1
|
Liu H, You H, Liu C, Zhao Y, Chen J, Chen Z, Li Y, Tang D, Shen Y, Cheng Z. GLUTAMYL-tRNA SYNTHETASE 1 deficiency confers thermosensitive male sterility in rice by affecting reactive oxygen species homeostasis. PLANT PHYSIOLOGY 2024; 196:1014-1028. [PMID: 38976569 DOI: 10.1093/plphys/kiae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.
Collapse
Affiliation(s)
- Huixin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanli You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changzhen Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzi Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wu Z, Yang Y, Li T, Shen Z, Zhou X, Zhang Y. Genetic characterization and fine mapping of a recessive genic male-sterile gene in flowering Chinese cabbage ( Brassica rapa var. parachinensis). 3 Biotech 2024; 14:160. [PMID: 38779526 PMCID: PMC11106044 DOI: 10.1007/s13205-024-04005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Brassica vegetables exhibit pronounced heterosis; nevertheless, investigations on fertility-related genes are scarce. The present study scrutinized a recessive genic male-sterile line, 7-3A, capable of generating a completely sterile population, holding significant promise for flowering Chinese cabbage breeding. By whole-genome resequencing of sterile and fertile plants, the male-sterile gene was confined to approximately 185 kb on chromosome A07, situated between markers C719 and NP10 in Brassica rapa var. Chiifu-401. Notably, substantial structural variation was identified within this region across diverse Brassica rapa reference genomes. Despite discernible expression level disparities of a homologous gene, Bnams4b, between male sterile and fertile plants, no sequence divergence was detected. Further elucidation is required to pinpoint a novel sterile gene within the candidate interval. This investigation contributes to the advancement of both the molecular-assisted breeding scheme for flowering Chinese cabbage and the comprehension of male sterility mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04005-7.
Collapse
Affiliation(s)
- Zengxiang Wu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yi Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Tingyao Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Zhuo Shen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Xuan Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| | - Yan Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong China
| |
Collapse
|
3
|
Xu C, Xu Y, Wang Z, Zhang X, Wu Y, Lu X, Sun H, Wang L, Zhang Q, Zhang Q, Li X, Xiao J, Li X, Zhao M, Ouyang Y, Huang X, Zhang Q. Spontaneous movement of a retrotransposon generated genic dominant male sterility providing a useful tool for rice breeding. Natl Sci Rev 2023; 10:nwad210. [PMID: 37621414 PMCID: PMC10446136 DOI: 10.1093/nsr/nwad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/26/2023] Open
Abstract
Male sterility in plants provides valuable breeding tools in germplasm innovation and hybrid crop production. However, genetic resources for dominant genic male sterility, which hold great promise to facilitate breeding processes, are extremely rare in natural germplasm. Here we characterized the Sanming Dominant Genic Male Sterility in rice and identified the gene SDGMS using a map-based cloning approach. We found that spontaneous movement of a 1978-bp long terminal repeat (LTR) retrotransposon into the promoter region of the SDGMS gene activates its expression in anther tapetum, which causes abnormal programmed cell death of tapetal cells resulting in dominant male sterility. SDGMS encodes a ribosome inactivating protein showing N-glycosidase activity. The activation of SDGMS triggers transcription reprogramming of genes responsive to biotic stress leading to a hypersensitive response which causes sterility. The results demonstrate that an ectopic gene activation by transposon movement can give birth to a novel trait which enriches phenotypic diversity with practical utility.
Collapse
Affiliation(s)
- Conghao Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifeng Xu
- Ningde Inspection and Testing Centre for Agricultural Product Quality and Safety, Ningde 352100, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuying Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyan Lu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongwei Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingfu Zhao
- Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianbo Huang
- Sanming Institute of Agricultural Sciences, Shaxian 365509, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Huang W, Li Y, Du Y, Pan L, Huang Y, Liu H, Zhao Y, Shi Y, Ruan YL, Dong Z, Jin W. Maize cytosolic invertase INVAN6 ensures faithful meiotic progression under heat stress. THE NEW PHYTOLOGIST 2022; 236:2172-2188. [PMID: 36104957 DOI: 10.1111/nph.18490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Faithful meiotic progression ensures the generation of viable gametes. Studies suggested the male meiosis of plants is sensitive to ambient temperature, but the underlying molecular mechanisms remain elusive. Here, we characterized a maize (Zea mays ssp. mays L.) dominant male sterile mutant Mei025, in which the meiotic process of pollen mother cells (PMCs) was arrested after pachytene. An Asp-to-Asn replacement at position 276 of INVERTASE ALKALINE NEUTRAL 6 (INVAN6), a cytosolic invertase (CIN) that predominantly exists in PMCs and specifically hydrolyses sucrose, was revealed to cause meiotic defects in Mei025. INVAN6 interacts with itself as well as with four other CINs and seven 14-3-3 proteins. Although INVAN6Mei025 , the variant of INVAN6 found in Mei025, lacks hydrolytic activity entirely, its presence is deleterious to male meiosis, possibly in a dominant negative repression manner through interacting with its partner proteins. Notably, heat stress aggravated meiotic defects in invan6 null mutant. Further transcriptome data suggest INVAN6 has a fundamental role for sugar homeostasis and stress tolerance of male meiocytes. In summary, this work uncovered the function of maize CIN in male meiosis and revealed the role of CIN-mediated sugar metabolism and signalling in meiotic progression under heat stress.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yunfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Du
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
| | - Lingling Pan
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yue Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yong-Ling Ruan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Joint Laboratory for International Cooperation in Crop Molecular Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| |
Collapse
|
5
|
Jiang J, Xu P, Zhang J, Li Y, Zhou X, Jiang M, Zhu J, Wang W, Yang L. Global transcriptome analysis reveals potential genes associated with genic male sterility of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1004781. [PMID: 36340380 PMCID: PMC9635397 DOI: 10.3389/fpls.2022.1004781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Rapeseed is the third leading source of edible oil in the world. Genic male sterility (GMS) lines provide crucial material for harnessing heterosis for rapeseed. GMS lines have been widely used successfully for rapeseed hybrid production. The physiological and molecular mechanism of pollen development in GMS lines of rapeseed (Brassica napus L.) need to be determined for the creation of hybrids and cultivation of new varieties. However, limited studies have focused on systematically mining genes that regulate the pollen development of GMS lines in B. napus. In the present study, to determine the stage at which pollen development begins to show abnormality in the GMS lines, we performed semi-thin section analysis of the anthers with five pollen development stages. The results indicated that the abnormal pollen development in DGMS lines might start at the meiotic stage, and abnormal pollen development in RGMS lines probably occurred before the tetrad stage. To investigate the critical genes and pathways involved in pollen development in GMS lines, we constructed and sequenced 24 transcriptome libraries for the flower buds from the fertile and sterile lines of two recessive GMS (RGMS) lines (6251AB and 6284AB) and two dominant GMS (DGMS) lines (4001AB and 4006AB). A total of 23,554 redundant DEGs with over two-fold change between sterile and fertile lines were obtained. A total of 346 DEGs were specifically related to DGMS, while 1,553 DEGs were specifically related to RGMS. A total of 1,545 DEGs were shared between DGMS and RGMS. And 253 transcription factors were found to be differentially expressed between the sterile and fertile lines of GMS. In addition, 6,099 DEGs possibly related to anther, pollen, and microspore development processes were identified. Many of these genes have been reported to be involved in anther and microspore developmental processes. Several DEGs were speculated to be key genes involved in the regulation of fertility. Three differentially expressed genes were randomly selected and their expression levels were verified by quantitative PCR (qRT-PCR). The results of qRT-PCR largely agreed with the transcriptome sequencing results. Our findings provide a global view of genes that are potentially involved in GMS occurrence. The expression profiles and function analysis of these DEGs were provided to expand our understanding of the complex molecular mechanism in pollen and sterility development in B. napus.
Collapse
Affiliation(s)
- Jianxia Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Pengfei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junying Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yanli Li
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xirong Zhou
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Meiyan Jiang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jifeng Zhu
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Weirong Wang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Liyong Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Li Z, Yuan R, Wang M, Hong M, Zhu L, Li X, Guo R, Wu G, Zeng X. Development of the PARMS Marker of the Dominant Genic Male Sterility (DGMS) Line and Its Utilization in Rapeseed ( Brassica napus L.) Breeding. PLANTS (BASEL, SWITZERLAND) 2022; 11:421. [PMID: 35161402 PMCID: PMC8840721 DOI: 10.3390/plants11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The 8029AB line is a dominant genic male sterility (DGMS) two-type line in Brassica napus L., which can be used in a three-line approach for the seed production of rapeseed hybrids. Genetic analyses have demonstrated that the sterility of 8029A is controlled by a single dominant nuclear gene (BnMS5e) interacting with one recessive gene (BnMS5c). Six pairs of penta-primer amplification refractory mutation system (PARMS) markers were designed according to the sequence of BnMS5a, BnMS5c and BnMS5e. Two pairs of these PARMS markers were successfully identified and validated. The PARMS markers MS5-1Fc/MS5-1Ft/MS5-1R12 could distinguish BnMS5c from BnMS5a/BnMS5e, and the PARMS markers MS5-2Ft/MS5-2Fa/MS5-1R12 could genotype BnMS5a and BnMS5c/BnMS5e. The combination of these two pairs of PARMS markers could be used to identify the presence or absence of BnMS5a/BnMS5c/BnMS5e effectively. Consequently, marker-assisted selection can be carried out in the early generation to shorten the breeding period and improve the breeding efficiency.
Collapse
Affiliation(s)
- Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua 321007, China;
| | - Rong Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Miao Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Meiyan Hong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Li Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Xiaofei Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Ruixing Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| | - Xinhua Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China; (R.Y.); (M.W.); (M.H.); (L.Z.); (X.L.); (R.G.)
| |
Collapse
|
7
|
Yuan J, Shi G, Yang Y, Braynen J, Shi X, Wei X, Hao Z, Zhang X, Yuan Y, Tian B, Xie Z, Wei F. Non-homologous chromosome pairing during meiosis in haploid Brassica rapa. PLANT CELL REPORTS 2021; 40:2421-2434. [PMID: 34542669 DOI: 10.1007/s00299-021-02786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Cytological observations of chromosome pairing showed that evolutionarily genome duplication might reshape non-homologous pairing during meiosis in haploid B. rapa. A vast number of flowering plants have evolutionarily undergone whole genome duplication (WGD) event. Typically, Brassica rapa is currently considered as an evolutionary mesohexaploid, which has more complicated genomic constitution among flowering plants. In this study, we demonstrated chromosome behaviors in haploid B. rapa to understand how meiosis proceeds in presence of a single homolog. The findings showed that a diploid-like chromosome pairing was generally adapted during meiosis in haploid B. rapa. Non-homologous chromosomes in haploid cells paired at a high-frequency at metaphase I, over 50% of examined meiocytes showed at least three pairs of bivalents then equally segregated at anaphase I during meiosis. The fluorescence immunostaining showed that the cytoskeletal configurations were mostly well-organized during meiosis. Moreover, the expressed genes identified at meiosis in floral development was rather similar between haploid and diploid B. rapa, especially the expression of known hallmark genes pivotal to chromosome synapsis and homologous recombination were mostly in haploid B. rapa. Whole-genome duplication evolutionarily homology of genomic segments might be an important reason for this phenomenon, which would reshape the first division course of meiosis and influence pollen development in plants.
Collapse
Affiliation(s)
- Jiachen Yuan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Gongyao Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yan Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Janeen Braynen
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xinjie Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Zhuolin Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T & R Base of Zhengzhou University, Zhengzhou, 450002, Henan, China
| | - Baoming Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Fang Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Henan International Joint Laboratory of Crop Gene Resources and Improvements, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
8
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
9
|
Hu D, Jing J, Snowdon RJ, Mason AS, Shen J, Meng J, Zou J. Exploring the gene pool of Brassica napus by genomics-based approaches. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1693-1712. [PMID: 34031989 PMCID: PMC8428838 DOI: 10.1111/pbi.13636] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 05/08/2023]
Abstract
De novo allopolyploidization in Brassica provides a very successful model for reconstructing polyploid genomes using progenitor species and relatives to broaden crop gene pools and understand genome evolution after polyploidy, interspecific hybridization and exotic introgression. B. napus (AACC), the major cultivated rapeseed species and the third largest oilseed crop in the world, is a young Brassica species with a limited genetic base resulting from its short history of domestication, cultivation, and intensive selection during breeding for target economic traits. However, the gene pool of B. napus has been significantly enriched in recent decades that has been benefit from worldwide effects by the successful introduction of abundant subgenomic variation and novel genomic variation via intraspecific, interspecific and intergeneric crosses. An important question in this respect is how to utilize such variation to breed crops adapted to the changing global climate. Here, we review the genetic diversity, genome structure, and population-level differentiation of the B. napus gene pool in relation to known exotic introgressions from various species of the Brassicaceae, especially those elucidated by recent genome-sequencing projects. We also summarize progress in gene cloning, trait-marker associations, gene editing, molecular marker-assisted selection and genome-wide prediction, and describe the challenges and opportunities of these techniques as molecular platforms to exploit novel genomic variation and their value in the rapeseed gene pool. Future progress will accelerate the creation and manipulation of genetic diversity with genomic-based improvement, as well as provide novel insights into the neo-domestication of polyploid crops with novel genetic diversity from reconstructed genomes.
Collapse
Affiliation(s)
- Dandan Hu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinjie Jing
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Rod J. Snowdon
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
| | - Annaliese S. Mason
- Department of Plant BreedingIFZ Research Centre for Biosystems, Land Use and NutritionJustus Liebig UniversityGiessenGermany
- Plant Breeding DepartmentINRESThe University of BonnBonnGermany
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jinling Meng
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jun Zou
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
10
|
Cai B, Wang T, Fu W, Harun A, Ge X, Li Z. Dosage-Dependent Gynoecium Development and Gene Expression in Brassica napus-Orychophragmus violaceus Addition Lines. PLANTS (BASEL, SWITZERLAND) 2021; 10:1766. [PMID: 34579298 PMCID: PMC8469106 DOI: 10.3390/plants10091766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Distant hybridization usually leads to female sterility of the hybrid but the mechanism behind this is poorly understood. Complete pistil abortion but normal male fertility was shown by one Brassica napus-Orychophragmus violaceus monosomic alien addition line (MA, AACC + 1 IO, 2n = 39) produced previously. To study the effect of a single O. violaceus chromosome addition on pistil development in different genetic backgrounds, hybrids between the MA and B. carinata (BBCC), B. juncea (AABB), and two synthetic hexaploids (AABBCC) were firstly produced in this study which show complete female sterility. A microspore culture was further performed to produce the haploid monosomic alien addition line (HMA, AC + 1 IO, 2n = 20) and disomic addition line (DA, AACC + 2 IO, 2n = 40) together with haploid (H, AC, 2n = 19) and double haploid (DH, AACC, 2n = 38) plants of B. napus from MA to investigate the dosage effect of the alien O. violaceus chromosome on pistil development and gene expression. Compared to MA, the development of the pistils of DA and HMA was completely or partially recovered, in which the pistils could swell and elongate to a normal shape after open pollination, although no seeds were produced. Comparative RNA-seq analyses revealed that the numbers of the differentially expressed genes (DEGs) were significantly different, dosage-dependent, and consistent with the phenotypic difference in pairwise comparisons of HMA vs. H, DA vs. DH, MA vs. DH, MA vs. DA, and MA vs. HMA. The gene ontology (GO) enrichment analysis of DEGs showed that a number of genes involved in the development of the gynoecium, embryo sac, ovule, and integuments. Particularly, several common DEGs for pistil development shared in HMA vs. H and DA vs. DH showed functions in genotoxic stress response, auxin transport, and signaling and adaxial/abaxial axis specification. The results provided updated information for the molecular mechanisms behind the gynoecium development of B. napus responding to the dosage of alien O. violaceus chromosomes.
Collapse
Affiliation(s)
| | | | | | | | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.C.); (T.W.); (W.F.); (A.H.); (Z.L.)
| | | |
Collapse
|
11
|
Zeng X, Li H, Li K, Yuan R, Zhao S, Li J, Luo J, Li X, Ma H, Wu G, Yan X. Evolution of the Brassicaceae-specific MS5-Like family and neofunctionalization of the novel MALE STERILITY 5 gene essential for male fertility in Brassica napus. THE NEW PHYTOLOGIST 2021; 229:2339-2356. [PMID: 33128826 PMCID: PMC7894334 DOI: 10.1111/nph.17053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/08/2020] [Indexed: 05/22/2023]
Abstract
New genes (or lineage-specific genes) can facilitate functional innovations. MALE STERILITY 5 (MS5) in Brassica napus is a fertility-related new gene, which has two wild-type alleles (BnMS5a and BnMS5c ) and two mutant alleles (BnMS5b and BnMS5d ) that could induce male sterility. Here, we studied the history and functional evolution of MS5 homologs in plants by phylogenetic analysis and molecular genetic experiments. We identified 727 MS5 homologs and found that they define a Brassicaceae-specific gene family that has expanded partly via multiple tandem gene duplications and also probably transpositions. The MS5 in B. napus is inherited from a basic diploid ancestor of B. rapa. Molecular genetic experiments indicate that BnMS5a and BnMS5c are functionally distinct in B. napus and that BnMS5d can inhibit BnMS5a in B. napus in a dosage-dependent manner. The BnMS5a protein can move in coordination with meiotic telomeres and interact with the nuclear envelope protein SUN1, with a possible crucial role in meiotic chromosome behavior. In summary, BnMS5 belongs to a Brassicaceae-specific new gene family, and has gained a novel function that is essential for male fertility in B. napus through neofunctionalization that has likely occurred since the origin of B. rapa.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hao Li
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Shengbo Zhao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Jun Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaofei Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Hong Ma
- Department of Biologythe Huck Institutes of the Life Sciencesthe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureWuhan430062China
| |
Collapse
|
12
|
Rolling Circle Amplification (RCA)-Mediated Genome-Wide ihpRNAi Mutant Library Construction in Brassica napus. Int J Mol Sci 2020; 21:ijms21197243. [PMID: 33008068 PMCID: PMC7582411 DOI: 10.3390/ijms21197243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
With the successful completion of genomic sequencing for Brassica napus, identification of novel genes, determination of functions performed by genes, and exploring the molecular mechanisms underlying important agronomic traits were challenged. Mutagenesis-based functional genomics techniques including chemical, physical, and insertional mutagenesis have been used successfully in the functional characterization of genes. However, these techniques had their disadvantages and inherent limitations for allopolyploid Brassica napus, which contained a large number of homologous and redundant genes. Long intron-spliced hairpin RNA (ihpRNA) constructs which contained inverted repeats of the target gene separated by an intron, had been shown to be very effective in triggering RNAi in plants. In the present study, the genome-wide long ihpRNA library of B. napus was constructed with the rolling circle amplification (RCA)-mediated technology. Using the phytoene desaturase (PDS) gene as a target control, it was shown that the RCA-mediated long ihpRNA construct was significantly effective in triggering gene silence in B. napus. Subsequently, the resultant long ihpRNA library was transformed into B. napus to produce corresponding RNAi mutants. Among the obtained transgenic ihpRNA population of B. napus, five ihpRNA lines with observable mutant phenotypes were acquired including alterations in the floral model and the stamen development. The target genes could be quickly identified using specific primers. These results showed that the RCA-mediated ihpRNA construction method was effective for the genome-wide long ihpRNA library of B. napus, therefore providing a platform for study of functional genomics in allopolyploid B. napus.
Collapse
|
13
|
Xin Q, Wang X, Gao Y, Xu D, Xie Z, Dong F, Wan L, Yang L, Yang G, Hong D. Molecular mechanisms underpinning the multiallelic inheritance of MS5 in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1723-1734. [PMID: 32445599 DOI: 10.1111/tpj.14857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The Brassica-specific gene MS5 mediates early meiotic progression, and its allelic variants contribute to a valuable genic male sterility three-line hybrid production system in rapeseed (Brassica napus L.). However, the underlying mechanisms of its triallelic inheritance are poorly understood. Herein, we show that the restorer allele MS5a and the maintainer allele MS5c are both necessary for male fertility in B. napus. The functional divergence of MS5a and MS5c is strongly related to sequence variations in their coding regions and less strongly to their promoter regions. The male-sterile allele MS5b encodes a chimeric protein containing only the complete MS5 coiled-coil (CC) domain, having lost the MS5 superfamily domain. Both MS5a and MS5c can form homodimers in the nucleus via the CC domain. MS5b can interact competitively with MS5a or MS5c to form non-functional heterodimers. Owing to the close transcript levels of MS5b and MS5c in MS5b MS5c , these heterodimers induced a dominant-negative effect of MS5b on MS5c , resulting in a male-sterile phenotype. The extremely high transcript abundance of MS5a maintains sufficient MS5a homodimers in MS5a MS5b , causing the recovery of male sterility. These findings provide substantial genetic and molecular evidence to improve our understanding of the mechanisms underlying the multiallelic inheritance of MS5, and enable the construction of a solid foundation for improved use of the MS5-controlled GMS system in Brassica species.
Collapse
Affiliation(s)
- Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiang Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yupeng Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dongdong Xu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lili Wan
- Institute of Crop, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, 430065, China
| | - Liyong Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
14
|
Zhang X, Chen H, Zhang Q, Zhang Y, Xiao Z, Guo Y, Yu F, Hu S. Cytological and genetic characterisation of dominant GMS line Shaan-GMS in Brassica napus L. J Appl Genet 2020; 61:477-488. [PMID: 32715437 DOI: 10.1007/s13353-020-00570-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Abstract
Genic male sterility (GMS) is an effective pollination control system applied in the hybrid breeding of Brassica napus L. Shaan-GMS is a spontaneous mutant of dominant GMS in B. napus. In this research, anther abortion in the homozygous two-type line 9A15AB derived from Shaan-GMS was characterised with the combined use of light microscopy and transmission electron microscopy. Results indicated that the most striking differences between the fertile and sterile plants occurred in the tapetum in the early microsporocyte stage. In sterile plants, the tapetal cells were irregularly arranged, multi-layered and occupied the growing space of microsporocytes. When entering into meiosis, the tapetum cells degraded and the cytoplasm fused. Some oval monolayer or bilayer membrane organelles existed in the tapetal cells in sterile anthers. Mitochondria in the tapetal cells were abnormal, and middle layer cells degraded early. Pollen mother cells of Shaan-GMS degenerated at the start of meiosis and ceased at the anaphase I stage, with no dyads or tetrads formed. The combined effects of the abnormal development of the tapetum, the middle layer cells and meiosis lead to male sterility in Shaan-GMS. Inheritance of male sterility of Shaan-GMS is controlled by a monogenically multiallelic locus with three different alleles (Ms, ms and Mf), with a relationship expressed as Mf > Ms and Ms > ms. The findings help lay the foundation for illustrating the mechanism of male sterility and the utilisation of Shaan-GMS in rapeseed.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, People's Republic of China
| | - Haiyan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yunxiao Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zhaodi Xiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China. .,College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Wang X, Gao Y, Guan Z, Xie Z, Zhang D, Yin P, Yang G, Hong D, Xin Q. Structural analysis of the meiosis-related protein MS5 reveals non-canonical papain enhancement by cystatin-like folds. FEBS Lett 2020; 594:2462-2471. [PMID: 32415887 DOI: 10.1002/1873-3468.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/05/2022]
Abstract
MS5 is a meiosis-related protein belonging to the Brassicaceae-specific domain of unknown function family and characterized by the MS5 superfamily domain (MSD). In this study, we elucidated the three-dimensional crystal structure and potential biochemical function of the MSD. It was observed that the MSD adopts a cystatin-like fold, mainly consisting of a central α-helix and four- or five-stranded antiparallel β-sheets that wrap around it. However, unlike cystatins, which inhibit cysteine proteases, the MSD displayed allosteric activation of papain. We believe that our study provides insight into novel mechanisms of proteolytic enzyme regulation and may serve as a basis for functional studies of the MS5 family proteins in plants.
Collapse
Affiliation(s)
- Xiang Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yupeng Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoqi Xie
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Xin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. NATURE PLANTS 2020; 6:34-45. [PMID: 31932676 PMCID: PMC6965005 DOI: 10.1038/s41477-019-0577-7] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/29/2019] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus) is the second most important oilseed crop in the world but the genetic diversity underlying its massive phenotypic variations remains largely unexplored. Here, we report the sequencing, de novo assembly and annotation of eight B. napus accessions. Using pan-genome comparative analysis, millions of small variations and 77.2-149.6 megabase presence and absence variations (PAVs) were identified. More than 9.4% of the genes contained large-effect mutations or structural variations. PAV-based genome-wide association study (PAV-GWAS) directly identified causal structural variations for silique length, seed weight and flowering time in a nested association mapping population with ZS11 (reference line) as the donor, which were not detected by single-nucleotide polymorphisms-based GWAS (SNP-GWAS), demonstrating that PAV-GWAS was complementary to SNP-GWAS in identifying associations to traits. Further analysis showed that PAVs in three FLOWERING LOCUS C genes were closely related to flowering time and ecotype differentiation. This study provides resources to support a better understanding of the genome architecture and acceleration of the genetic improvement of B. napus.
Collapse
Affiliation(s)
- Jia-Ming Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhiquan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shuo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Dongxu Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Run Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wen-Zhao Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuanfang Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yuting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
17
|
Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2313-2324. [PMID: 31037811 PMCID: PMC6835171 DOI: 10.1111/pbi.13142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jian Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Present address:
Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhou225009JiangsuChina
| | - Guangqin Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
18
|
Comparative transcript profiling and cytological observation of the newly bred recessive genic male sterility non-heading Chinese cabbage (Brassica rapa ssp. chinensis) line WS24-3A. Genes Genomics 2019; 41:1475-1492. [PMID: 31576519 DOI: 10.1007/s13258-019-00867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND WS24-3A is a newly bred non-heading Chinese cabbage genic male-sterile line, in which sterility is controlled by a recessive gene, designated as Bra2ms. WS24-3A has been used for hybrid breeding. OBJECTIVE To reveal the underlying molecular mechanisms responsible for the sterility of WS24-3A. METHODS Cytological observation of the process of sterile/fertile anther development was performed to determine the tissue and stage in which sterility occurs. Phenotyping and transcriptomic analyses were performed to identify differentially expressed genes (DEGs) between sterile and fertile flower buds at different stages. RESULTS Cytological analysis revealed no tetrads at stage 7 or at later stages of anther development, and the degradation of callose was delayed. Abnormal meiocytes were surrounded by sustaining callose that degenerated gradually in WS24-3A. Comparative transcript profiling identified 3282 DEGs during three anther developmental stages, namely, pre-meiotic anther, meiotic anther, and anthers with single-celled pollen stage. The difference in DEG percentage between up-regulated and down-regulated at meiotic anther stage was obviously larger than at the other two stages; further, most DEGs are important for male meiosis, callose synthesis and dissolution, and tapetum development. Ten DEGs were found to be involved in anther and pollen development, which were analyzed by quantitative PCR. CONCLUSION Bra2ms affected gene expression in meiocytes and associated with callose synthesis, degradation and tapetum development. Our results provide clues to elucidate the molecular mechanism of genic male sterility in non-heading Chinese cabbage.
Collapse
|
19
|
Abstract
Meiosis halves diploid chromosome numbers to haploid levels that are essential for sexual reproduction in most eukaryotes. Meiotic recombination ensures the formation of bivalents between homologous chromosomes (homologs) and their subsequent proper segregation. It also results in genetic diversity among progeny that influences evolutionary responses to selection. Moreover, crop breeding depends upon the action of meiotic recombination to rearrange elite traits between parental chromosomes. An understanding of the molecular mechanisms that drive meiotic recombination is important for both fundamental research and practical applications. This review emphasizes advances made during the past 5 years, primarily in Arabidopsis and rice, by summarizing newly characterized genes and proteins and examining the regulatory mechanisms that modulate their action.
Collapse
Affiliation(s)
- Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Gregory P Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-3280, USA
| |
Collapse
|
20
|
Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E. Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. THE NEW PHYTOLOGIST 2018; 217:367-377. [PMID: 29034956 DOI: 10.1111/nph.14836] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/02/2017] [Indexed: 05/22/2023]
Abstract
Structural variation is a major source of genetic diversity and an important substrate for selection. In allopolyploids, homoeologous exchanges (i.e. between the constituent subgenomes) are a very frequent type of structural variant. However, their direct impact on gene content and gene expression had not been determined. Here, we used a tissue-specific mRNA-Seq dataset to measure the consequences of homoeologous exchanges (HE) on gene expression in Brassica napus, a representative allotetraploid crop. We demonstrate that expression changes are proportional to the change in gene copy number triggered by the HEs. Thus, when homoeologous gene pairs have unbalanced transcriptional contributions before the HE, duplication of one copy does not accurately compensate for loss of the other and combined homoeologue expression also changes. These effects are, however, mitigated over time. This study sheds light on the origins, timing and functional consequences of homeologous exchanges in allopolyploids. It demonstrates that the interplay between new structural variation and the resulting impacts on gene expression, influences allopolyploid genome evolution.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Aurélien Blary
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Delphine Charif
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| | - Joseph Tran
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Sandrine Balzergue
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, Beaucouzé cedex, 49071, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne, UMR CNRS 8071, ENSIIE, USC INRA, Évry Cedex, France
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles Cedex, 78000, France
| |
Collapse
|
21
|
Liu XQ, Liu ZQ, Yu CY, Dong JG, Hu SW, Xu AX. TGMS in Rapeseed ( Brassica napus) Resulted in Aberrant Transcriptional Regulation, Asynchronous Microsporocyte Meiosis, Defective Tapetum, and Fused Sexine. FRONTIERS IN PLANT SCIENCE 2017; 8:1268. [PMID: 28775729 PMCID: PMC5517502 DOI: 10.3389/fpls.2017.01268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2'-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Cheng-Yu Yu
- Department of Plant Science and Technology, College of Agronomy, Northwest A&F UniversityYangling, China
| | | | | | | |
Collapse
|
22
|
Zeng X, Yan X, Yuan R, Li K, Wu Y, Liu F, Luo J, Li J, Wu G. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. FRONTIERS IN PLANT SCIENCE 2017; 7:1966. [PMID: 28101089 PMCID: PMC5209369 DOI: 10.3389/fpls.2016.01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 05/13/2023]
Abstract
Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|