerbs-Mache S. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6957-73. [PMID: 26355147 DOI: 10.1093/jxb/erv415] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chloroplasts are the sunlight-collecting organelles of photosynthetic eukaryotes that energetically drive the biosphere of our planet. They are the base for all major food webs by providing essential photosynthates to all heterotrophic organisms including humans. Recent research has focused largely on an understanding of the function of these organelles, but knowledge about the biogenesis of chloroplasts is rather limited. It is known that chloroplasts develop from undifferentiated precursor plastids, the proplastids, in meristematic cells. This review focuses on the activation and action of plastid RNA polymerases, which play a key role in the development of new chloroplasts from proplastids. Evolutionarily, plastids emerged from the endosymbiosis of a cyanobacterium-like ancestor into a heterotrophic eukaryote. As an evolutionary remnant of this process, they possess their own genome, which is expressed by two types of plastid RNA polymerase, phage-type and prokaryotic-type RNA polymerase. The protein subunits of these polymerases are encoded in both the nuclear and plastid genomes. Their activation and action therefore require a highly sophisticated regulation that controls and coordinates the expression of the components encoded in the plastid and nucleus. Stoichiometric expression and correct assembly of RNA polymerase complexes is achieved by a combination of developmental and environmentally induced programmes. This review highlights the current knowledge about the functional coordination between the different types of plastid RNA polymerases and provides working models of their sequential expression and function for future investigations.
Collapse
Affiliation(s)
- Thomas Pfannschmidt
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Robert Blanvillain
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Livia Merendino
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Florence Courtois
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Fabien Chevalier
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Monique Liebers
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Björn Grübler
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Elisabeth Hommel
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| | - Silva Lerbs-Mache
- Université Grenoble-Alpes, F-38000 Grenoble, France CNRS, UMR5168, F-38054 Grenoble, France CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, F-38054 Grenoble, France INRA, USC1359, F-38054 Grenoble, France
| |
Collapse
|
44
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
45
|
Carmona D, Fitzpatrick CR, Johnson MTJ. Fifty years of co-evolution and beyond: integrating co-evolution from molecules to species. Mol Ecol 2015; 24:5315-29. [PMID: 26394718 DOI: 10.1111/mec.13389] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/11/2015] [Indexed: 02/04/2023]
Abstract
Fifty years after Ehrlich and Raven's seminal paper, the idea of co-evolution continues to grow as a key concept in our understanding of organic evolution. This concept has not only provided a compelling synthesis between evolutionary biology and community ecology, but has also inspired research that extends beyond its original scope. In this article, we identify unresolved questions about the co-evolutionary process and advocate for the integration of co-evolutionary research from molecular to interspecific interactions. We address two basic questions: (i) What is co-evolution and how common is it? (ii) What is the unit of co-evolution? Both questions aim to explore the heart of the co-evolutionary process. Despite the claim that co-evolution is ubiquitous, we argue that there is in fact little evidence to support the view that reciprocal natural selection and coadaptation are common in nature. We also challenge the traditional view that co-evolution only occurs between traits of interacting species. Co-evolution has the potential to explain evolutionary processes and patterns that result from intra- and intermolecular biochemical interactions within cells, intergenomic interactions (e.g. nuclear-cytoplasmic) within species, as well as intergenomic interactions mediated by phenotypic traits between species. Research that bridges across these levels of organization will help to advance our understanding of the importance of the co-evolutionary processes in shaping the diversity of life on Earth.
Collapse
Affiliation(s)
- Diego Carmona
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Connor R Fitzpatrick
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|