1
|
Aceituno-Valenzuela U, Fontcuberta-Cervera S, Micol-Ponce R, Sarmiento-Mañús R, Ruiz-Bayón A, Ponce MR. CAX-INTERACTING PROTEIN4 depletion causes early lethality and pre-mRNA missplicing in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae641. [PMID: 39657023 PMCID: PMC11702985 DOI: 10.1093/plphys/kiae641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
Zinc knuckle (ZCCHC) motif-containing proteins are present in unicellular and multicellular eukaryotes, and most ZCCHC proteins with known functions participate in the metabolism of various classes of RNA, such as mRNAs, ribosomal RNAs, and microRNAs. The Arabidopsis (Arabidopsis thaliana) genome encodes 69 ZCCHC-containing proteins; however, the functions of most remain unclear. One of these proteins, CAX-INTERACTING PROTEIN 4 (CXIP4, encoded by AT2G28910), has been classified as a PTHR31437 family member. This family includes human Splicing regulatory glutamine/lysine-rich protein 1 (SREK1)-interacting protein 1 (SREK1IP1), which is thought to function in pre-mRNA splicing and RNA methylation. Metazoan SREK1IP1-like and plant CXIP4-like proteins only share a ZCCHC motif, and their functions remain almost entirely unknown. Here, we studied two loss-of-function alleles of Arabidopsis CXIP4: cxip4-1 is likely null and shows early lethality, and cxip4-2 is hypomorphic and viable, with pleiotropic morphological defects. The cxip4-2 mutant exhibited deregulation of defense genes and upregulation of transcription factor genes, some of which might explain its developmental defects. The cxip4-2 mutant also exhibited increased intron retention events, being more evident in cxip4-1. The specific functions of misspliced genes, such as those involved in "gene silencing by DNA methylation" and "mRNA polyadenylation factor" suggest that CXIP4 has additional functions. In cxip4-2 plants, polyadenylated RNAs accumulate in the nucleus; these could be misspliced mRNAs. The CXIP4 protein localizes to the nucleus in a pattern resembling nuclear speckles rich in splicing factors. Therefore, CXIP4 is required for plant development and survival and mRNA maturation.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Alejandro Ruiz-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
2
|
Pinoti VF, Ferreira PB, Strini EJ, Lubini G, Thomé V, Cruz JO, Aziani R, Quiapim AC, Pinto APA, Araujo APU, De Paoli HC, Pranchevicius MCS, Goldman MHS. SCI1, a flower regulator of cell proliferation, and its partners NtCDKG2 and NtRH35 interact with the splicing machinery. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6312-6330. [PMID: 39113673 DOI: 10.1093/jxb/erae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/07/2024] [Indexed: 11/01/2024]
Abstract
Successful plant reproduction depends on the adequate development of floral organs controlled by cell proliferation and other processes. The Stigma/style cell-cycle inhibitor 1 (SCI1) gene regulates cell proliferation and affects the final size of the female reproductive organ. To unravel the molecular mechanism exerted by Nicotiana tabacum SCI1 in cell proliferation control, we searched for its interaction partners through semi-in vivo pull-down experiments, uncovering a cyclin-dependent kinase, NtCDKG;2. Bimolecular fluorescence complementation and co-localization experiments showed that SCI1 interacts with NtCDKG;2 and its cognate NtCyclin L in nucleoli and splicing speckles. The screening of a yeast two-hybrid cDNA library using SCI1 as bait revealed a novel DEAD-box RNA helicase (NtRH35). Interaction between the NtCDKG;2-NtCyclin L complex and NtRH35 is also shown. Subcellular localization experiments showed that SCI1, NtRH35, and the NtCDKG;2-NtCyclin L complex associate with each other within splicing speckles. The yeast two-hybrid screening of NtCDKG;2 and NtRH35 identified the conserved spliceosome components U2a', NF-κB activating protein (NKAP), and CACTIN. This work presents SCI1 and its interactors, the NtCDKG;2-NtCyclin L complex and NtRH35, as new spliceosome-associated proteins. Our findings reveal a network of interactions and indicate that SCI1 may regulate cell proliferation through the splicing process, providing new insights into the intricate molecular pathways governing plant development.
Collapse
Affiliation(s)
- Vitor F Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Joelma O Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Rodrigo Aziani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Henrique C De Paoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| |
Collapse
|
3
|
Bankin M, Tyrykin Y, Duk M, Samsonova M, Kozlov K. Modeling Chickpea Productivity with Artificial Image Objects and Convolutional Neural Network. PLANTS (BASEL, SWITZERLAND) 2024; 13:2444. [PMID: 39273927 PMCID: PMC11397516 DOI: 10.3390/plants13172444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The chickpea plays a significant role in global agriculture and occupies an increasing share in the human diet. The main aim of the research was to develop a model for the prediction of two chickpea productivity traits in the available dataset. Genomic data for accessions were encoded in Artificial Image Objects, and a model for the thousand-seed weight (TSW) and number of seeds per plant (SNpP) prediction was constructed using a Convolutional Neural Network, dictionary learning and sparse coding for feature extraction, and extreme gradient boosting for regression. The model was capable of predicting both traits with an acceptable accuracy of 84-85%. The most important factors for model solution were identified using the dense regression attention maps method. The SNPs important for the SNpP and TSW traits were found in 34 and 49 genes, respectively. Genomic prediction with a constructed model can help breeding programs harness genotypic and phenotypic diversity to more effectively produce varieties with a desired phenotype.
Collapse
Affiliation(s)
- Mikhail Bankin
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Yaroslav Tyrykin
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Konstantin Kozlov
- Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
4
|
Aceituno-Valenzuela UI, Fontcuberta-Cervera S, Micol-Ponce R, Sarmiento-Mañús R, Ruiz-Bayón A, Ponce MR. CXIP4 depletion causes early lethality and pre-mRNA missplicing in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597795. [PMID: 38915646 PMCID: PMC11195147 DOI: 10.1101/2024.06.06.597795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Zinc knuckle (ZCCHC) motif-containing proteins are present in unicellular and multicellular eukaryotes and most ZCCHC proteins with known functions participate in the metabolism of various classes of RNA, such as mRNAs, ribosomal RNAs, and microRNAs. The Arabidopsis (Arabidopsis thaliana) genome encodes 69 ZCCHC-containing proteins, but the functions of most remain unclear. One of these proteins is CAX-INTERACTING PROTEIN 4 (CXIP4), which has been classified as a PTHR31437 family member, along with human SREK1-interacting protein 1 (SREK1IP1), which is thought to function in pre-mRNA splicing and RNA methylation. Metazoan SREK1IP1-like and plant CXIP4-like proteins only share a ZCCHC motif, and their functions remain almost entirely unknown. We studied two loss-of-function alleles of Arabidopsis CXIP4, the first mutations in PTHR31437 family genes described to date: cxip4-1 is likely null and shows early lethality, and cxip4-2 is hypomorphic and viable, with pleiotropic morphological defects. The cxip4-2 mutant exhibited deregulation of defense genes and upregulation of transcription factor encoding genes, some of which might explain its developmental defects. This mutant also exhibited increased intron retention events, and the specific functions of misspliced genes, such as those involved in "gene silencing by DNA methylation" and "mRNA polyadenylation factor" suggest that CXIP4 has additional functions. The CXIP4 protein localizes to the nucleus in a pattern resembling nuclear speckles, which are rich in splicing factors. Therefore, CXIP4 is required for plant survival and proper development, and mRNA maturation.
Collapse
Affiliation(s)
- Uri Israel Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
- Present address: Universidad de O'Higgins, Centro UOH de Biología de Sistemas para la Sanidad Vegetal (BioSaV). Ruta I-90 s/n, San Fernando, Chile
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Alejandro Ruiz-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
5
|
Guo T, Miao C, Liu Z, Duan J, Ma Y, Zhang X, Yang W, Xue M, Deng Q, Guo P, Xi Y, Yang X, Huang X, Ge W. Impaired dNKAP function drives genome instability and tumorigenic growth in Drosophila epithelia. J Mol Cell Biol 2024; 15:mjad078. [PMID: 38059855 PMCID: PMC11070879 DOI: 10.1093/jmcb/mjad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Mutations or dysregulated expression of NF-kappaB-activating protein (NKAP) family genes have been found in human cancers. How NKAP family gene mutations promote tumor initiation and progression remains to be determined. Here, we characterized dNKAP, the Drosophila homolog of NKAP, and showed that impaired dNKAP function causes genome instability and tumorigenic growth in a Drosophila epithelial tumor model. dNKAP-knockdown wing imaginal discs exhibit tumorigenic characteristics, including tissue overgrowth, cell-invasive behavior, abnormal cell polarity, and cell adhesion defects. dNKAP knockdown causes both R-loop accumulation and DNA damage, indicating the disruption of genome integrity. Further analysis showed that dNKAP knockdown induces c-Jun N-terminal kinase (JNK)-dependent apoptosis and causes aberrant cell proliferation in distinct cell populations. Activation of the Notch and JAK/STAT signaling pathways contributes to the tumorigenic growth of dNKAP-knockdown tissues. Furthermore, JNK signaling is essential for dNKAP depletion-mediated cell invasion. Transcriptome analysis of dNKAP-knockdown tissues confirmed the misregulation of signaling pathways involved in promoting tumorigenesis and revealed abnormal regulation of metabolic pathways. dNKAP knockdown and oncogenic Ras, Notch, or Yki mutations show synergies in driving tumorigenesis, further supporting the tumor-suppressive role of dNKAP. In summary, this study demonstrates that dNKAP plays a tumor-suppressive role by preventing genome instability in Drosophila epithelia and thus provides novel insights into the roles of human NKAP family genes in tumor initiation and progression.
Collapse
Affiliation(s)
- Ting Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chen Miao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhonghua Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingwei Duan
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yanbin Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Zhang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Weiwei Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiannan Deng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pengfei Guo
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Han Y, Haouel A, Georgii E, Priego-Cubero S, Wurm CJ, Hemmler D, Schmitt-Kopplin P, Becker C, Durner J, Lindermayr C. Histone Deacetylases HD2A and HD2B Undergo Feedback Regulation by ABA and Modulate Drought Tolerance via Mediating ABA-Induced Transcriptional Repression. Genes (Basel) 2023; 14:1199. [PMID: 37372378 DOI: 10.3390/genes14061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylation catalyzed by histone deacetylase plays a critical role in gene silencing and subsequently controls many important biological processes. It was reported that the expression of the plant-specific histone deacetylase subfamily HD2s is repressed by ABA in Arabidopsis. However, little is known about the molecular relationship between HD2A/HD2B and ABA during the vegetative phase. Here, we describe that the hd2ahd2b mutant shows hypersensitivity to exogenous ABA during the germination and post-germination period. Additionally, transcriptome analyses revealed that the transcription of ABA-responsive genes was reprogrammed and the global H4K5ac level is specifically up-regulated in hd2ahd2b plants. ChIP-Seq and ChIP-qPCR results further verified that both HD2A and HD2B could directly and specifically bind to certain ABA-responsive genes. As a consequence, Arabidopsis hd2ahd2b plants displayed enhanced drought resistance in comparison to WT, which is consistent with increased ROS content, reduced stomatal aperture, and up-regulated drought-resistance-related genes. Moreover, HD2A and HD2B repressed ABA biosynthesis via the deacetylation of H4K5ac at NCED9. Taken together, our results indicate that HD2A and HD2B partly function through ABA signaling and act as negative regulators during the drought resistance response via the regulation of ABA biosynthesis and response genes.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Amira Haouel
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Daniel Hemmler
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
7
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
8
|
Accumulation of the Auxin Precursor Indole-3-Acetamide Curtails Growth through the Repression of Ribosome-Biogenesis and Development-Related Transcriptional Networks. Int J Mol Sci 2021; 22:ijms22042040. [PMID: 33670805 PMCID: PMC7923163 DOI: 10.3390/ijms22042040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The major auxin, indole-3-acetic acid (IAA), is associated with a plethora of growth and developmental processes including embryo development, expansion growth, cambial activity, and the induction of lateral root growth. Accumulation of the auxin precursor indole-3-acetamide (IAM) induces stress related processes by stimulating abscisic acid (ABA) biosynthesis. How IAM signaling is controlled is, at present, unclear. Here, we characterize the ami1rooty double mutant, that we initially generated to study the metabolic and phenotypic consequences of a simultaneous genetic blockade of the indole glucosinolate and IAM pathways in Arabidopsisthaliana. Our mass spectrometric analyses of the mutant revealed that the combination of the two mutations is not sufficient to fully prevent the conversion of IAM to IAA. The detected strong accumulation of IAM was, however, recognized to substantially impair seed development. We further show by genome-wide expression studies that the double mutant is broadly affected in its translational capacity, and that a small number of plant growth regulating transcriptional circuits are repressed by the high IAM content in the seed. In accordance with the previously described growth reduction in response to elevated IAM levels, our data support the hypothesis that IAM is a growth repressing counterpart to IAA.
Collapse
|
9
|
Micol-Ponce R, Sarmiento-Mañús R, Fontcuberta-Cervera S, Cabezas-Fuster A, de Bures A, Sáez-Vásquez J, Ponce MR. SMALL ORGAN4 Is a Ribosome Biogenesis Factor Involved in 5.8S Ribosomal RNA Maturation. PLANT PHYSIOLOGY 2020; 184:2022-2039. [PMID: 32913045 PMCID: PMC7723108 DOI: 10.1104/pp.19.01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/27/2020] [Indexed: 05/09/2023]
Abstract
Ribosome biogenesis is crucial for cellular metabolism and has important implications for disease and aging. Human (Homo sapiens) glioma tumor-suppressor candidate region gene2 (GLTSCR2) and yeast (Saccharomyces cerevisiae) Nucleolar protein53 (Nop53) are orthologous proteins with demonstrated roles as ribosome biogenesis factors; knockdown of GLTSCR2 impairs maturation of 18S and 5.8S ribosomal RNAs (rRNAs), and Nop53 is required for maturation of 5.8S and 25S rRNAs. Here, we characterized SMALL ORGAN4 (SMO4), the most likely ortholog of human GLTSCR2 and yeast Nop53 in Arabidopsis (Arabidopsis thaliana). Loss of function of SMO4 results in a mild morphological phenotype; however, we found that smo4 mutants exhibit strong cytological and molecular phenotypes: nucleolar hypertrophy and disorganization, overaccumulation of 5.8S and 18S rRNA precursors, and an imbalanced 40S:60S ribosome subunit ratio. Like yeast Nop53 and human GLTSCR2, Arabidopsis SMO4 participates in 5.8S rRNA maturation. In yeast, Nop53 cooperates with mRNA transport4 (Mtr4) for 5.8S rRNA maturation. In Arabidopsis, we found that SMO4 plays similar roles in the 5.8S rRNA maturation pathway than those described for MTR4. However, SMO4 seems not to participate in the degradation of by-products derived from the 5'-external transcribed spacer (ETS) of 45S pre-rRNA, as MTR4 does.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Anne de Bures
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
10
|
Aceituno-Valenzuela U, Micol-Ponce R, Ponce MR. Genome-wide analysis of CCHC-type zinc finger (ZCCHC) proteins in yeast, Arabidopsis, and humans. Cell Mol Life Sci 2020; 77:3991-4014. [PMID: 32303790 PMCID: PMC11105112 DOI: 10.1007/s00018-020-03518-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
The diverse eukaryotic proteins that contain zinc fingers participate in many aspects of nucleic acid metabolism, from DNA transcription to RNA degradation, post-transcriptional gene silencing, and small RNA biogenesis. These proteins can be classified into at least 30 types based on structure. In this review, we focus on the CCHC-type zinc fingers (ZCCHC), which contain an 18-residue domain with the CX2CX4HX4C sequence, where C is cysteine, H is histidine, and X is any amino acid. This motif, also named the "zinc knuckle", is characteristic of the retroviral Group Antigen protein and occurs alone or with other motifs. Many proteins containing zinc knuckles have been identified in eukaryotes, but only a few have been studied. Here, we review the available information on ZCCHC-containing factors from three evolutionarily distant eukaryotes-Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens-representing fungi, plants, and metazoans, respectively. We performed systematic searches for proteins containing the CX2CX4HX4C sequence in organism-specific and generalist databases. Next, we analyzed the structural and functional information for all such proteins stored in UniProtKB. Excluding retrotransposon-encoded proteins and proteins harboring uncertain ZCCHC motifs, we found seven ZCCHC-containing proteins in yeast, 69 in Arabidopsis, and 34 in humans. ZCCHC-containing proteins mainly localize to the nucleus, but some are nuclear and cytoplasmic, or exclusively cytoplasmic, and one localizes to the chloroplast. Most of these factors participate in RNA metabolism, including transcriptional elongation, polyadenylation, translation, pre-messenger RNA splicing, RNA export, RNA degradation, microRNA and ribosomal RNA biogenesis, and post-transcriptional gene silencing. Several human ZCCHC-containing factors are derived from neofunctionalized retrotransposons and act as proto-oncogenes in diverse neoplastic processes. The conservation of ZCCHCs in orthologs of these three phylogenetically distant eukaryotes suggests that these domains have biologically relevant functions that are not well known at present.
Collapse
Affiliation(s)
- Uri Aceituno-Valenzuela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
11
|
Sáez-Vásquez J, Delseny M. Ribosome Biogenesis in Plants: From Functional 45S Ribosomal DNA Organization to Ribosome Assembly Factors. THE PLANT CELL 2019; 31:1945-1967. [PMID: 31239391 PMCID: PMC6751116 DOI: 10.1105/tpc.18.00874] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 05/11/2023]
Abstract
The transcription of 18S, 5.8S, and 18S rRNA genes (45S rDNA), cotranscriptional processing of pre-rRNA, and assembly of mature rRNA with ribosomal proteins are the linchpins of ribosome biogenesis. In yeast (Saccharomyces cerevisiae) and animal cells, hundreds of pre-rRNA processing factors have been identified and their involvement in ribosome assembly determined. These studies, together with structural analyses, have yielded comprehensive models of the pre-40S and pre-60S ribosome subunits as well as the largest cotranscriptionally assembled preribosome particle: the 90S/small subunit processome. Here, we present the current knowledge of the functional organization of 45S rDNA, pre-rRNA transcription, rRNA processing activities, and ribosome assembly factors in plants, focusing on data from Arabidopsis (Arabidopsis thaliana). Based on yeast and mammalian cell studies, we describe the ribonucleoprotein complexes and RNA-associated activities and discuss how they might specifically affect the production of 40S and 60S subunits. Finally, we review recent findings concerning pre-rRNA processing pathways and a novel mechanism involved in a ribosome stress response in plants.
Collapse
Affiliation(s)
- Julio Sáez-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Michel Delseny
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860 Perpignan, France, and Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
12
|
Micol-Ponce R, Sarmiento-Mañús R, Ruiz-Bayón A, Montacié C, Sáez-Vasquez J, Ponce MR. Arabidopsis RIBOSOMAL RNA PROCESSING7 Is Required for 18S rRNA Maturation. THE PLANT CELL 2018; 30:2855-2872. [PMID: 30361235 PMCID: PMC6305980 DOI: 10.1105/tpc.18.00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 05/24/2023]
Abstract
Ribosome biogenesis is fundamental to growth and development in eukaryotes and is linked to human diseases and cancer. Arabidopsis thaliana MORPHOLOGY OF ARGONAUTE1-52 SUPPRESSED 2 (MAS2) participates in splicing and 45S ribosomal DNA (rDNA) expression. In a screen for MAS2 interactors, we identified RIBOSOMAL RNA PROCESSING 7 (RRP7), an ortholog of yeast rRNA processing protein 7 (Rrp7), which is required for 18S ribosomal RNA (rRNA) maturation. Arabidopsis rrp7 mutants exhibit a pleiotropic phenotype including slow growth, altered shoot phyllotaxy, aberrant venation in lateral organs, partial infertility, and abscisic acid hypersensitivity in seedlings. In Arabidopsis, RRP7 localizes mainly to the nucleolus, the site of the 45S rDNA transcription that produces a 45S pre-rRNA primary transcript, precursor of the 25S, 18S and 5.8S rRNAs. Lack of RRP7 function perturbs 18S rRNA maturation, causes nucleolar hypertrophy, and results in an increased 25S/18S rRNA ratio. Arabidopsis contains hundreds of 45S rDNA genes whose expression is epigenetically regulated, and deregulated, in rrp7 mutants. Double mutant analysis revealed synergistic interactions between RRP7 alleles and alleles of MAS2, NUCLEOLIN1 (NUC1), and HISTONE DEACETYLASE 6 (HDA6), which encode epigenetic regulators of 45S rDNA transcription. Our results reveal the evolutionarily conserved but divergent roles of RRP7 as a ribosome biogenesis factor.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Alejandro Ruiz-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Charlotte Montacié
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - Julio Sáez-Vasquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
- Univ. Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, 66860, Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain.
| |
Collapse
|
13
|
Burgute BD, Peche VS, Müller R, Matthias J, Gaßen B, Eichinger L, Glöckner G, Noegel AA. The C-Terminal SynMuv/DdDUF926 Domain Regulates the Function of the N-Terminal Domain of DdNKAP. PLoS One 2016; 11:e0168617. [PMID: 27997579 PMCID: PMC5173251 DOI: 10.1371/journal.pone.0168617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
NKAP (NF-κB activating protein) is a highly conserved SR (serine/arginine-rich) protein involved in transcriptional control and splicing in mammals. We identified DdNKAP, the Dictyostelium discoideum ortholog of mammalian NKAP, as interacting partner of the nuclear envelope protein SUN-1. DdNKAP harbors a number of basic RDR/RDRS repeats in its N-terminal domain and the SynMuv/DUF926 domain at its C-terminus. We describe a novel and direct interaction between DdNKAP and Prp19 (Pre mRNA processing factor 19) which might be relevant for the observed DdNKAP ubiquitination. Genome wide analysis using cross-linking immunoprecipitation-high-throughput sequencing (CLIP-seq) revealed DdNKAP association with intergenic regions, exons, introns and non-coding RNAs. Ectopic expression of DdNKAP and its domains affects several developmental aspects like stream formation, aggregation, and chemotaxis. We conclude that DdNKAP is a multifunctional protein, which might influence Dictyostelium development through its interaction with RNA and RNA binding proteins. Mutants overexpressing full length DdNKAP and the N-terminal domain alone (DdN-NKAP) showed opposite phenotypes in development and opposite expression profiles of several genes and rRNAs. The observed interaction between DdN-NKAP and the DdDUF926 domain indicates that the DdDUF926 domain acts as negative regulator of the N-terminus.
Collapse
Affiliation(s)
- Bhagyashri D. Burgute
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Vivek S. Peche
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Rolf Müller
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jan Matthias
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Berthold Gaßen
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Angelika A. Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Yu X, Jiang L, Wu R, Meng X, Zhang A, Li N, Xia Q, Qi X, Pang J, Xu ZY, Liu B. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development. Sci Rep 2016; 6:38504. [PMID: 27917953 PMCID: PMC5137073 DOI: 10.1038/srep38504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.
Collapse
Affiliation(s)
- Xiaoming Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China.,School of Bioengineering, Jilin College of Agricultural Science &Technology, Jilin 132301, P. R. China
| | - Lili Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Rui Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xinchao Meng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Qiong Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Xin Qi
- Department of Agronomy, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|