1
|
Lai B, Gao C, Jiang L, Wen L, Zhang X, Shen W, Yu Y, Yang H, Chen F, Fang P, Du L. RsWRKY44 participated in anthocyanin biosynthesis regulation in radish through interaction with RsMYB1a. PLANT CELL REPORTS 2025; 44:99. [PMID: 40257620 DOI: 10.1007/s00299-025-03487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
KEY MESSAGE RsWRKY44 transcription factor, associated with anthocyanin biosynthesis in different radish cultivars, highly facilitates the activation of RsCHI and RsUFGT genes through its interaction with RsMYB1a, thereby promoting anthocyanin production. The regulation of anthocyanin biosynthesis in radish is primarily controlled by RsMYB1a and RsbHLH4, while the involvement of other factors in this process is not well understood. This study identified a WRKY transcription factor, RsWRKY44, as a key player in anthocyanin biosynthesis regulation. The expression of RsWRKY44 showed a strong correlation with anthocyanin content across different radish cultivars. RsWRKY44 was found to be expressed in the nuclei and exhibit transactivation activity. It was observed that only when RsWRKY44 was co-expressed with RsMYB1a, anthocyanin accumulation was induced in tobacco leaves, while RsWRKY44 alone did not. Additionally, RsWRKY44, along with RsMYB1a, activated the expression of tobacco endogenous anthocyanin biosynthesis regulatory genes NtAN1a and NtAN1b, as well as the structural genes NtCHS, NtCHI, NtDFR, NtF3H, NtANS, NtUFGT in transgenic tobacco. BiFC, FLC, and DLA assays confirmed the interaction between RsWRKY44 and RsMYB1a leading to the activation of radish genes RsCHI and RsUFGT, promoting anthocyanin biosynthesis. This study sheds light on a new molecular mechanism of RsWRKY44 involved in anthocyanin biosynthesis regulation in radish.
Collapse
Affiliation(s)
- Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Chenxi Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Li Jiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Li Wen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Xushuo Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Wei Shen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Yanling Yu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Hanbing Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Ping Fang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Lina Du
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China.
| |
Collapse
|
2
|
Han H, Li YJ, Alam SM, Zhou T, Khan MA, Thu AM, Liu YZ. AP2 transcription factor CsAIL6 negatively regulates citric acid accumulation in citrus fruits by interacting with a WD40 protein CsAN11. HORTICULTURE RESEARCH 2025; 12:uhaf002. [PMID: 40078718 PMCID: PMC11896974 DOI: 10.1093/hr/uhaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/29/2024] [Indexed: 03/14/2025]
Abstract
Citric acid accumulation is an essential process in citrus fruits that determines fruit flavor and marketability. The MBW complex transcription factor genes, CsAN11, CsAN1, and CsPH4 play key roles in regulating citric acid accumulation. Although how to regulate CsAN1 or CsPH4 was widely investigated, studies on the regulation of CsAN11 are scarce. In this study, we characterized the AP2/ERF (APETALA2/ethylene response factor) transcription factor gene CsAIL6, which is lowly expressed in high-acid citrus varieties and highly expressed in low-acid citrus varieties. Overexpressing CsAIL6 obviously decreased the citric acid content in citrus fruits, calli, or tomatoes, whereas silencing CsAIL6 significantly increased the fruit citric acid content. Additionally, transcript levels of CsAN11, CsAN1, and CsPH4 were significantly increased by silencing CsAIL6; only the CsAN11 transcript level was significantly decreased by overexpressing CsAIL6. Similarly, only the tomato AN11 (SIAN11) transcript level in CsAIL6 stably overexpressing fruits was markedly lower than that in wild-type (WT) fruits. Further experiments revealed that overexpressing CsAN11 significantly increased the organic acid content but had no obvious influence on the CsAIL6 transcript level; in addition, CsAIL6 only interacts with CsAN11, rather than with CsAN1 and CsPH4 of the MBW complex. Taken together, our findings verified that CsAIL6 negatively regulates citric acid accumulation through directly interacting with the WD40 protein CsAN11, which provides a new mechanism for citric acid accumulation in fruits through the regulation of the MBW complex.
Collapse
Affiliation(s)
- Han Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yu-Jia Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Tian Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Aye Myat Thu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan 430070, China
| |
Collapse
|
3
|
Hussain H, Alam A, Mehar I, Noor M, Al-Dossary O, Alsubaie B, Al-Mssallem MQ, Al-Khayri JM. Genome-Wide Identification and Characterization of the WRKY Gene Family and Their Associated Regulatory Elements in Fortunella hindsii. Evol Bioinform Online 2025; 21:11769343241312740. [PMID: 40151312 PMCID: PMC11938444 DOI: 10.1177/11769343241312740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 03/29/2025] Open
Abstract
Background The WRKY gene family is identified as one of the most prominent transcription factor families in plants and is involved in various biological processes such as metabolism, growth and development, and response to biotic and abiotic stresses. In many plant species, the WRKY gene family was widely studied and analyzed but little to no information for Fortunella hindsii. However, the completion of the whole genome sequencing of Fortunella hindsii allowed us to investigate the genome-wide analysis of WRKY proteins. Objective The main objective of this study was to analyze and identify the WRKY gene family in Fortunella hindsii genome. Methodology Various bioinformatics approaches have been used to conduct this study. Results We constituted 46 members of the Fortunella hindsii WRKY gene family, which were unevenly distributed on all nine chromosomes. The phylogenetic relationship of predicted WRKY proteins of Fortunella hindsii with the WRKY proteins of Arabidopsis showed that 46 FhWRKY genes were divided into three main groups (G1, G2, G3) with five subgroups (2A, 2B, 2C, 2D, and 2E) of G2 group. Domain, conserved motif identification, and gene structure were conducted and the results found that these FhWRKY proteins have conserved identical characteristics within groups and maintain differences between groups. In silico subcellular localization, results showed that FhWRKY genes are located in the nucleus. The cis-regulatory element analysis identified several key CREs that are significantly associated with light, hormone responses, and stress. The gene ontology analysis of these predicted FhWRKY genes showed that these genes are significantly enriched in sequence-specific DNA binding, transcriptional activity, cellular biosynthesis, and metabolic processes. Conclusion Therefore, overall, our results provided an excellent foundation for further functional characterization of WRKY genes with an aim of Fortunella hindsii citrus crop improvement.
Collapse
Affiliation(s)
- Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Aleena Alam
- Department of Agricultural Entomology and Pest Control, College of Plant Protection, Jilin Agricultural University, Jilin, Changchun, China
| | - Iqra Mehar
- Government College University Faisalabad, Faisalabad, Pakistan
| | - Maryam Noor
- Department of Biotechnology, University of Okara, Okara, Pakistan
| | - Othman Al-Dossary
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Bader Alsubaie
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muneera Q. Al-Mssallem
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Shi Y, Wang Z, Yan Z, Liu J, Zhang J, Liu G. Integrated transcriptomic and metabolomic analyses reveal the molecular mechanism of flower color differentiation in Orychophragmus violaceus. FRONTIERS IN PLANT SCIENCE 2025; 16:1509120. [PMID: 40026389 PMCID: PMC11868260 DOI: 10.3389/fpls.2025.1509120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Introduction Orychophragmus violaceus is a popular horticultural plant because of its bright purple flowers that are commonly found in parks and green belts. However, three flower colors (purple, light purple, and white) were observed in the wild-type O. violaceus. The molecular mechanism underlying the formation of these intriguing flower colors remains unknown. Methods Here, we combined metabolomics and transcriptomics to identify a pathway cascade leading to anthocyanin biosynthesis associated with flower color formation in O. violaceus. Results and discussion A total of 152 flavonoid metabolites were identified based on metabolomic data, most of which were quercetin and kaempferol. Comparative analysis of the metabolites among the three flower samples revealed that two anthocyanins, peonidin-3-glucoside and delphinidin 3-(6''-malonyl-glucoside), are the pigments most likely responsible for the coloration of the petals of O. violaceus. Subsequent transcriptomic analysis revealed 5,918 differentially expressed genes among the three groups of flowers, 87 of which encoded 13 key enzymes in the anthocyanin biosynthetic pathway. Moreover, the high expression of two transcription factors, OvMYB and OvbHLH, in purple flowers suggests their role in the regulation of anthocyanin biosynthesis. By integrating metabolomic and transcriptomic data, OvANS, which encodes anthocyanidin synthase, was significantly upregulated in purple flowers. OvANS is the enzyme responsible for the transformation of colorless leucoanthocyanidins to colored anthocyanidins. This study provides novel insights into the molecular mechanism of flower color development in O. violaceus, laying the foundation for flower color breeding.
Collapse
Affiliation(s)
- Yubin Shi
- School of Life Sciences, Hebei University, Baoding, China
| | - Zixuan Wang
- School of Life Sciences, Hebei University, Baoding, China
| | | | - Jianfeng Liu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jun Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Guixia Liu
- College of Life Science, Engineering Research Center of Ecological Safety and Conservation in Beijing–Tianjin–Hebei (Xiong’an New Area) of Ministry of Education (MOE), Hebei University, Baoding, China
| |
Collapse
|
5
|
Ji XL, Zhao LL, Liu B, Yuan YB, Han Y, You CX, An JP. MdZFP7 integrates JA and GA signals via interaction with MdJAZ2 and MdRGL3a in regulating anthocyanin biosynthesis and undergoes degradation by the E3 ubiquitin ligase MdBRG3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 39936840 DOI: 10.1111/jipb.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Jasmonic acid (JA) and gibberellin (GA) coordinate many aspects of plant growth and development, including anthocyanin biosynthesis. However, the crossover points of JA and GA signals and the pathways through which they interact to regulate anthocyanin biosynthesis are poorly understood. Here, we investigated the molecular mechanism by which the zinc finger protein (ZFP) transcription factor Malus domestica ZFP7 (MdZFP7) regulates anthocyanin biosynthesis by integrating JA and GA signals at the transcriptional and post-translational levels. MdZFP7 is a positive regulator of anthocyanin biosynthesis, which fulfills its role by directly activating the expression of MdMYB1 and enhancing the transcriptional activation of MdWRKY6 on the target genes MdDFR and MdUF3GT. MdZFP7 integrates JA and GA signals by interacting with the JA repressor apple JASMONATE ZIM-DOMAIN2 (MdJAZ2) and the GA repressor apple REPRESSOR-of-ga1-3-like 3a (MdRGL3a). MdJAZ2 weakens the transcriptional activation of MdMYB1 by MdZFP7 and disrupts the MdZFP7-MdWRKY6 interaction, thereby reducing the anthocyanin biosynthesis promoted by MdZFP7. MdRGL3a contributes to the stimulation of anthocyanin biosynthesis by MdZFP7 by sequestering MdJAZ2 from the MdJAZ2-MdZFP7 complex. The E3 ubiquitin ligase apple BOI-related E3 ubiquitin-protein ligase 3 (MdBRG3), which is antagonistically regulated by JA and GA, targets the ubiquitination degradation of MdZFP7. The MdBRG3-MdZFP7 module moves the crosstalk of JA and GA signals from the realm of transcriptional regulation and into the protein post-translational modification. In conclusion, this study not only elucidates the node-role of MdZFP7 in the integration of JA and GA signals, but also describes the transcriptional and post-translational regulatory network of anthocyanin biosynthesis with MdZFP7 as the hub.
Collapse
Affiliation(s)
- Xing-Long Ji
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ling-Ling Zhao
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Baoyou Liu
- Yantai Academy of Agricultural Sciences, Yantai, 265599, China
| | - Yong-Bing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Jian-Ping An
- State Key Laboratory of Plant Diversity and Specialty Crops, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Hou T, Zheng B, Peng F, Jiang Z, Zhang W, Wang Y. Under simulated microgravity and gravity, anthocyanin is regulated by DcaWRKY2 in Dendrobium catenatum leaves. FRONTIERS IN PLANT SCIENCE 2025; 15:1505199. [PMID: 39902202 PMCID: PMC11788367 DOI: 10.3389/fpls.2024.1505199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025]
Abstract
Long-term space missions will require high-quality plants that are edible, medicinal, and ornamental, to support the physical and mental health of astronauts under altered gravity conditions. Anthocyanins play a key role in enhancing the medicinal and edible value and ornamental properties of plants. However, under simulated microgravity, the transcription control of anthocyanin biosynthesis is not clear. Here, in order to investigate the influences of simulated microgravity on the anthocyanin accumulation further, clones of Dendrobium catenatum were exposed for 20 days to simulated microgravity conditions. The anthocyanin content in Dendrobium catenatum leaves increased in the simulated microgravity conditions compared with that in gravity-treated clones. Furthermore, based on the transcriptome sequencing, differentially expressed genes (DEGs), and weighted gene co-expression network analysis combined with RT-qPCR, we identified one WRKY gene, DcaWRKY2, from a Dendrobium catenatum under simulated microgravity conditions, which indicated that DcaWRKY2 may be involved in anthocyanin biosynthesis under simulated microgravity conditions. A more in-depth analysis evaluating the function of DcaWRKY2, transcription factor gene DcaWRKY2, was silenced by virus-induced gene silencing under gravity conditions, which resulted in the increase of anthocyanin accumulation in leaves, and the expression levels of anthocyanin biosynthesis pathway (ABP) structural genes, including DcaCHS, DcaCHI, DcaF3H, DcaDFR, and DcaANS were increased significantly. This research provides new insights into how altered gravity can affect anthocyanin synthesis in plants and illuminated the regulatory effects of DcaWRKY2 on the leaves' pigmentation and anthocyanin biosynthesis in Dendrobium catenatum under gravity and simulated microgravity.
Collapse
Affiliation(s)
- Tianze Hou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Baoqiang Zheng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Zehui Jiang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Wenbo Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Bouillon P, Belin E, Fanciullino AL, Balzergue S, Hanteville S, Letekoma Y, Cournol M, Faris F, Bouanich A, Bréard D, Bernard F, Celton JM. Fade into you: genetic control of pigmentation patterns in red-flesh apple ( Malus domestica). FRONTIERS IN PLANT SCIENCE 2025; 15:1462545. [PMID: 39872201 PMCID: PMC11770013 DOI: 10.3389/fpls.2024.1462545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025]
Abstract
The genetic basis of type 1 red-flesh color development in apple (Malus domestica) depends upon a particular allele of the MdMYB10 gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns. This methodology was applied to investigate the phenotypic diversity in four hybrid F1 families segregating for red-flesh color. Pigmentation patterns were found to be heritable allowing the identification of a new locus by QTL analysis. To further investigate the mechanisms involved in the spatial deposition of anthocyanin, metabolome, transcriptome and methylome comparisons between white and red flesh areas within the red-flesh genotype cv. 'R201' exhibiting flesh pigmentation patterns, was performed. Wide-targeted analysis showed that white-flesh areas accumulate more dihydrochalcones and hydroxycinnamic acids than red-flesh areas while red-flesh areas accumulate more flavonoids. Anthocyanin biosynthesis genes and anthocyanin positive regulators (MBW complex) were up-regulated in red-flesh areas, while a reduction in anthocyanin storage, transport and stability (increase of pH, down-regulation of MdGSTU22) and an increase in phenolic catabolism were concomitant with color fading process in white-flesh areas. Expression of MdGSTU22 was linked to a differentially methylated region (DMR) suggesting a potential environmental effect on the epigenetic control of gene expression involved in color fading. Altogether, these results provide the first characterization and functional identification of color fading in apple fruit flesh.
Collapse
Affiliation(s)
- Pierre Bouillon
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- IFO, Seiches sur le Loir, France
| | - Etienne Belin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | | - Sandrine Balzergue
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
- Analyses des Acides Nucléiques (ANAN), SFR QUASAV, Angers, France
| | | | - Yao Letekoma
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Maryline Cournol
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Fatima Faris
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Andréa Bouanich
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Dimitri Bréard
- Univ Angers, Substances d’Origine Naturelle et Analogues Structuraux (SONAS), SFR QUASAV, Angers, France
| | | | - Jean-Marc Celton
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| |
Collapse
|
8
|
Zhang Y, Pu Y, Zhang Y, Li K, Bai S, Wang J, Xu M, Liu S, Zhou Z, Wu Y, Hu R, Wu Q, Kear P, Du M, Qi J. Tuber transcriptome analysis reveals a novel WRKY transcription factor StWRKY70 potentially involved in potato pigmentation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108792. [PMID: 38851149 DOI: 10.1016/j.plaphy.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Tuber flesh pigmentation, conferred by the presence of secondary metabolite anthocyanins, is one of many key agronomic traits for potato tubers. Although several genes of potato anthocyanin biosynthesis have been reported, transcription factors (TFs) contributing to tuber flesh pigmentation are still not fully understood. In this study, transcriptomic profiling of diploid potato accessions with or without tuber flesh pigmentation was conducted and genes of the anthocyanin biosynthesis pathway were found significantly enriched within the 1435 differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and connectivity analysis pinpointed a subset of 173 genes closely related to the key biosynthetic gene StDFR. Of the eight transcription factors in the subset, group III WRKY StWRKY70, was chosen for showing high connectivity to StDFR and ten other anthocyanin biosynthetic genes and homology to known WRKYs of anthocyanin pathway. The transient activation assay showed StWRKY70 predominantly stimulated the expression of StDFR and StANS as well as the accumulation of anthocyanins by enhancing the function of the MYB transcription factor StAN1. Furthermore, the interaction between StWRKY70 and StAN1 was verified by Y2H and BiFC. Our analysis discovered a new transcriptional activator StWRKY70 which potentially involved in tuber flesh pigmentation, thus may lay the foundation for deciphering how the WRKY-MYB-bHLH-WD40 (WRKY-MBW) complex regulate the accumulation of anthocyanins and provide new strategies to breed for more nutritious potato varieties with enhanced tuber flesh anthocyanins.
Collapse
Affiliation(s)
- Yingying Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuanyuan Pu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yumeng Zhang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Kexin Li
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Shunbuer Bai
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Jiajia Wang
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Mingxiang Xu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Suhui Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Zijian Zhou
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Yuyu Wu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Rong Hu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Qian Wu
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Philip Kear
- International Potato Center (CIP), China Center for Asia Pacific, Beijing, 100081, China
| | - Miru Du
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
9
|
Wang N, Liu W, Mei Z, Zhang S, Zou Q, Yu L, Jiang S, Fang H, Zhang Z, Chen Z, Wu S, Cheng L, Chen X. A Functional InDel in the WRKY10 Promoter Controls the Degree of Flesh Red Pigmentation in Apple. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400998. [PMID: 38874015 PMCID: PMC11321683 DOI: 10.1002/advs.202400998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Indexed: 06/15/2024]
Abstract
MYB transcription factors have been linked to anthocyanin synthesis and various color phenotypes in plants. In apple, MYB10 confers a red-flesh phenotype due to a minisatellite insertion in its R6 promoter, but R6:MYB10 genotypes exhibit various degrees of red pigmentation in the flesh, suggesting the involvement of other genetic factors. Here, it is shown that MdWRKY10, a transcription factor identified via DNA pull-down trapping, binds to the promoter of MdMYB10 and activates its transcription. MdWRKY10 specifically interacts with the WDR protein MdTTG1 to join the apple MYB-bHLH-WDR (MBW) complex, which significantly enhances its transcriptional activation activity. A 163-bp InDel detected in the promoter region of the alleles of MdWRKY10 in a hybrid population of identical heterozygous genotypes regarding R6 by structural variation analysis, contains a typical W-box element that MdWRKY10 binds to for transactivation. This leads to increased transcript levels of MdWRKY10 and MdMYB10 and enhanced anthocyanin synthesis in the flesh, largely accounting for the various degrees of flesh red pigmentation in the R6 background. These findings reveal a novel regulatory role of the WRKY-containing protein complex in the formation of red flesh apple phenotypes and provide broader insights into the molecular mechanism governing anthocyanin synthesis in plants.
Collapse
Affiliation(s)
- Nan Wang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
- Section of Horticulture, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Wenjun Liu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Zhuoxin Mei
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shuhui Zhang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Qi Zou
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Lei Yu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shenghui Jiang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Hongcheng Fang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, College of ForestryShandong Agricultural UniversityTai'anShandong271000China
| | - Zongying Zhang
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Zijing Chen
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Shujing Wu
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant ScienceCornell UniversityIthacaNY14853USA
| | - Xuesen Chen
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anShandong271000China
| |
Collapse
|
10
|
Krishnamoorthi S, Tan GZH, Dong Y, Leong R, Wu TY, Urano D. Hyperspectral imaging of liverwort Marchantia polymorpha identifies MpWRKY10 as a key regulator defining Foliar pigmentation patterns. Cell Rep 2024; 43:114463. [PMID: 38985675 DOI: 10.1016/j.celrep.2024.114463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.
Collapse
Affiliation(s)
| | | | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
11
|
Shin D, Cho KH, Tucker E, Yoo CY, Kim J. Identification of tomato F-box proteins functioning in phenylpropanoid metabolism. PLANT MOLECULAR BIOLOGY 2024; 114:85. [PMID: 38995464 DOI: 10.1007/s11103-024-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Phenylpropanoids, a class of specialized metabolites, play crucial roles in plant growth and stress adaptation and include diverse phenolic compounds such as flavonoids. Phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) are essential enzymes functioning at the entry points of general phenylpropanoid biosynthesis and flavonoid biosynthesis, respectively. In Arabidopsis, PAL and CHS are turned over through ubiquitination-dependent proteasomal degradation. Specific kelch domain-containing F-Box (KFB) proteins as components of ubiquitin E3 ligase directly interact with PAL or CHS, leading to polyubiquitinated PAL and CHS, which in turn influences phenylpropanoid and flavonoid production. Although phenylpropanoids are vital for tomato nutritional value and stress responses, the post-translational regulation of PAL and CHS in tomato remains unknown. We identified 31 putative KFB-encoding genes in the tomato genome. Our homology analysis and phylogenetic study predicted four PAL-interacting SlKFBs, while SlKFB18 was identified as the sole candidate for the CHS-interacting KFB. Consistent with their homolog function, the predicted four PAL-interacting SlKFBs function in PAL degradation. Surprisingly, SlKFB18 did not interact with tomato CHS and the overexpression or knocking out of SlKFB18 did not affect phenylpropanoid contents in tomato transgenic lines, suggesting its irreverence with flavonoid metabolism. Our study successfully discovered the post-translational regulatory machinery of PALs in tomato while highlighting the limitation of relying solely on a homology-based approach to predict interacting partners of F-box proteins.
Collapse
Affiliation(s)
- Doosan Shin
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Keun Ho Cho
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Ethan Tucker
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA
| | - Chan Yul Yoo
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Zhang Z, Chen C, Jiang C, Lin H, Zhao Y, Guo Y. VvWRKY5 positively regulates wounding-induced anthocyanin accumulation in grape by interplaying with VvMYBA1 and promoting jasmonic acid biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae083. [PMID: 38766531 PMCID: PMC11101322 DOI: 10.1093/hr/uhae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/10/2024] [Indexed: 05/22/2024]
Abstract
Wounding stress induces the biosynthesis of various secondary metabolites in plants, including anthocyanin. However, the underlying molecular mechanism remains elusive. Here, we reported that a transcription factor, VvWRKY5, promotes wounding-induced anthocyanin accumulation in grape (Vitis vinifera). Biochemical and molecular analyses demonstrated that wounding stress significantly increased anthocyanin content, and VvMYBA1 plays an essential role in this process. VvWRKY5 could interact with VvMYBA1 and amplify the activation effect of VvMYBA1 on its target gene VvUFGT. The transcript level of VvWRKY5 was notably induced by wounding treatment. Moreover, our data demonstrated that VvWRKY5 could promote the synthesis of jasmonic acid (JA), a phytohormone that acts as a positive modulator in anthocyanin accumulation, by directly binding to the W-box element in the promoter of the JA biosynthesis-related gene VvLOX and enhancing its activities, and this activation was greatly enhanced by the VvWRKY5-VvMYBA1 protein complex. Collectively, our findings show that VvWRKY5 plays crucial roles in wounding-induced anthocyanin synthesis in grape and elucidates the transcriptional regulatory mechanism of wounding-induced anthocyanin accumulation.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Cui Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang 110866, China
| |
Collapse
|
13
|
Ma X, Sheng L, Li F, Zhou T, Guo J, Chang Y, Yang J, Jin Y, Chen Y, Lu X. Seasonal drought promotes citrate accumulation in citrus fruit through the CsABF3-activated CsAN1-CsPH8 pathway. THE NEW PHYTOLOGIST 2024; 242:1131-1145. [PMID: 38482565 DOI: 10.1111/nph.19671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024]
Abstract
Plenty of rainfall but unevenly seasonal distribution happens regularly in southern China. Seasonal drought from summer to early autumn leads to citrus fruit acidification, but how seasonal drought regulates citrate accumulation remains unknown. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that CsABF3 responds to seasonal drought stress and modulates citrate accumulation in citrus fruits by directly regulating CsAN1 and CsPH8. Here, we demonstrated that irreversible acidification of citrus fruits is caused by drought lasting for > 30 d during the fruit enlargement stage. We investigated the transcriptome characteristics of fruits affected by drought and corroborated the pivotal roles of a bHLH transcription factor (CsAN1) and a P3A-ATPase gene (CsPH8) in regulating citrate accumulation in response to drought. Abscisic acid (ABA)-responsive element binding factor 3 (CsABF3) was upregulated by drought in an ABA-dependent manner. CsABF3 activated CsAN1 and CsPH8 expression by directly and specifically binding to the ABA-responsive elements (ABREs) in the promoters and positively regulated citrate accumulation. Taken together, this study sheds new light on the regulatory module ABA-CsABF3-CsAN1-CsPH8 responsible for citrate accumulation under drought stress, which advances our understanding of quality formation of citrus fruit.
Collapse
Affiliation(s)
- Xiaochuan Ma
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Ling Sheng
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Feifei Li
- Institute of Horticulture, Hunan Academy of Agricultural Science, 410125, Changsha, China
| | - Tie Zhou
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Jing Guo
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuanyuan Chang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Junfeng Yang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yan Jin
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Yuewen Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| | - Xiaopeng Lu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- National Center for Citrus Improvement, 410128, Changsha, China
| |
Collapse
|
14
|
Qiao Q, Huang Y, Dong H, Xing C, Han C, Lin L, Wang X, Su Z, Qi K, Xie Z, Huang X, Zhang S. The PbbHLH62/PbVHA-B1 module confers salt tolerance through modulating intracellular Na +/K + homeostasis and reactive oxygen species removal in pear. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108663. [PMID: 38678947 DOI: 10.1016/j.plaphy.2024.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.
Collapse
Affiliation(s)
- Qinghai Qiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| | - Yongdan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenyang Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyuan Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| |
Collapse
|
15
|
Goldberg A, O'Connor P, Gonzalez C, Ouren M, Rivera L, Radde N, Nguyen M, Ponce-Herrera F, Lloyd A, Gonzalez A. Genetic interaction between TTG2 and AtPLC1 reveals a role for phosphoinositide signaling in a co-regulated suite of Arabidopsis epidermal pathways. Sci Rep 2024; 14:9752. [PMID: 38679676 PMCID: PMC11056374 DOI: 10.1038/s41598-024-60530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.
Collapse
Grants
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- 52006985, 52008124 Howard Hughes Medical Institute
- US National Science Foundation
Collapse
Affiliation(s)
- Aleah Goldberg
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Patrick O'Connor
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Cassandra Gonzalez
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mason Ouren
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luis Rivera
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Noor Radde
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Michael Nguyen
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Felipe Ponce-Herrera
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan Lloyd
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA
| | - Antonio Gonzalez
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway, Austin, TX, 78712, USA.
- The Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
Li S, Yang Y, Yu J, Zhou H, Hou Z, Wang X. Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba) genotypes. BMC PLANT BIOLOGY 2024; 24:61. [PMID: 38253992 PMCID: PMC10804552 DOI: 10.1186/s12870-024-04737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Leaf coloration in plants, attributed to anthocyanin compounds, plays a crucial role in various physiological functions, and also for pharmaceutical and horticultural uses. However, the molecular mechanisms governing leaf coloration and the physiological significance of anthocyanins in leaves remain poorly understood. RESULTS In this study, we investigated leaf color variation in two closely related mulberry genotypes, one with purplish-red young leaves (EP) and another with normal leaf color (EW). We integrated transcriptomic and metabolomic approaches to gain insights into the metabolic and genetic basis of purplish-red leaf development in mulberry. Our results revealed that flavonoid biosynthesis, particularly the accumulation of delphinidin-3-O-glucoside, is a key determinant of leaf color. Additionally, the up-regulation of CHS genes and transcription factors, including MYB family members, likely contributes to the increased flavonoid content in purplish-red leaves. CONCLUSION These findings enhance our understanding of the molecular mechanisms responsible for the purplish coloration observed in mulberry leaves and also offer supporting evidence for the hypothesis that anthocyanins serve a protective function in plant tissues until the processes of light absorption and carbon fixation reach maturity, thereby ensuring a balanced equilibrium between energy capture and utilization.
Collapse
Affiliation(s)
- Shusong Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China
| | - Yuqing Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China
| | - Jie Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China
| | - Hong Zhou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China
| | - Zhiwei Hou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China.
| | - Xiling Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Tiansheng Road No.2, Chongqing, China.
| |
Collapse
|
17
|
Li C, Gong Q, Liu P, Xu Z, Yu Q, Dai H, Shi Y, Si J, Zhang X, Chen D, Han Z. Co-expressed network analysis based on 289 transcriptome samples reveals methyl jasmonate-mediated gene regulatory mechanism of flavonoid compounds in Dendrobium catenatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108226. [PMID: 38039587 DOI: 10.1016/j.plaphy.2023.108226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Flavonoids are momentous bioactive ingredients in orchid plant Dendrobium catenatum (D. catenatum), which are bioactive compounds with great medical and commercial potential. However, the accurate dissection of flavonoids profiling and their accumulation mechanism are largely unknown. In this study, methyl jasmonate (MeJA) treatment was used to investigate the change of flavonoids content and transcripts in two D. catenatum clones (A6 and B1). We identified 40 flavonoids using liquid chromatograph mass spectrometer (LC-MS). By weighted gene co-expressed network analysis (WGCNA) of flavonoids content and transcript expression of MeJA-treated samples, 37 hub genes were identified. Among them, DcCHIL, DcFLS, and DcDFR were highly correlation with two key transcription factors DcWRKY3/4 by correlation analysis of large-scale transcriptome data and above hub genes expression. Furthermore, transient overexpression of DcWRKY3/4 in tobacco leaves significantly increased the content of flavonoids. This study identified flavonoid profiling and built a new approach to mine regulatory mechanism of flavonoids in D. catenatum. These valuable flavonoids and gene resources will be key for understanding and harnessing natural flavonoids products in pharmaceuticals and foods industry of D. catenatum.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Qiqi Gong
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Pei Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Zhanwei Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Qiaoxian Yu
- Zhejiang Senyu Co., Ltd., Yiwu, Zhejiang, 322000, PR China.
| | - Hanjun Dai
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Xinfeng Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, PR China.
| |
Collapse
|
18
|
Skaliter O, Bednarczyk D, Shor E, Shklarman E, Manasherova E, Aravena-Calvo J, Kerzner S, Cna’ani A, Jasinska W, Masci T, Dvir G, Edelbaum O, Rimon B, Brotman Y, Cohen H, Vainstein A. The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis. THE PLANT CELL 2023; 36:174-193. [PMID: 37818992 PMCID: PMC10734618 DOI: 10.1093/plcell/koad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gony Dvir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ben Rimon
- Department of Ornamental Horticulture and Biotechnology, The Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
19
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Shen L, Xia X, Zhang L, Yang S, Yang X. SmWRKY11 acts as a positive regulator in eggplant response to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108209. [PMID: 38006793 DOI: 10.1016/j.plaphy.2023.108209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Salt stress is one of the most threatening abiotic stresses to plants, which can seriously affect plant growth, development, reproduction, and yield. However, the mechanisms of plant against salt stress largely remain unclear. Herein, SmWRKY11, an assumed WRKY transcription factor, was functionally characterized in eggplant against salt stress. SmWRKY11 was significantly up-regulated by salt, dehydration stress, and ABA treatment. SmWRKY11 located in the nucleus, and the Plant_zn_clust conserved domain exhibited transcriptional activation activity. Silencing of SmWRKY11 enhanced the susceptibility of eggplant to salt stress, accompanied by significantly down-regulation of transcript expression levels of salt stress defense-related genes SmNCED1, SmGSTU10, and positive regulator of salt stress response SmERF1 as well as increase of hydrogen peroxide (H2O2) content and decrease of the enzyme activities of catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). In addition, silencing of SmERF1 also could significantly down-regulate SmWRKY11 expression in eggplant response to salt stress. By luciferase reporter assay and chromatin immunoprecipitation PCR assay, SmERF1 expression was found to be indirectly activated by SmWRKY11. These data indicate that SmWRKY11 acts as a positive regulator by forming positive feedback loop with SmERF1 via an indirect regulatory manner in eggplant response to salt stress.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Longhao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
21
|
Zhang C, Dai Z, Ferrier T, Orduña L, Santiago A, Peris A, Wong DCJ, Kappel C, Savoi S, Loyola R, Amato A, Kozak B, Li M, Liang A, Carrasco D, Meyer-Regueiro C, Espinoza C, Hilbert G, Figueroa-Balderas R, Cantu D, Arroyo-Garcia R, Arce-Johnson P, Claudel P, Errandonea D, Rodríguez-Concepción M, Duchêne E, Huang SSC, Castellarin SD, Tornielli GB, Barrieu F, Matus JT. MYB24 orchestrates terpene and flavonol metabolism as light responses to anthocyanin depletion in variegated grape berries. THE PLANT CELL 2023; 35:4238-4265. [PMID: 37648264 PMCID: PMC10689149 DOI: 10.1093/plcell/koad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.
Collapse
Affiliation(s)
- Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Thilia Ferrier
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Arnau Peris
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin 10124, Italy
| | - Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Bartosz Kozak
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia V1V 1V7, Canada
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Akun Liang
- Departamento de Física Aplicada-ICMUV-MALTA Consolider Team, Universitat de València, Burjassot 46100, Valencia, Spain
| | - David Carrasco
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid-INIA, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Carlos Meyer-Regueiro
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carmen Espinoza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8380453, Chile
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rosa Arroyo-Garcia
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid-INIA, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Patricio Arce-Johnson
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería Universidad Autónoma deChile
| | | | - Daniel Errandonea
- Departamento de Física Aplicada-ICMUV-MALTA Consolider Team, Universitat de València, Burjassot 46100, Valencia, Spain
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia 46022, Spain
| | - Eric Duchêne
- SVQV, University of Strasbourg, INRAE, Colmar 68000, France
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Simone Diego Castellarin
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia V1V 1V7, Canada
| | | | - Francois Barrieu
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| |
Collapse
|
22
|
Wang Y, Zhou LJ, Song A, Wang Y, Geng Z, Zhao K, Jiang J, Chen S, Chen F. Comparative transcriptome analysis and flavonoid profiling of floral mutants reveals CmMYB11 regulating flavonoid biosynthesis in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111837. [PMID: 37611834 DOI: 10.1016/j.plantsci.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Flavonoids, of which the major groups are flavones, flavonols, and anthocyanins, confer a variety of colors on plants. Bud sports with variation of floral colors occur occasionally during chrysanthemum cultivation. Although it has been reported that methylation at the promoter of CmMYB6 was related to anthocyanin contents, the regulatory networks of flavonoid biosynthesis still remain largely unknown in mutation of chrysanthemum. We compared phenotypes, pigment composition and transcriptomes in two chrysanthemum cultivars, 'Anastasia Dark Green' and 'Anastasia Pink', and regenerated bud sports of these cultivars with altered floral colors. Increased anthocyanins turned the 'Anastasia Dark Green' mutant red, while decreased anthocyanins turned the 'Anastasia Pink' mutant white. Moreover, total flavonoids were reduced in both mutants. Multiple flavonoid biosynthetic genes and regulatory genes encoding MYBs and bHLHs transcription factors were differentially expressed in pairwise comparisons of transcriptomes in 'Anastasia Dark Green' or 'Anastasia Pink' and their mutants at different flowering stages. Among these regulatory genes, the expression patterns of CmMYB6 and CmbHLH2 correlated to changes of anthocyanin contents, and down-regulation of CmMYB11 correlated to decreased total flavonoid contents in two mutants. CmMYB11 was shown to directly activate the promoter activities of CmCHS2, CmCHI, CmDFR, CmANS, CmFNS, and CmFLS. Furthermore, overexpression of CmMYB11 increased both flavonols and anthocyanins in tobacco petals. Our work provides new insights into regulatory networks involved in flavonoid biosynthesis and coloration in chrysanthemum.
Collapse
Affiliation(s)
- Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
23
|
Zhang Z, Zhou D, Li S, Pan J, Liang J, Wu X, Wu XN, Krall L, Zhu G. Multiomics Analysis Reveals the Chemical and Genetic Bases of Pigmented Potato Tuber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16402-16416. [PMID: 37856829 DOI: 10.1021/acs.jafc.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Anthocyanins and carotenoids determine the diversity of potato tuber flesh pigmentation; here, the underlying chemical and genetic bases were elucidated by multiomics analyses. A total of 31 anthocyanins and 30 carotenoids were quantified in five differently pigmented tubers. Cyanidin and pelargonidin derivatives determined the redness, while malvidin, petunidin, and delphinidin derivatives contributed to purpleness. Violaxanthin derivatives determined the light-yellow color, while zeaxanthin and antheraxanthin derivatives further enhanced the deep-yellow deposition. Integrated transcriptome and proteome analyses identified that F3'5'H highly enhanced anthocyanin biosynthesis in purple flesh and was responsible for metabolic divergence between red and purple samples. BCH2 significantly enhanced carotenoid biosynthesis in yellow samples and along with ZEP, NCED1, and CCD1 genes determined metabolic divergence between light and deep-yellow samples. The weighted correlation network analysis constructed a regulatory network revealing the central role of AN1 in regulating anthocyanin biosynthesis, and 10 new transcription factors related to anthocyanin and carotenoid metabolism regulation were identified. Our findings provide targeted genes controlling tuber pigmentation, which will be meaningful for the genetic manipulation of tuber quality improvement.
Collapse
Affiliation(s)
- Zhong Zhang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dao Zhou
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jun Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jun Liang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xi Wu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guangtao Zhu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| |
Collapse
|
24
|
Zhang Y, Qu X, Li X, Ren M, Tong Y, Wu X, Sun Y, Wu F, Yang A, Chen S. Comprehensive transcriptome and WGCNA analysis reveals the potential function of anthocyanins in low-temperature resistance of a red flower mutant tobacco. Genomics 2023; 115:110728. [PMID: 37858843 DOI: 10.1016/j.ygeno.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
The anthocyanin is a protective substance in various plants, and plays important roles in resisting to low-temperature. Here, we explored transcriptome analysis of pink flower (as CK) and the natural mutant red flower (as research objects) under low-temperature conditions, and aimed to reveal the potential functions of anthocyanins and anthocyanin-related regulatory factors in resistance to low-temperature. Our results showed that most of the differentially expressed genes (DEGs) encoding key enzymes in the late stage of anthocyanin metabolism in the mutant were significantly up-regulated. Meanwhile, several genes significantly differentially expressed in CK or mutant were obtained by classification and analysis of transcription factors (TFs), phytohormones and osmoregulators. Additionally, WGCNA was carried out to mine hub genes resistanted to low-temperature stress in flavonoid pathway. Finally, one UFGT family gene, three MYB and one bHLH were obtained as the future hub genes of this study. Combined with the above information, we concluded that the ability of the red flower mutant to grow and develop normally at low-temperatures was the result of a combination of flavonoids and cold resistance genes.
Collapse
Affiliation(s)
- Yinchao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaoling Qu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuchun Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Min Ren
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Tong
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shuai Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
25
|
Wang J, Xu R, Qiu S, Wang W, Zheng F. CsTT8 regulates anthocyanin accumulation in blood orange through alternative splicing transcription. HORTICULTURE RESEARCH 2023; 10:uhad190. [PMID: 37927409 PMCID: PMC10623405 DOI: 10.1093/hr/uhad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
A homologous gene of basic-helix-loop-helix AtTT8 in Arabidopsis thaliana was identified in juice sac cells of pulp tissues from blood orange (Citrus sinensis cv 'Tarocco'), which was designated as CsTT8 in this study. Additionally, the mRNA levels of TT8 with the full-length open reading frame were significantly higher in 'Tarocco' than in mutant fruit lacking pigment in pulp or peel tissues. However, an alternative splicing transcript, Δ15-TT8, with the fourth exon skipped, was also identified from transcripts different in length from that in 'Tarocco'. The mRNA levels of Δ15-TT8 were higher in mutant fruit lacking pigment in pulp or peel tissues than in the wild type. Therefore, the TT8/Δ15-TT8 mRNA level ratio was found to be crucial for sufficient pigment in either pulp or peel tissues. TT8 from blood orange fruit demonstrated the capacity for nucleus localization and binding to other proteins. In contrast, Δ15-TT8, lacking the fourth exon, lost its ability to interact with RUBY1 and to localize at the nucleus. Using a dual luciferase reporter assay and transient overexpression in tobacco, we proved that two regulatory complexes formed by a functional TT8 with different MYB(v-myb avian myeloblastosis viral oncogene homolog)-type partners significantly promoted expression of an anthocyanin biosynthetic gene and a proton pumping gene, leading to anthocyanin and citrate production. Our findings suggest that TT8, rather than dysfunctional Δ15-TT8, is possibly involved in modulating anthocyanin biosynthesis and its transport into vacuoles by proton gradients. However, increased mRNA levels of the dysfunctional alternative splicing transcript may act as a negative feedback to downregulate TT8 expression and limit anthocyanin accumulation in blood oranges.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| | - Rui Xu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Shuangping Qiu
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Weichun Wang
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fan Zheng
- Department of Food Science and Engineering, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Zhang Lan Honors College, Chengdu University, Chengdu 610106, China
| |
Collapse
|
26
|
Yang M, Song J, Zhang X, Lu R, Wang A, Zhai R, Wang Z, Yang C, Xu L. PbWRKY26 positively regulates malate accumulation in pear fruit by activating PbMDH3. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154061. [PMID: 37562312 DOI: 10.1016/j.jplph.2023.154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Malate is the main organic acid that affects fruit acidity and flavor in pear (Pyrus spp.). However, the regulatory mechanism of malic acid accumulation in pear remains unclear. We identified PbWRKY26 as a candidate gene using mRNA-seq, and quantification analysis verified the expression level. The expression of PbWRKY26 was positively correlated with the malic acid content in two P. pyrifolia cultivars ('Cuiguan', 'Hongsucui') and two P. ussuriensis cultivars ('Qiuxiang', 'Hanhong'), with respective correlation coefficients of 0.748*, 0.871**, 0.889**, and 0.910** (*, P < 0.05; **, P < 0.01). The expression of PbWRKY26 enhanced the malate content in overexpression transgenic pear fruit and callus. In contrast, silencing PbWRKY26 decreased the pear fruit malic acid content. Analysis of the neighbor-joining phylogenetic tree indicated that PbWRKY26 was a PH3 homolog. The WRKY26 (PH3) has been identified to regulate a proton pump gene, PH5, in a lot of plant species, but the LUC and Y1H assays showed that PbWRKY26 could not bind to PbPH5 promoter in our study. Interestingly, a malate dehydrogenase gene, PbMDH3, was identified to be regulated by PbWRKY26. This study might be valuable to understand the metabolic regulatory network associated with malate accumulation.
Collapse
Affiliation(s)
- Meiyi Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Junxing Song
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Xu Zhang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Ruitao Lu
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Azheng Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Zhigang Wang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| | - Chengquan Yang
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China.
| | - Lingfei Xu
- College of Horticulture, Northwest A&F University, Taicheng Road No.3, Yangling, Shaanxi Province, China
| |
Collapse
|
27
|
An JP, Li HL, Liu ZY, Wang DR, You CX, Han Y. The E3 ubiquitin ligase SINA1 and the protein kinase BIN2 cooperatively regulate PHR1 in apple anthocyanin biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2175-2193. [PMID: 37272713 DOI: 10.1111/jipb.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.
Collapse
Affiliation(s)
- Jian-Ping An
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Hong-Liang Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Zhi-Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Da-Ru Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
28
|
Bi M, Liang R, Wang J, Qu Y, Liu X, Cao Y, He G, Yang Y, Yang P, Xu L, Ming J. Multifaceted roles of LhWRKY44 in promoting anthocyanin accumulation in Asiatic hybrid lilies ( Lilium spp.). HORTICULTURE RESEARCH 2023; 10:uhad167. [PMID: 37779886 PMCID: PMC10535013 DOI: 10.1093/hr/uhad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
The Asiatic hybrid lily (Lilium spp.) is a horticultural crop with high commercial value and diverse anthocyanin pigmentation patterns. However, the regulatory mechanism underlying lily flower color has been largely unexplored. Here, we identified a WRKY transcription factor from lily tepals, LhWRKY44, whose expression was closely associated with anthocyanin accumulation. Functional verification indicated that LhWRKY44 positively regulated anthocyanin accumulation. LhWRKY44 physically interacted with LhMYBSPLATTER and directly bound to the LhMYBSPLATTER promoter, which enhanced the effect of the LhMYBSPLATTER-LhbHLH2 MBW complex activator on anthocyanin accumulation. Moreover, EMSA and dual-luciferase assays revealed that LhWRKY44 activated and bound to the promoters of gene LhF3H and the intracellular anthocyanin-related glutathione S-transferase gene LhGST. Interestingly, our further results showed that LhWRKY44 participated in light and drought-induced anthocyanin accumulation, and improved the drought tolerance in lily via activating stress-related genes. These results generated a multifaceted regulatory mechanism for the LhWRKY44-meditaed enhancement by the environmental signal pathway of anthocyanin accumulation and expanded our understanding of the WRKY-mediated transcriptional regulatory hierarchy modulating anthocyanin accumulation in Asiatic hybrid lilies.
Collapse
Affiliation(s)
- Mengmeng Bi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Shanxi Agricultural University, Taigu, 030031, China
| | - Jiawen Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxiao Qu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Landscape architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Cao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Chemistry and Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Guoren He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Shanghai Key Laboratory of Plant Molecular Science, College of Life Sciences, Shanghai Normal University, Shanghai, 200233, China
| | - Yue Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Panpan Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Leifeng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Ming
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
29
|
Zhu ZP, Yu JX, Liu FF, Zhu DW, Xiong AS, Sun M. AeWRKY32 from okra regulates anthocyanin accumulation and cold tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154062. [PMID: 37540924 DOI: 10.1016/j.jplph.2023.154062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Okra (Abelmoschus esculentus L.) is a tropical crop species, and its growth and development are severely affected by cold stress. Recent studies have identified a potential association between WRKY transcription factors and the cold response mechanism of crops. In this study, the AeWRKY32 transcription factor that encodes 482 amino acids was amplified from A. esculentus, and its expression level was found to be the highest in the okra flower. AeWRKY32 localized to the nucleus and displayed transcriptional activation capability. Under normal conditions, overexpression of AeWRKY32 induced anthocyanin accumulation, with higher expression levels of AtCHS1, AtCHI4, AtF3H1, and AtDFR2 in transgenic Arabidopsis. Under cold stress, anthocyanin levels were further elevated in transgenic Arabidopsis plants. At the same time, AeWRKY32 overexpression promoted ABA biosynthesis, inhibited H2O2 and O2- generation, induced stomatal closure, reduced electrolyte leakage, and thus improved the cold resistance of transgenic Arabidopsis. Furthermore, under cold stress, the expression profiles of AtCOR413, AtCOR15B, AtCBF1, and AtCBF2 were upregulated in transgenic Arabidopsis. Overall, our study provides evidence that AeWRKY32 serves as a crucial regulator in both anthocyanin accumulation and cold tolerance of transgenic Arabidopsis. Our findings could provide insights into the molecular mechanism linking AeWRKYs to plant cold tolerance.
Collapse
Affiliation(s)
- Zhi-Peng Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jian-Xiang Yu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Fang-Fang Liu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - De-Wei Zhu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
30
|
Alabd A, Cheng H, Ahmad M, Wu X, Peng L, Wang L, Yang S, Bai S, Ni J, Teng Y. ABRE-BINDING FACTOR3-WRKY DNA-BINDING PROTEIN44 module promotes salinity-induced malate accumulation in pear. PLANT PHYSIOLOGY 2023; 192:1982-1996. [PMID: 36932703 PMCID: PMC10315288 DOI: 10.1093/plphys/kiad168] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Malate impacts fruit acidity and plays a vital role in stress tolerance. Malate accumulation is induced by salinity in various plants as a metabolite in coping with this stress. However, the exact molecular mechanism responsible for salinity-induced malate accumulation remains unclear. Here, we determined that salinity treatment induces malate accumulation in pear (Pyrus spp.) fruit, calli, and plantlets compared to the control. Genetic and biochemical analyses established the key roles of PpWRKY44 and ABRE-BINDING FACTOR3 (PpABF3) transcription factors in promoting malate accumulation in response to salinity. We found that PpWRKY44 is involved in salinity-induced malate accumulation by directly binding to a W-box on the promoter of the malate-associated gene aluminum-activated malate transporter 9 (PpALMT9) to activate its expression. A series of in-vivo and in-vitro assays revealed that the G-box cis-element in the promoter of PpWRKY44 was targeted by PpABF3, which further enhanced salinity-induced malate accumulation. Taken together, these findings suggest that PpWRKY44 and PpABF3 play positive roles in salinity-induced malate accumulation in pears. This research provides insights into the molecular mechanism by which salinity affects malate accumulation and fruit quality.
Collapse
Affiliation(s)
- Ahmed Alabd
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pomology, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Haiyan Cheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mudassar Ahmad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lin Peng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lu Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shulin Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China
| |
Collapse
|
31
|
Shor E, Skaliter O, Sharon E, Kitsberg Y, Bednarczyk D, Kerzner S, Vainstein D, Tabach Y, Vainstein A. Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein. FRONTIERS IN PLANT SCIENCE 2023; 14:1180899. [PMID: 37360732 PMCID: PMC10286513 DOI: 10.3389/fpls.2023.1180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of PhWD2 (termed UPPER - Unique Plant PhEnylpropanoid Regulator) resulted in a significant increase in the levels of volatiles emitted from and accumulated in internal pools, suggesting that it is a negative regulator of petunia floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaarit Kitsberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dominika Bednarczyk
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shane Kerzner
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Danny Vainstein
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
32
|
Zhou H, Yan R, He H, Wei X, Liu S, Guo B, Zhang Y, Liu X, Rahman SU, Zhou C, He Z. Transcriptional profiling of long noncoding RNAs associated with flower color formation in Ipomoea nil. PLANTA 2023; 258:6. [PMID: 37219701 DOI: 10.1007/s00425-023-04142-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/24/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION LncRNAs regulate flower color formation in Ipomoea nil via vacuolar pH, TCA cycle, and oxidative phosphorylation pathways. The significance of long noncoding RNA (lncRNA) in diverse biological processes is crucial in plant kingdoms. Although study on lncRNAs has been extensive in mammals and model plants, lncRNAs have not been identified in Ipomoea nil (I. nil). In this study, we employed whole transcriptome strand-specific RNA sequencing to identify 11,203 expressed lncRNA candidates, including 961 known lncRNA and 10,242 novel lncRNA in the I. nil genome. These lncRNAs in I. nil had fewer exons and were generally shorter in length compared to mRNA genes. Totally, 1141 different expression lncRNAs (DELs) were significantly identified between white and red flowers. The functional analysis indicated that lncRNA-targeted genes were enriched in the TCA cycle, photosynthesis, and oxidative phosphorylation-related pathway, which was also found in differentially expressed genes (DEGs) functional enrichments. LncRNAs can regulate transcriptional levels through cis- or trans-acting mechanisms. LncRNA cis-targeted genes were significantly enriched in potassium and lysosome. For trans-lncRNA, two energy metabolism pathways, TCA cycles and oxidative phosphorylation, were identified from positive association pairs of trans-lncRNA and mRNA. This research advances our understanding of lncRNAs and their role in flower color development, providing valuable insights for future selective breeding of I. nil.
Collapse
Affiliation(s)
- Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Ruizhi Yan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Huan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Xinlin Wei
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Shuangcheng Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Bintao Guo
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Basic Medicine, Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaoyun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Shafeeq Ur Rahman
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China.
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
33
|
He R, Liu K, Zhang S, Ju J, Hu Y, Li Y, Liu X, Liu H. Omics Analysis Unveils the Pathway Involved in the Anthocyanin Biosynthesis in Tomato Seedling and Fruits. Int J Mol Sci 2023; 24:ijms24108690. [PMID: 37240046 DOI: 10.3390/ijms24108690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The purple tomato variety 'Indigo Rose' (InR) is favored due to its bright appearance, abundant anthocyanins and outstanding antioxidant capacity. SlHY5 is associated with anthocyanin biosynthesis in 'Indigo Rose' plants. However, residual anthocyanins still present in Slhy5 seedlings and fruit peel indicated there was an anthocyanin induction pathway that is independent of HY5 in plants. The molecular mechanism of anthocyanins formation in 'Indigo Rose' and Slhy5 mutants is unclear. In this study, we performed omics analysis to clarify the regulatory network underlying anthocyanin biosynthesis in seedling and fruit peel of 'Indigo Rose' and Slhy5 mutant. Results showed that the total amount of anthocyanins in both seedling and fruit of InR was significantly higher than those in the Slhy5 mutant, and most genes associated with anthocyanin biosynthesis exhibited higher expression levels in InR, suggesting that SlHY5 play pivotal roles in flavonoid biosynthesis both in tomato seedlings and fruit. Yeast two-hybrid (Y2H) results revealed that SlBBX24 physically interacts with SlAN2-like and SlAN2, while SlWRKY44 could interact with SlAN11 protein. Unexpectedly, both SlPIF1 and SlPIF3 were found to interact with SlBBX24, SlAN1 and SlJAF13 by yeast two-hybrid assay. Suppression of SlBBX24 by virus-induced gene silencing (VIGS) retarded the purple coloration of the fruit peel, indicating an important role of SlBBX24 in the regulation of anthocyanin accumulation. These results deepen the understanding of purple color formation in tomato seedlings and fruits in an HY5-dependent or independent manner via excavating the genes involved in anthocyanin biosynthesis based on omics analysis.
Collapse
Affiliation(s)
- Rui He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Kaizhe Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shuchang Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Ju
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Youzhi Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojuan Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Wang P, Lu S, Cao X, Ma Z, Chen B, Mao J. Physiological and transcriptome analyses of the effects of excessive water deficit on malic acid accumulation in apple. TREE PHYSIOLOGY 2023; 43:851-866. [PMID: 36579825 DOI: 10.1093/treephys/tpac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Acidity is a determinant of the organoleptic quality of apple, whereas its regulatory mechanism under water stress remains obscure. Fruit from apple 'Yanfu 3' of Fuji trees grown under normal water irrigation (CK), excessive water deficit treatment (DRT) and excessive water irrigation treatment (WAT) were sampled at 85, 100, 115, 130, 145, 160 and 175 days after full bloom designated stages S1, S2, S3, S4, S5, S6 and S7, respectively. DRT treatment reduced the individual fruit weight and fruit moisture content, and increased fruit firmness. The malate content of DRT treatment was higher than that of CK and WAT from stages S1 to S7. RNA sequencing (RNA-seq) analysis of the transcriptome at stages S4, S6 and S7 indicated that malate anabolism was associated with cysteine and methionine, auxin signaling, glyoxylate and dicarboxylate and pyruvate metabolism. Overexpression of MdPEPC4 increased the malate content in apple calli induced by 4% PEG. Our study provides novel insights into the effects of water stress on the molecular mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
- Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
35
|
Strazzer P, Verbree B, Bliek M, Koes R, Quattrocchio FM. The Amsterdam petunia germplasm collection: A tool in plant science. FRONTIERS IN PLANT SCIENCE 2023; 14:1129724. [PMID: 37025133 PMCID: PMC10070740 DOI: 10.3389/fpls.2023.1129724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Petunia hybrida is a plant model system used by many researchers to investigate a broad range of biological questions. One of the reasons for the success of this organism as a lab model is the existence of numerous mutants, involved in a wide range of processes, and the ever-increasing size of this collection owing to a highly active and efficient transposon system. We report here on the origin of petunia-based research and describe the collection of petunia lines housed in the University of Amsterdam, where many of the existing genotypes are maintained.
Collapse
|
36
|
Yue M, Jiang L, Zhang N, Zhang L, Liu Y, Lin Y, Zhang Y, Luo Y, Zhang Y, Wang Y, Li M, Wang X, Chen Q, Tang H. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. FRONTIERS IN PLANT SCIENCE 2023; 14:1145670. [PMID: 36993840 PMCID: PMC10040760 DOI: 10.3389/fpls.2023.1145670] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins endowing strawberry fruit red color are regulated by the MYB-bHLH-WD40 complex. By analyzing the MYBs involved in the flavonoid biosynthesis in strawberry, we found that R2R3-FaMYB5 promoted the content of anthocyanin and proanthocyanidins in strawberry fruits. Yeast two-hybrid and BiFC assays confirmed that MBW complexes connected with flavonoid metabolism were FaMYB5/FaMYB10-FaEGL3 (bHLH)-FaLWD1/FaLWD1-like (WD40). Transient overexpression and qRT-PCR analysis revealed that disparate MBW models hold different patterns in the regulation of flavonoid biosynthesis in strawberry fruits. Compared with FaMYB10, FaMYB5 and its dominant complexes showed a more specific regulatory range on strawberry flavonoid biosynthetic pathway, while FaMYB10 was more extensive. In addition, the complexes involved in FaMYB5 facilitated PAs accumulation primarily through the LAR tributary while FaMYB10 mainly by the ANR branch. FaMYB9 and FaMYB11 tremendously elicited the accumulation of proanthocyanidins by up-regulating the expression levels of both LAR and ANR, and also affected anthocyanin metabolism by changing the ratio of Cy3G and Pg3G which were constituted as two major anthocyanin monomers in strawberries. Our study also illustrated that FaMYB5-FaEGL3-FaLWD1-like directly targeted the promoters of F3'H, LAR, and AHA10 thus committing to flavonoid accumulation. These results allow the specific members involved in the MBW complex to be deciphered and provide new insights into the regulatory mechanisms of anthocyanins and proanthocyanidins regulated by the MBW complex.
Collapse
Affiliation(s)
- Maolan Yue
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Leiyu Jiang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Nating Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Lianxi Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Liu
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Country College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology & Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Wang N, Song G, Zhang F, Shu X, Cheng G, Zhuang W, Wang T, Li Y, Wang Z. Characterization of the WRKY Gene Family Related to Anthocyanin Biosynthesis and the Regulation Mechanism under Drought Stress and Methyl Jasmonate Treatment in Lycoris radiata. Int J Mol Sci 2023; 24:ijms24032423. [PMID: 36768747 PMCID: PMC9917153 DOI: 10.3390/ijms24032423] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Lycoris radiata, belonging to the Amaryllidaceae family, is a well-known Chinese traditional medicinal plant and susceptible to many stresses. WRKY proteins are one of the largest families of transcription factors (TFs) in plants and play significant functions in regulating physiological metabolisms and abiotic stress responses. The WRKY TF family has been identified and investigated in many medicinal plants, but its members and functions are not identified in L. radiata. In this study, a total of 31 L. radiata WRKY (LrWRKY) genes were identified based on the transcriptome-sequencing data. Next, the LrWRKYs were divided into three major clades (Group I-III) based on the WRKY domains. A motif analysis showed the members within same group shared a similar motif component, indicating a conservational function. Furthermore, subcellular localization analysis exhibited that most LrWRKYs were localized in the nucleus. The expression pattern of the LrWRKY genes differed across tissues and might be important for Lycoris growth and flower development. There were large differences among the LrWRKYs based on the transcriptional levels under drought stress and MeJA treatments. Moreover, a total of 18 anthocyanin components were characterized using an ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) analysis and pelargonidin-3-O-glucoside-5-O-arabinoside as well as cyanidin-3-O-sambubioside were identified as the major anthocyanin aglycones responsible for the coloration of the red petals in L. radiata. We further established a gene-to-metabolite correlation network and identified LrWRKY3 and LrWRKY27 significant association with the accumulation of pelargonidin-3-O-glucoside-5-O-arabinoside in the Lycoris red petals. These results provide an important theoretical basis for further exploring the molecular basis and regulatory mechanism of WRKY TFs in anthocyanin biosynthesis and in response to drought stress and MeJA treatment.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guowei Song
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Guanghao Cheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Weibing Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Yuhang Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
38
|
Ahmad N, Zhang K, Ma J, Yuan M, Zhao S, Wang M, Deng L, Ren L, Gangurde SS, Pan J, Ma C, Li C, Guo B, Wang X, Li A, Zhao C. Transcriptional networks orchestrating red and pink testa color in peanut. BMC PLANT BIOLOGY 2023; 23:44. [PMID: 36658483 PMCID: PMC9850581 DOI: 10.1186/s12870-023-04041-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/03/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testa color is an important trait of peanut (Arachis hypogaea L.) which is closely related with the nutritional and commercial value. Pink and red are main color of peanut testa. However, the genetic mechanism of testa color regulation in peanut is not fully understood. To elucidate a clear picture of peanut testa regulatory model, samples of pink cultivar (Y9102), red cultivar (ZH12), and two RNA pools (bulk red and bulk pink) constructed from F4 lines of Y9102 x ZH12 were compared through a bulk RNA-seq approach. RESULTS A total of 2992 differential expressed genes (DEGs) were identified among which 317 and 1334 were up-regulated and 225 and 1116 were down-regulated in the bulk red-vs-bulk pink RNA pools and Y9102-vs-ZH12, respectively. KEGG analysis indicates that these genes were divided into significantly enriched metabolic pathways including phenylpropanoid, flavonoid/anthocyanin, isoflavonoid and lignin biosynthetic pathways. Notably, the expression of the anthocyanin upstream regulatory genes PAL, CHS, and CHI was upregulated in pink and red testa peanuts, indicating that their regulation may occur before to the advent of testa pigmentation. However, the differential expression of down-stream regulatory genes including F3H, DFR, and ANS revealed that deepening of testa color not only depends on their gene expression bias, but also linked with FLS inhibition. In addition, the down-regulation of HCT, IFS, HID, 7-IOMT, and I2'H genes provided an alternative mechanism for promoting anthocyanin accumulation via perturbation of lignin and isoflavone pathways. Furthermore, the co-expression module of MYB, bHLH, and WRKY transcription factors also suggested a fascinating transcriptional activation complex, where MYB-bHLH could utilize WRKY as a co-option during the testa color regulation by augmenting anthocyanin biosynthesis in peanut. CONCLUSIONS These findings reveal candidate functional genes and potential strategies for the manipulation of anthocyanin biosynthesis to improve peanut varieties with desirable testa color.
Collapse
Affiliation(s)
- Naveed Ahmad
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Zhang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, People's Republic of China
| | - Jing Ma
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mei Yuan
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Shuzhen Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Mingqing Wang
- Shandong Peanut Research Institute, Qingdao, 266199, Shandong, People's Republic of China
| | - Li Deng
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Li Ren
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475008, People's Republic of China
| | - Sunil S Gangurde
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Jiaowen Pan
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Changsheng Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-ARS, Tifton, GA, 31793, USA
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793, USA
| | - Xingjun Wang
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Aiqin Li
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
| | - Chuanzhi Zhao
- Institute of crop germplasm resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
39
|
Charng YY, Mitra S, Yu SJ. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. THE PLANT CELL 2023; 35:187-200. [PMID: 36271858 PMCID: PMC9806581 DOI: 10.1093/plcell/koac313] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 05/23/2023]
Abstract
Plants acquire enhanced tolerance to intermittent abiotic stress by employing information obtained during prior exposure to an environmental disturbance, a process known as acclimation or defense priming. The capacity for stress memory is a critical feature in this process. The number of reports related to plant stress memory (PSM) has recently increased, but few studies have focused on the mechanisms that maintain PSM. Identifying the components involved in maintaining PSM is difficult due in part to the lack of clear criteria to recognize these components. In this review, based on what has been learned from genetic studies on heat acclimation memory, we propose criteria for identifying components of the regulatory networks that maintain PSM. We provide examples of the regulatory circuits formed by effectors and regulators of PSM. We also highlight strategies for assessing PSMs, update the progress in understanding the mechanisms of PSM maintenance, and provide perspectives for the further development of this exciting research field.
Collapse
Affiliation(s)
| | - Suma Mitra
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Molecular and Biological Agricultural Sciences Program, TIGP, Academia Sinica, Taiwan, ROC
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan, ROC
| | - Shih-Jiun Yu
- Agricultural Biotechnology Research Center, Academia Sinica, Taiwan, ROC
- Department of Biochemical Sciences and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
40
|
Wang Z, Ma L, Liu P, Luo Z, Li Z, Wu M, Xu X, Pu W, Huang P, Yang J. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111522. [PMID: 36332766 DOI: 10.1016/j.plantsci.2022.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There are abundant polyphenols in tobacco leaves mainly including chlorogenic acid (CGA), rutin, and scopoletin, which not only influence plant growth, development, and environmental adaptation, but also have a great impact on the industrial utilization of tobacco leaves. Few transcription factors regulating the biosynthesis of polyphenols have been identified in tobacco so far. In this study, two NtWRKY33 genes were identified from N. tabacum genome. NtWRKY33a showed higher transcriptional activity than NtWRKY33b, and encoded a nuclear localized protein. Overexpression and knock-out of NtWRKY33a gene revealed that NtWRKY33a inhibited the accumulation of rutin, scopoletin, and total polyphenols, but meanwhile promoted the biosynthesis of CGA. Chromatin immunoprecipitation and Dual-Luc assays indicated that NtWRKY33a could directly bind to the promoters of NtMYB4 and NtHCT, and thus induced the transcription of these two genes. The contents of polyphenols in ntwrky33a, ntmy4, and ntwrky33a/ntmyb4 mutants further confirmed that the repression of NtWRKY33a on the biosynthesis of rutin, scopoletin, and total polyphenols depends on the activity of NtMYB4. Moreover, the promotion of NtHCT by NtWRKY33a modulates the distribution of metabolism flux into the synthesis of CGA. Ectopic expression of NtWRKY33a inhibit the expression of NtSAUR14, NtSAUR59, NtSAUR66, NtIAA4, NtIAA17, and NtIAA19 genes, indicating that NtWRKY33a might be involved in the regulation of plant auxin response. Our study revealed new functions of NtWRKY33a in regulating the synthesis of polyphenols, and provided a promising target for manipulating polyphenols contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Pingjun Huang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Guo P, Zhang B, Hu Z, Zhou S, Wang Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation in purple flowering stalk (Brassica campestris L. var. purpurea Bailey). PLANT MOLECULAR BIOLOGY 2023; 111:57-72. [PMID: 36207656 DOI: 10.1007/s11103-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.
Collapse
Affiliation(s)
- Pengyu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Bin Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- School of Agricultural Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuang Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
42
|
Shi Z, Han X, Wang G, Qiu J, Zhou LJ, Chen S, Fang W, Chen F, Jiang J. Transcriptome analysis reveals chrysanthemum flower discoloration under high-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1003635. [PMID: 36186082 PMCID: PMC9515547 DOI: 10.3389/fpls.2022.1003635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Temperature is an important environmental factor affecting plant anthocyanin synthesis. High temperatures are associated with decreased anthocyanin pigmentation in chrysanthemum. To reveal the effects of high temperature on anthocyanin biosynthesis in chrysanthemum, ray florets of the heat-sensitive cultivar "Nannong Ziyunying" (ZYY) were subjected to RNA sequencing. A total of 18,286 unigenes were differentially expressed between the control and treatment groups. Functional annotation and enrichment analyses of these unigenes revealed that the heat shock response and flavonoid pathways were significantly enriched, suggesting that the expression of these genes in response to high temperature is associated with the fading of chrysanthemum flower color. In addition, genes related to anthocyanin synthesis and heat shock response were differentially expressed under high-temperature stress. Finally, to further investigate the molecular mechanism of discoloration under high-temperature stress and facilitate the use of marker-assisted breeding for developing novel heat-tolerant cultivars, these results were used to mine candidate genes by analyzing changes in their transcription levels in chrysanthemum.
Collapse
|
43
|
Chen C, Xie F, Shah K, Hua Q, Chen J, Zhang Z, Zhao J, Hu G, Qin Y. Genome-Wide Identification of WRKY Gene Family in Pitaya Reveals the Involvement of HmoWRKY42 in Betalain Biosynthesis. Int J Mol Sci 2022; 23:ijms231810568. [PMID: 36142481 PMCID: PMC9502481 DOI: 10.3390/ijms231810568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/16/2022] Open
Abstract
The WRKY gene family is a plant-specific transcription factor (TF) that regulates many physiological processes and (a) biotic stress responses. Despite this, little is known about the molecular properties and roles of WRKY TFs in pitaya betalain biosynthesis. Here we report the identification of 70 WRKY in Hylocereus undatus, their gene structure, locations on each chromosome, systematic phylogenetic analysis, conserved motif analysis, and synteny of HuWRKY genes. HmoWRKY42 is a Group IIb WRKY protein and contains a coiled-coil motif, a WRKY domain and a C2H2 zinc-finger motif (CX5CX23HXH). Results from yeast one-hybrid and transient dual-luciferase assays showed that HmoWRKY42 was a transcriptional repressor and could repress HmocDOPA5GT1 expression by binding to its promoter. Yeast two-hybrid assays showed that HmoWRKY42 could interact with itself to form homodimers. Knocking out the coiled-coil motif of HmoWRKY42 prevented its self-interaction and prevented it from binding to the HmocDOPA5GT1 promoter. Knocking out the WRKY domain and C2H2 zinc-finger motif sequence of HmoWRKY42 also prevented it from binding to the HmocDOPA5GT1 promoter. The coiled-coil motif, the WRKY domain and the C2H2 zinc finger motif are key motifs for the binding of HmoWRKY42 to the HmocDOPA5GT1 promoter. HmoWRKY42 is localized in the nucleus and possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1. As far as we know, no reports are available on the role of HmoWRKY42 in pitaya betalain biosynthesis. The results provide an important foundation for future analyses of the regulation and functions of the HuWRKY gene family.
Collapse
|
44
|
Zhou Z, Li H, Wei R, Li D, Lu W, Weng Z, Yang Z, Guo Y, Lin Y, Chen H. RNA-seq reveals transcriptional differences in anthocyanin and vitamin biosynthetic pathways between black and white rice. Gene X 2022; 844:146845. [PMID: 36038026 DOI: 10.1016/j.gene.2022.146845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Anthocyanins and vitamins in black rice are the micronutrients vital to human health, both of which predominantly accumulate in the bran fraction. Some studies have demonstrated that black rice contains more vitamins compared with common white rice, indicating potential association between anthocyanin and vitamin accumulation. In this study, transcriptomes of pericarps collected from 27 black rice accessions and 49 white rice accessions at 10 days after flowering (DAF) were sequenced and analyzed. We identified 830 differentially expressed genes (DEGs) including 58 transcription factors (TFs) between black and white rice. Among 58 differentially expressed transcription factors, OsTTG1 was confirmed to be the one and only WD40 repeat protein regulating anthocyanin biosynthesis in the pericarp. Moreover, we identified 53 differentially expressed synthetic-related genes among 42 main synthesis enzymes in the biosynthesis pathway of seven vitamins including β-carotene, vitamin B1, vitamin B2, vitamin B5, vitamin B7, vitamin B9 and vitamin E. Collectively, our results provide valuable insights into the molecular mechanism of biosynthesis of anthocyanins and vitamins and the potential effect of anthocyanin biosynthesis on vitamin biosynthesis in black rice.
Collapse
Affiliation(s)
- Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruixue Wei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dianwei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zijin Weng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zenan Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yongmei Guo
- Food Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Dong W, Tang L, Peng Y, Qin Y, Lin Y, Xiong X, Hu X. Comparative transcriptome analysis of purple-fleshed sweet potato and its yellow-fleshed mutant provides insight into the transcription factors involved in anthocyanin biosynthesis in tuberous root. FRONTIERS IN PLANT SCIENCE 2022; 13:924379. [PMID: 36003808 PMCID: PMC9393619 DOI: 10.3389/fpls.2022.924379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In various plant species, many transcription factors (TFs), such as MYB, bHLH, and WD40, have been identified as regulators of anthocyanin biosynthesis in underground organs. However, the regulatory elements of anthocyanin biosynthesis in the tuberous roots of sweet potato have not been elucidated yet. Here, we selected the purple-fleshed sweet potato cultivar "Zhezi1" (ZZ P ) and its spontaneous yellow-fleshed mutant "Xinli" (XL Y ) to investigate the regulatory mechanism of the anthocyanin biosynthesis in the tuberous roots of sweet potato. By analyzing the IbMYB1 genotype in ZZ P and XL Y , we found that the IbMYB1-2, a MYB TF involved in anthocyanin biosynthesis, was missing in the XL Y genome, which might lead to an extreme decrease in anthocyanins in XL Y . A comparative transcriptome analysis of ZZ P and XL Y was conducted to find the TFs involved in anthocyanin biosynthesis in ZZ P and XL Y . The anthocyanin structural genes were significantly enriched among the differentially expressed genes. Moreover, one MYB activator (IbMYB1), one bHLH (IbbHLH2), three WRKY activator candidates (IbWRKY21, IbWRKY24, and IbWRKY44), and two MYB repressors (IbMYB27 and IbMYBx-ZZ) were highly expressed in ZZ P accompanied with anthocyanin structural genes. We also tested the expression of these TFs in six purple- and two orange-fleshed sweet potato cultivars. Interestingly, most of these TFs were significantly positively correlated with anthocyanin contents in these cultivars. The function of the anthocyanin biosynthesis repression of IbMYB27 and IbMYBx-ZZ was verified through transient co-transformation with IbMYB1 into tobacco leaves. Further functional verification of the above TFs was conducted by Y2H, BiFC, and dual-luciferase assays. These tests showed that the MYB-bHLH-WD40/MYB-bHLH-WD40-WRKY complex activated the promoter of anthocyanin structural gene IbDFR and promoters for IbWRKY44, IbMYB27, and IbMYBx-ZZ, indicating reinforcement and feedback regulation to maintain the level of anthocyanin accumulation in the tuberous roots of purple-fleshed sweet potato. These results may provide new insights into the regulatory mechanism of anthocyanin biosynthesis and accumulation in underground organs of sweet potatoes.
Collapse
Affiliation(s)
- Wen Dong
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Linfei Tang
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yali Peng
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuzhi Qin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuan Lin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinxi Hu
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
46
|
Su M, Zuo W, Wang Y, Liu W, Zhang Z, Wang N, Chen X. The WKRY transcription factor MdWRKY75 regulates anthocyanins accumulation in apples ( Malus domestica). FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:799-809. [PMID: 35577345 DOI: 10.1071/fp21146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Anthocyanins play important roles in plant secondary metabolism. Although previous studies have identified many transcription factors (TFs) that participate in the synthetic pathway of anthocyanins, the regulation mechanism of the pathway remain poorly understood. In this study, we identified a WRKY Group IIc TF, MdWRKY75, which contained a typical WRKYGQK heptapeptide sequence and a C2 H2 -zinc finger structure. Subcellular localisation assays found that MdWRKY75 was located in the nucleus. Overexpression of MdWRKY75 promoted the accumulation of anthocyanins in apple (Malus domestica L.) 'Orin' calli. MdWRKY75 mainly stimulated the accumulation of anthocyanins by binding to the promoter of MYB transcription factor, MdMYB1 . Our research could provide new insights into how WRKY TFs regulate the accumulation of anthocyanins in apples.
Collapse
Affiliation(s)
- Mengyu Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Weifang Zuo
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Wenjun Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China; and Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production in Shandong, Tai-An, China
| |
Collapse
|
47
|
Zhang X, Lin S, Peng D, Wu Q, Liao X, Xiang K, Wang Z, Tembrock LR, Bendahmane M, Bao M, Wu Z, Fu X. Integrated multi-omic data and analyses reveal the pathways underlying key ornamental traits in carnation flowers. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1182-1196. [PMID: 35247284 PMCID: PMC9129081 DOI: 10.1111/pbi.13801] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 05/20/2023]
Abstract
Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.
Collapse
Affiliation(s)
- Xiaoni Zhang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Dan Peng
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Quanshu Wu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Xuezhu Liao
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Kunli Xiang
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Zehao Wang
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Luke R. Tembrock
- Department of Agricultural BiologyColorado State UniversityFort CollinsCOUSA
| | - Mohammed Bendahmane
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Laboratoire Reproduction et Development des PlantesINRA‐CNRS‐Lyon1‐ENSEcole Normale Supérieure de LyonLyonFrance
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| | - Zhiqiang Wu
- Guangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Xiaopeng Fu
- Key Laboratory of Horticultural Plant BiologyCollege of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
48
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
49
|
Liu J, Wang Y, Zhang M, Wang Y, Deng X, Sun H, Yang D, Xu L, Song H, Yang M. Color fading in lotus (Nelumbo nucifera) petals is manipulated both by anthocyanin biosynthesis reduction and active degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:100-107. [PMID: 35325657 DOI: 10.1016/j.plaphy.2022.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/22/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Flower color is a key trait that determines the ornamental quality of aquatic lotus (Nelumbo nucifera). Color fading significantly decreases the ornamental value of lotus flowers. However, the molecular mechanism underlying lotus petal discoloration remains largely unknown. Here, the anthocyanin content and global transcriptional profiling of lotus petals of cultivar 'Qiusanse' in four developmental stages were analyzed. Five anthocyanin components were detected, and the total anthocyanin content decreased as the petal color changed from red to nearly white. Moreover, the malondialdehyde (MDA) content and peroxidase (POD) activity increased during color fading. RNA-seq analysis revealed a total of 4,092 differentially expressed genes (DEGs) between petal developmental stages. Notably, oxidoreductase and hydrolase activity related genes were overrepresented in DEGs. The expression pattern of key anthocyanin biosynthesis genes including, CHS, F3H, ANS, UFGT, and transcription factor regulators, including MYBs, WRKYs and bHLHs were correlated with anthocyanin accumulation. Interestingly, DEGs associated with anthocyanin degradation and vacuolar pH regulation, including peroxidase, proton pumps regulators such as WRKY3 and MYB5-like, were significantly upregulated during the late stages of flowering. This study reveals for the first time the transcriptional dynamics during lotus petal discoloration. Our results suggest the involvement of anthocyanin biosynthesis repressors and degrading genes as well as pH regulators in controlling color fading of lotus petals. The study also provides valuable information and candidate genes for improving the lotus flower color.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yunmeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xianbao Deng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liming Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China; Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
50
|
Yao H, Yang T, Qian J, Deng X, Dong L. Genome-Wide Analysis and Exploration of WRKY Transcription Factor Family Involved in the Regulation of Shoot Branching in Petunia. Genes (Basel) 2022; 13:855. [PMID: 35627239 PMCID: PMC9141166 DOI: 10.3390/genes13050855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/16/2023] Open
Abstract
The WRKY transcription factors (TFs) participate in various physiological, growth and developmental processes of plants. In our study, a total of 79 WRKY family members were identified and classified into three groups (Group I, Group IIa-e, and Group III) based on phylogenetic and conservative domain analyses. Conserved motif analysis showed that seven WRKYGQK domains changed. The promoter sequence analysis suggested that there were multiple stress- and hormone-related cis-regulatory elements in the promoter regions of PhWRKY genes. Expression patterns of PhWRKYs based on RNA-seq data revealed their diverse expression profiles in five tissues and under different treatments. Subcellular localization analysis showed that PhWRKY71 was located in the nucleus. In addition, overexpression of PhWRKY71 caused a significant increase in branch number. This indicated that PhWRKY71 played a critical role in regulating the shoot branching of Petuniahybrida. The above results lay the foundation for further revealing the functions of PhWRKY genes.
Collapse
Affiliation(s)
| | | | | | | | - Lili Dong
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China; (H.Y.); (T.Y.); (J.Q.); (X.D.)
| |
Collapse
|