1
|
Li J, Zhou X, Wang Y, Song S, Ma L, He Q, Lu M, Zhang K, Yang Y, Zhao Q, Jin W, Jiang C, Guo Y. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4. J Genet Genomics 2023; 50:960-970. [PMID: 37127254 DOI: 10.1016/j.jgg.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca2+ sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na+/K+ homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shu Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian He
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minhui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qian Zhao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China; National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100093, China.
| |
Collapse
|
2
|
Busche M, Hake S, Brunkard JO. Terminal ear 1 and phytochromes B1/B2 regulate maize leaf initiation independently. Genetics 2022; 223:6887217. [PMID: 36495288 PMCID: PMC9910401 DOI: 10.1093/genetics/iyac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Higher plants generate new leaves from shoot meristems throughout their vegetative lifespan. The tempo of leaf initiation is dynamically regulated by physiological cues, but little is known about the underlying genetic signaling pathways that coordinate this rate. Two maize (Zea mays) mutants, terminal ear1 (te1) and phytochrome B1;phytochrome B2 (phyB1;phyB2), oppositely affect leaf initiation rates and total leaf number at the flowering time: te1 mutants make leaves faster whereas phyB1;phyB2 mutants make leaves slower than wild-type plants. To test whether PhyB1, PhyB2, and TE1 act in overlapping or distinct pathways to regulate leaf initiation, we crossed te1 and phyB1;phyB2 created an F2 population segregating for these three mutations and quantified various phenotypes among the resulting genotypes, including leaf number, leaf initiation rate, plant height, leaf length, leaf width, number of juvenile leaves, stalk diameter, and dry shoot biomass. Leaf number and initiation rate in phyB1;phyB2;te1 plants fell between the extremes of the two parents, suggesting an additive genetic interaction between te1 and phyB1;phyB2 rather than epistasis. Therefore, we conclude that PhyB1, PhyB2, and TE1 likely control leaf initiation through distinct signaling pathways.
Collapse
Affiliation(s)
- Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA,Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Jacob O Brunkard
- Corresponding author: Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
3
|
Best NB, McSteen P. Mapping Maize Mutants Using Bulked-Segregant Analysis and Next-Generation Sequencing. Curr Protoc 2022; 2:e591. [PMID: 36350247 DOI: 10.1002/cpz1.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Forward genetics is used to identify the genetic basis for a phenotype. The approach involves identifying a mutant organism exhibiting a phenotype of interest and then mapping the causative locus or gene. Bulked-segregant analysis (BSA) is a quick and effective approach to map mutants using pools of mutants and wild-type plants from a segregating population to identify linkage of the mutant phenotype, and this approach has been successfully used in plants. Traditional linkage mapping approaches are outdated and time intensive, and can be very difficult. With the highly evolved development and reduction in cost of high-throughput sequencing, this new approach combined with BSA has become extremely effective in multiple plant species, including Zea mays (maize). While the approach is incredibly powerful, careful experimental design, bioinformatic mapping techniques, and interpretation of results are important to obtain the desired results in an effective and timely manner. Poor design of a mapping population, limitations in bioinformatic experience, and inadequate understanding of sequence data are limitations of these approaches for the researcher. Here, we describe a straightforward protocol for mapping mutations responsible for a phenotype of interest in maize, using high-throughput sequencing and BSA. Specifically, we discuss relevant aspects of developing a mutant mapping population. This is followed by a detailed protocol for DNA preparation and analysis of short-read sequences to map and identify candidate causative mutations responsible for the mutant phenotype of interest. We provide command-line and perl scripts to complete the bioinformatic analysis of the mutant sequence data. This protocol lays out the design of the BSA, bioinformatic approaches, and interpreting the sequencing data. These methods are very adaptable to any forward genetics experiment and provide a step-by-step approach to identifying the genetic basis of a maize mutant phenotype. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Bulked-segregant analysis and high-throughput sequencing to map maize mutants.
Collapse
Affiliation(s)
- Norman B Best
- USDA-ARS, Plant Genetics Research Unit, Columbia, Missouri
| | - Paula McSteen
- Division of Biological Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
4
|
Abraham‐Juárez MJ, Busche M, Anderson AA, Lunde C, Winders J, Christensen SA, Hunter CT, Hake S, Brunkard JO. Liguleless narrow and narrow odd dwarf act in overlapping pathways to regulate maize development and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:881-896. [PMID: 36164819 PMCID: PMC9827925 DOI: 10.1111/tpj.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Narrow odd dwarf (nod) and Liguleless narrow (Lgn) are pleiotropic maize mutants that both encode plasma membrane proteins, cause similar developmental patterning defects, and constitutively induce stress signaling pathways. To investigate how these mutants coordinate maize development and physiology, we screened for protein interactors of NOD by affinity purification. LGN was identified by this screen as a strong candidate interactor, and we confirmed the NOD-LGN molecular interaction through orthogonal experiments. We further demonstrated that LGN, a receptor-like kinase, can phosphorylate NOD in vitro, hinting that they could act in intersecting signal transduction pathways. To test this hypothesis, we generated Lgn-R;nod mutants in two backgrounds (B73 and A619), and found that these mutations enhance each other, causing more severe developmental defects than either single mutation on its own, with phenotypes including very narrow leaves, increased tillering, and failure of the main shoot. Transcriptomic and metabolomic analyses of the single and double mutants in the two genetic backgrounds revealed widespread induction of pathogen defense genes and a shift in resource allocation away from primary metabolism in favor of specialized metabolism. These effects were similar in each single mutant and heightened in the double mutant, leading us to conclude that NOD and LGN act cumulatively in overlapping signaling pathways to coordinate growth-defense tradeoffs in maize.
Collapse
Affiliation(s)
- María Jazmín Abraham‐Juárez
- Laboratorio Nacional de Genómica para la BiodiversidadUnidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuanajuato36821Mexico
| | - Michael Busche
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
| | - Alyssa A. Anderson
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - China Lunde
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
| | - Jeremy Winders
- Genomics and Bioinformatics Research Unit, US Department of Agriculture‐Agricultural Research ServiceRaleighNorth CarolinaUSA
| | | | - Charles T. Hunter
- Chemistry Research Unit, USDA Agricultural Research ServiceGainesvilleFlorida32608USA
| | - Sarah Hake
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| | - Jacob O. Brunkard
- Laboratory of GeneticsUniversity of WisconsinMadisonWisconsin53706USA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCalifornia94720USA
- Plant Gene Expression CenterUSDA Agricultural Research ServiceAlbanyCalifornia94710USA
| |
Collapse
|
5
|
Deng Y, Liu S, Zhang Y, Tan J, Li X, Chu X, Xu B, Tian Y, Sun Y, Li B, Xu Y, Deng XW, He H, Zhang X. A telomere-to-telomere gap-free reference genome of watermelon and its mutation library provide important resources for gene discovery and breeding. MOLECULAR PLANT 2022; 15:1268-1284. [PMID: 35746868 DOI: 10.1016/j.molp.2022.06.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/30/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Watermelon, Citrullus lanatus, is the world's third largest fruit crop. Reference genomes with gaps and a narrow genetic base hinder functional genomics and genetic improvement of watermelon. Here, we report the assembly of a telomere-to-telomere gap-free genome of the elite watermelon inbred line G42 by incorporating high-coverage and accurate long-read sequencing data with multiple assembly strategies. All 11 chromosomes have been assembled into single-contig pseudomolecules without gaps, representing the highest completeness and assembly quality to date. The G42 reference genome is 369 321 829 bp in length and contains 24 205 predicted protein-coding genes, with all 22 telomeres and 11 centromeres characterized. Furthermore, we established a pollen-EMS mutagenesis protocol and obtained over 200 000 M1 seeds from G42 . In a sampling pool, 48 monogenic phenotypic mutations, selected from 223 M1 and 78 M2 mutants with morphological changes, were confirmed. The average mutation density was 1 SNP/1.69 Mb and 1 indel/4.55 Mb per M1 plant and 1 SNP/1.08 Mb and 1 indel/6.25 Mb per M2 plant. Taking advantage of the gap-free G42 genome, 8039 mutations from 32 plants sampled from M1 and M2 families were identified with 100% accuracy, whereas only 25% of the randomly selected mutations identified using the 97103v2 reference genome could be confirmed. Using this library and the gap-free genome, two genes responsible for elongated fruit shape and male sterility (ClMS1) were identified, both caused by a single base change from G to A. The validated gap-free genome and its EMS mutation library provide invaluable resources for functional genomics and genetic improvement of watermelon.
Collapse
Affiliation(s)
- Yun Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Shoucheng Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yilin Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Jingsheng Tan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xiaopeng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xiao Chu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Binghua Xu
- Jiangsu Xuhuai Area Huaiyin Institute of Agricultural Science, Huaian, Jiangsu 223300, China
| | - Yao Tian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yudong Sun
- Jiangsu Xuhuai Area Huaiyin Institute of Agricultural Science, Huaian, Jiangsu 223300, China
| | - Bosheng Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yunbi Xu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China; School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing 100871, China.
| | - Xingping Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| |
Collapse
|
6
|
Richardson AE, Hake S. The power of classic maize mutants: Driving forward our fundamental understanding of plants. THE PLANT CELL 2022; 34:2505-2517. [PMID: 35274692 PMCID: PMC9252469 DOI: 10.1093/plcell/koac081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 05/12/2023]
Abstract
Since Mendel, maize has been a powerhouse of fundamental genetics research. From testing the Mendelian laws of inheritance, to the first genetic and cytogenetic maps, to the use of whole-genome sequencing data for crop improvement, maize is at the forefront of genetics advances. Underpinning much of this revolutionary work are the classic morphological mutants; the "freaks" that stood out in the field to even the untrained eye. Here we review some of these classic developmental mutants and their importance in the history of genetics, as well as their key role in our fundamental understanding of plant development.
Collapse
Affiliation(s)
- Annis E Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
7
|
Filyushin MA, Khatefov EB, Kochieva EZ, Shchennikova AV. Comparative Analysis of Transcription Factor Genes liguleless1 and liguleless1-like in Teosinte and Modern Maize Accessions. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542203005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Li S, Meng S, Weng J, Wu Q. Fine-tuning shoot meristem size to feed the world. TRENDS IN PLANT SCIENCE 2022; 27:355-363. [PMID: 34743928 DOI: 10.1016/j.tplants.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
In order to maintain food security for the world's growing population, crop yields need to be significantly improved. Domestication and crop improvement involve modification of traits such as fruit size and seed number to optimize productivity. Although these traits are selected at the mature stage, they are determined during the development of shoot meristem, a tissue that forms successive meristems and reproductive organs that make edible fruits or seeds. Therefore, the architecture of reproductive organs and yield-related traits are determined during the maturation of shoot meristem. Here, we highlight recent progress in understanding how shoot meristem size affects yield-related traits and outline the strategies to fine-tune meristem regulatory genes to meet the demands of a growing population and promote sustainable agriculture.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100091, China
| | - Shujun Meng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianfeng Weng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
9
|
Strable J, Nelissen H. The dynamics of maize leaf development: Patterned to grow while growing a pattern. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102038. [PMID: 33940553 DOI: 10.1016/j.pbi.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Leaves are a significant component of the shoot system in grasses, functioning in light capture and photosynthesis. Leaf width, length, and angle are expressions of development that collectively define canopy architecture. Thus, the distinctive morphology of grass leaves is an interdependent readout of developmental patterning and growth along the proximal-distal, medial-lateral, and adaxial-abaxial axes. Here, we review the chronology of patterning and growth, namely along the proximal-distal axis, during maize leaf development. We underscore that patterning and growth occur simultaneously, making use of shared developmental gradients and molecular pathways.
Collapse
Affiliation(s)
- Josh Strable
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA 27695.
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB Center for Plant Systems Biology, 9052, Ghent, Belgium.
| |
Collapse
|
10
|
Nie S, Wang B, Ding H, Lin H, Zhang L, Li Q, Wang Y, Zhang B, Liang A, Zheng Q, Wang H, Lv H, Zhu K, Jia M, Wang X, Du J, Zhao R, Jiang Z, Xia C, Qiao Z, Li X, Liu B, Zhu H, An R, Li Y, Jiang Q, Chen B, Zhang H, Wang D, Tang C, Yuan Y, Dai J, Zhan J, He W, Wang X, Shi J, Wang B, Gong M, He X, Li P, Huang L, Li H, Pan C, Huang H, Yuan G, Lan H, Nie Y, Li X, Zhao X, Zhang X, Pan G, Wu Q, Xu F, Zhang Z. Genome assembly of the Chinese maize elite inbred line RP125 and its EMS mutant collection provide new resources for maize genetics research and crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:40-54. [PMID: 34252236 DOI: 10.1111/tpj.15421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.
Collapse
Affiliation(s)
- Shujun Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
| | - Haiping Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qigui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yujiao Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bin Zhang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Anping Liang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qi Zheng
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
- The Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Hui Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Huayang Lv
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Kun Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Minghui Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiaotong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Jiyuan Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Runtai Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhenzhen Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Caina Xia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Zhenghao Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohu Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Boyan Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Hongbo Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Rong An
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yucui Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qian Jiang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Benfang Chen
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Dening Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Changxiao Tang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yang Yuan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jie Dai
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jing Zhan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Weiqiang He
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Xuebo Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Jian Shi
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Bin Wang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Min Gong
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Xiujing He
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Peng Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Li Huang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hui Li
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Chao Pan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hong Huang
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Guangsheng Yuan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Hai Lan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Yongxin Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| | - Qingyu Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Xu
- The Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhiming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
- Maize Research Institute, Sichuan Agricultural University, ChengDu, 611130, China
| |
Collapse
|
11
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
12
|
Xie S, Luo H, Huang Y, Wang Y, Ru W, Shi Y, Huang W, Wang H, Dong Z, Jin W. A Missense Mutation in a Large Subunit of Ribonucleotide Reductase Confers Temperature-Gated Tassel Formation. PLANT PHYSIOLOGY 2020; 184:1979-1997. [PMID: 33020253 PMCID: PMC7723098 DOI: 10.1104/pp.20.00219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/15/2020] [Indexed: 05/15/2023]
Abstract
Temperature is a major factor regulating plant growth. To reproduce at extreme temperatures, plants must develop normal reproductive organs when exposed to temperature changes. However, little is known about the underlying molecular mechanisms. Here, we identified the maize (Zea mays) mutant thermosensitive vanishing tassel1-R (tvt1-R), which lacks tassels at high (restrictive) temperatures due to shoot apical meristem (SAM) arrest, but forms normal tassels at moderate (permissive) temperatures. The critical stage for phenotypic conversion in tvt1-R mutants is V2 to V6 (Vn, where "n" is the number of leaves with collars visible). Positional cloning and allelism and complementation tests revealed that a G-to-A mutation causing a Arg277-to-His277 substitution in ZmRNRL1, a ribonucleotide reductase (RNR) large subunit (RNRL), confers the tvt1-R mutant phenotype. RNR regulates the rate of deoxyribonucleoside triphosphate (dNTP) production for DNA replication and damage repair. By expression, yeast two-hybrid, RNA sequencing, and flow cytometric analyses, we found that ZmRNRL1-tvt1-R failed to interact with all three RNR small subunits at 34°C due to the Arg277-to-His277 substitution, which could impede RNR holoenzyme (α2β2) formation, thereby decreasing the dNTP supply for DNA replication. Decreased dNTP supply may be especially severe for the SAM that requires a continuous, sufficient dNTP supply for rapid division, as demonstrated by the SAM arrest and tassel absence in tvt1-R mutants at restrictive temperatures. Our study reveals a novel mechanism of temperature-gated tassel formation in maize and provides insight into the role of RNRL in SAM maintenance.
Collapse
Affiliation(s)
- Shiyi Xie
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, Hunan Agricultural University, Changsha 410128, China
| | - Yumin Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaxin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Ru
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunlu Shi
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Hai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhaobin Dong
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Maize Introgression Library Provides Evidence for the Involvement of liguleless1 in Resistance to Northern Leaf Blight. G3-GENES GENOMES GENETICS 2020; 10:3611-3622. [PMID: 32816917 PMCID: PMC7534436 DOI: 10.1534/g3.120.401500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.
Collapse
|