1
|
Zhang Y, Van de Peer Y, Lu B, Zhang S, Che J, Chen J, Marchal K, Yang X. Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii. BMC Biol 2023; 21:244. [PMID: 37926805 PMCID: PMC10626718 DOI: 10.1186/s12915-023-01743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Sterile-fertile heteroblasty is a common phenomenon observed in ferns, where the leaf shape of a fern sporophyll, responsible for sporangium production, differs from that of a regular trophophyll. However, due to the large size and complexity of most fern genomes, the molecular mechanisms that regulate the formation of these functionally different heteroblasty have remained elusive. To shed light on these mechanisms, we generated a full-length transcriptome of Ceratopteris chingii with PacBio Iso-Seq from five tissue samples. By integrating Illumina-based sequencing short reads, we identified the genes exhibiting the most significant differential expression between sporophylls and trophophylls. RESULTS The long reads were assembled, resulting in a total of 24,024 gene models. The differential expressed genes between heteroblasty primarily involved reproduction and cell wall composition, with a particular focus on expansin genes. Reconstructing the phylogeny of expansin genes across 19 plant species, ranging from green algae to seed plants, we identified four ortholog groups for expansins. The observed high expression of expansin genes in the young sporophylls of C. chingii emphasizes their role in the development of heteroblastic leaves. Through gene coexpression analysis, we identified highly divergent expressions of expansin genes both within and between species. CONCLUSIONS The specific regulatory interactions and accompanying expression patterns of expansin genes are associated with variations in leaf shapes between sporophylls and trophophylls.
Collapse
Affiliation(s)
- Yue Zhang
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bei Lu
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sisi Zhang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Jingru Che
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Information Technology, IDLab, IMEC, Ghent University, 9052, Ghent, Belgium.
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China.
- Hubei Ecology Polytechnic College, Wuhan, 430200, China.
| |
Collapse
|
2
|
Hu Y, Tang F, Zhang D, Shen S, Peng X. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants. HORTICULTURE RESEARCH 2023; 10:uhad212. [PMID: 38046852 PMCID: PMC10689056 DOI: 10.1093/hr/uhad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023]
Abstract
Heterophylly is regard as an important adaptive mechanism in response to different environments within plants. However, the genetic mechanisms responsible for heterophylly in woody plants are still poorly understood. Herein, the divergence of heterophyllous leaves was investigated at morphogenesis and using microdissection and physiological indexes in paper mulberry, and the genetic basis of heterophylly was further revealed combined with genome-wide association study (GWAS), transcriptome analysis and weighted gene coexpression network analysis (WGCNA). Our results revealed that the flavonoid content and antioxidant activity increased gradually from the entire leaf to the palmatisect leaf, while the hormone content and net photosynthetic rate decreased. Through GWAS and transcriptome analysis, a total of 98 candidate genes and 2338 differentially expressed genes associated with heterophylly were identified. Importantly, we uncovered critical variations in the candidate genes Bp07g0981 (WOX) and Bp07g0920 (HHO), along with significant differences in haplotypes and expression levels among heterophyllous leaves. Our results also suggested that the genes involved in hormone signaling pathways, antioxidant activity, and flavonoid metabolism might be closely related to the heterophylly of paper mulberry, which could account for the physiological data. Indeed, CR-wox mutant lines showed significant changes in leaf phenotypes, and differential expression profile analysis also highlighted the expression of genes related to phytohormones and transcription factors. Together, the genetic variations and candidate genes detected in this study provide novel insights into the genetic mechanism of heterophylly, and would improve the understanding of eco-adaptability in heterophyllous woody plants.
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Dan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
3
|
Wu Z, Jiang Z, Li Z, Jiao P, Zhai J, Liu S, Han X, Zhang S, Sun J, Gai Z, Qiu C, Xu J, Liu H, Qin R, Lu R. Multi-omics analysis reveals spatiotemporal regulation and function of heteromorphic leaves in Populus. PLANT PHYSIOLOGY 2023; 192:188-204. [PMID: 36746772 PMCID: PMC10152652 DOI: 10.1093/plphys/kiad063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 05/03/2023]
Abstract
Despite the high economic and ecological importance of forests, our knowledge of the adaptive evolution of leaf traits remains very limited. Euphrates poplar (Populus euphratica), which has high tolerance to arid environment, has evolved four heteromorphic leaf forms, including narrow (linear and lanceolate) and broad (ovate and broad-ovate) leaves on different crowns. Here, we revealed the significant functional divergence of four P. euphratica heteromorphic leaves at physiological and cytological levels. Through global analysis of transcriptome and DNA methylation across tree and leaf developmental stages, we revealed that gene expression and DNA epigenetics differentially regulated key processes involving development and functional adaptation of heteromorphic leaves, such as hormone signaling pathways, cell division, and photosynthesis. Combined analysis of gene expression, methylation, ATAC-seq, and Hi-C-seq revealed longer interaction of 3D genome, hypomethylation, and open chromatin state upregulates IAA-related genes (such as PIN-FORMED1 and ANGUSTIFOLIA3) and promotes the occurrence of broad leaves while narrow leaves were associated with highly concentrated heterochromatin, hypermethylation, and upregulated abscisic acid pathway genes (such as Pyrabactin Resistance1-like10). Therefore, development of P. euphratica heteromorphic leaves along with functional divergence was regulated by differentially expressed genes, DNA methylation, chromatin accessibility, and 3D genome remodeling to adapt to the arid desert. This study advances our understanding of differential regulation on development and functional divergence of heteromorphic leaves in P. euphratica at the multi-omics level and provides a valuable resource for investigating the adaptive evolution of heteromorphic leaves in Populus.
Collapse
Affiliation(s)
- Zhihua Wu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Zhenbo Jiang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhijun Li
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Peipei Jiao
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Juntuan Zhai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shuo Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiaoli Han
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Shanhe Zhang
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jianhao Sun
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Zhongshuai Gai
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Chen Qiu
- Key Laboratory of Biological Resource Protection and Utilization of Tarim Basin, Xinjiang Production and Construction Group, Alar 843300, China
- College of Life Sciences, Tarim University, Alar 843300, China
- Desert Poplar Research Center of Tarim University, Alar 843300, China
| | - Jindong Xu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Hong Liu
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Qin
- College of Life Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Rui Lu
- Wuhan Frasergen Bioinformatics, Wuhan 430074, China
| |
Collapse
|