1
|
Rajendran P, Prasad M, Ali EM, Sekar R, AlZahrani AM, Karobari MI, Genena MAM, Abdallah BM. Molecular insight into histone methylation as a novel target for oral squamous cell carcinoma: future hope in personalised medicine. J Cancer 2025; 16:1575-1590. [PMID: 39991574 PMCID: PMC11843246 DOI: 10.7150/jca.103243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent type of malignant epithelial neoplasm that affects the oral cavity. It has been a significant health concern in many countries for a long time since it was usually treated with surgery, radiation, and/or chemotherapy. Drug resistance is the primary issue in patient populations and scientific research, which promotes OSCC tumour cell invasion and migration. Thus, identifying highly specific therapeutic targets could be the potential approach for more successful treatment of OSCC. It is still challenging to understand the genetic causes of oral carcinogenesis due to its highly varied clinic-pathological parameters. It is important to remember that signaling channels and complexes that affect chromatin accessibility control gene expression, which in turn affects cell development and differentiation. Histones undergo post-translational alteration to give this platform. Understanding the processes of gene regulation through histone methylation and its modifications could enhance the early detection, prognostic prediction, and therapy of OSCC. To be properly used as a therapeutic target, histone methylation in OSCC requires more investigation. This review details the dysregulated histone methylation and the modifying enzymes linked to the development and aetiology of OSCC. Furthermore, the part that lysine methylation plays in cell migration, chemo-resistance, and OSCC invasion is also investigated.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Monisha Prasad
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105, TN, India
| | - Enas M Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Abdullah M AlZahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Basem M Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| |
Collapse
|
2
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|