1
|
Wei P, Li X, Zhang K, Zhao X, Dong C, Zhao J. Loss of the cytochrome b6f subunit PetN destabilizes the complex and severely impairs state transitions in Anabaena variabilis. PLANT PHYSIOLOGY 2025; 197:kiaf094. [PMID: 40073199 DOI: 10.1093/plphys/kiaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The cytochrome b6f complex (Cyt b6f) plays pivotal roles in both linear and cyclic electron transport of oxygenic photosynthesis in plants and cyanobacteria. The 4 large subunits of Cyt b6f are responsible for organizing the electron transfer chain within Cyt b6f and have their counterparts in the cytochrome bc1 complex in other bacteria. The 4 small subunits of Cyt b6f are unique to oxygenic photosynthesis, and their functions remain to be elucidated. Here, we report that Cyt b6f was destabilized by the loss of PetN, one of the small subunits, in a petN mutant (ΔpetN) of Anabaena variabilis ATCC 29413 and that the amount of the large subunits of Cyt b6f decreased to 20%-25% of that in the wild type (WT). The oxygen evolution activity of ΔpetN was ∼30% of that from the WT, and the activity could largely be restored by the addition of N,N,N', N'-tetramethyl-p-phenylenediamine (TMPD), which functions as an electron carrier and bypasses Cyt b6f. Both linear and cyclic electron transfer of the mutant became partially insensitive to the Cyt b6f inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone. Although the plastoquinone pool was largely reduced in ΔpetN under normal light conditions, the mutant had a substantially higher PSII/PSI ratio than the WT. State transitions in ΔpetN were abolished, as revealed by 77 K fluorescence spectra and room temperature fluorescence kinetics in the presence of TMPD. Our findings strongly suggest that Cyt b6f is required for state transitions in the cyanobacteria.
Collapse
Affiliation(s)
- Peijun Wei
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Xiying Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Kun Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xueang Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Gene Function and Modulation Research, Beijing 100871, China
| |
Collapse
|
2
|
Pfennig T, Kullmann E, Zavřel T, Nakielski A, Ebenhöh O, Červený J, Bernát G, Matuszyńska AB. Shedding light on blue-green photosynthesis: A wavelength-dependent mathematical model of photosynthesis in Synechocystis sp. PCC 6803. PLoS Comput Biol 2024; 20:e1012445. [PMID: 39264951 PMCID: PMC11421815 DOI: 10.1371/journal.pcbi.1012445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.
Collapse
Affiliation(s)
- Tobias Pfennig
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Kullmann
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Andreas Nakielski
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Ebenhöh
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Theoretical and Quantitative Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Gábor Bernát
- Aquatic Botany and Microbial Ecology Research Group, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Barbara Matuszyńska
- Computational Life Science, Department of Biology, RWTH Aachen University, Aachen, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Tomar RS, Niedzwiedzki DM, Liu H. Altered excitation energy transfer between phycobilisome and photosystems in the absence of ApcG, a small linker peptide, in Synechocystis sp. PCC 6803, a cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149049. [PMID: 38801856 DOI: 10.1016/j.bbabio.2024.149049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.
Collapse
Affiliation(s)
- Rupal Singh Tomar
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Haijun Liu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA.
| |
Collapse
|
4
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
5
|
Kiselevsky DB, Samuilova OV, Samuilov VD. Epigallocatechin Gallate: pH-Dependent Redox Properties and Effect on Respiration, Photosynthesis, and Cell Death in Pea Plants. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:211-220. [PMID: 37072325 PMCID: PMC10000359 DOI: 10.1134/s0006297923020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 03/12/2023]
Abstract
In vitro redox properties of the green tea component epigallocatechin gallate (EGCG) and its effect on pea plant cells were investigated. EGCG was found to exhibit both pro- and antioxidant properties. In solutions, EGCG was oxidized by oxygen at physiological (slightly alkaline) pH values with the generation of O2-• and H2O2, the reaction being slowed down by a decrease in the medium pH. On the other hand, EGCG functioned as an electron donor for peroxidase, resulting in the H2O2 utilization. EGCG suppressed respiration, reduced mitochondrial transmembrane potential difference and inhibited electron transfer in the photosynthetic electron transport chain in pea leaf cells (leaf cuttings and epidermis). Among components of the photosynthetic redox chain, Photosystem II was the least sensitive to the EGCG action. In the epidermis, EGCG reduced the rate of reactive oxygen species formation that was induced by NADH. EGCG at the concentrations from 10 μM to 1 mM suppressed the KCN-induced death of guard cells in the epidermis, which was determined from the destruction of cell nuclei. EGCG at a concentration of 10 mM disrupted the barrier function of the guard cell plasma membrane, increasing its permeability to propidium iodide.
Collapse
Affiliation(s)
- Dmitry B Kiselevsky
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Olga V Samuilova
- Department of Biological Chemistry, Institute of Biodesign and Modeling of Complex Systems, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Vitaly D Samuilov
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
6
|
Manoj KM, Gideon DA, Parashar A, Nirusimhan V, Annadurai P, Jacob VD, Manekkathodi A. Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons. J Biomol Struct Dyn 2022; 40:11024-11056. [PMID: 34328391 DOI: 10.1080/07391102.2021.1953607] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this second half of our treatise on oxygenic photosynthesis, we provide support for the murburn model of the light reaction of photosynthesis and ratify key predictions made in the first part. Molecular docking and visualization of various ligands of quinones/quinols (and their derivatives) with PS II/Cytochrome b6f complexes did not support chartered 2e-transport role of quinols. A broad variety of herbicides did not show any affinity/binding-based rationales for inhibition of photosynthesis. We substantiate the proposal that disubstituted phenolics (perceived as protonophores/uncouplers or affinity-based inhibitors in the classical purview) serve as interfacial modulators of diffusible reactive (oxygen) species or DR(O)S. The DRS-based murburn model is evidenced by the identification of multiple ADP-binding sites on the extra-membraneous projection of protein complexes and structure/distribution of the photo/redox catalysts. With a panoramic comparison of the redox metabolic machinery across diverse organellar/cellular systems, we highlight the ubiquitous one-electron murburn facets (cofactors of porphyrin, flavin, FeS, other metal centers and photo/redox active pigments) that enable a facile harnessing of the utility of DRS. In the summative analyses, it is demonstrated that the murburn model of light reaction explains the structures of membrane supercomplexes recently observed in thylakoids and also accounts for several photodynamic experimental observations and evolutionary considerations. In toto, the work provides a new orientation and impetus to photosynthesis research. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Daniel Andrew Gideon
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Abhinav Parashar
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vijay Nirusimhan
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Pushparaj Annadurai
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Afsal Manekkathodi
- RedOx Lab, Department of Life Sciences, Satyamjayatu: The Science & Ethics Foundation, Palakkad District, Kerala, India
| |
Collapse
|
7
|
Chiang YH, Huang YJ, Fu HY. Identification of multiple nonphotochemical quenching processes in the extremophilic red alga Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2022; 154:125-141. [PMID: 36155877 DOI: 10.1007/s11120-022-00963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Nonphotochemical quenching acts as a frontline response to prevent excitation energy from reaching the photochemical reaction center of photosystem II before photodamage occurs. Strong fluorescence quenching after merely one multi-turnover saturating light pulse characterizes a unique feature of nonphotochemical quenching in red algae. Several mechanisms underlying red algal nonphotochemical quenching have been proposed, yet which process(es) dominantly account for the strong fluorescence quenching is still under discussion. Here we assessed multiple nonphotochemical quenching processes in the extremophilic red alga Cyanidioschyzon merolae under light pulse and continuous illumination conditions. To assess the nonphotochemical quenching processes that might display different kinetics, fluorescence emission spectra at 77 K were measured after different periods of light treatments, and external fluorophores were added for normalization of the fluorescence level. The phycobilisome- and photosystem II-related nonphotochemical quenching processes were distinguished by light preferentially absorbed by phycobilisomes and photosystems, respectively. Multiple nonphotochemical quenching processes, including the energetic decoupling of phycobilisomes from photosystem II, the energy spillover from phycobilisomes to photosystem I and from photosystem II to photosystem I, were identified along with the previously identified intrinsic quenching within photosystem II. The ability to use multiple nonphotochemical quenching processes appears to maximize the light harvesting efficiency for photochemistry and to provide the flexibility of the energy redistribution between photosystem II and photosystem I. The effect of the various ionophores on the nonphotochemical quenching level suggests that nonphotochemical quenching is modulated by transmembrane gradients of protons and other cations.
Collapse
Affiliation(s)
- Yu-Hao Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Yu-Jia Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Han-Yi Fu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
8
|
Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophys Rev 2022; 14:871-886. [DOI: 10.1007/s12551-022-00979-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/02/2022] [Indexed: 01/08/2023] Open
|
9
|
Arshad R, Saccon F, Bag P, Biswas A, Calvaruso C, Bhatti AF, Grebe S, Mascoli V, Mahbub M, Muzzopappa F, Polyzois A, Schiphorst C, Sorrentino M, Streckaité S, van Amerongen H, Aro EM, Bassi R, Boekema EJ, Croce R, Dekker J, van Grondelle R, Jansson S, Kirilovsky D, Kouřil R, Michel S, Mullineaux CW, Panzarová K, Robert B, Ruban AV, van Stokkum I, Wientjes E, Büchel C. A kaleidoscope of photosynthetic antenna proteins and their emerging roles. PLANT PHYSIOLOGY 2022; 189:1204-1219. [PMID: 35512089 PMCID: PMC9237682 DOI: 10.1093/plphys/kiac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Francesco Saccon
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Steffen Grebe
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Vincenzo Mascoli
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexandros Polyzois
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | | | - Mirella Sorrentino
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
- Department of Agricultural Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Simona Streckaité
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | | | - Eva-Mari Aro
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jan Dekker
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
| | - Sylvie Michel
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Klára Panzarová
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexander V Ruban
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ivo van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
10
|
Cryo-EM structures of the Synechocystis sp. PCC 6803 cytochrome b6f complex with and without the regulatory PetP subunit. Biochem J 2022; 479:1487-1503. [PMID: 35726684 PMCID: PMC9342900 DOI: 10.1042/bcj20220124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
In oxygenic photosynthesis, the cytochrome b6f (cytb6f) complex links the linear electron transfer (LET) reactions occurring at photosystems I and II and generates a transmembrane proton gradient via the Q-cycle. In addition to this central role in LET, cytb6f also participates in a range of processes including cyclic electron transfer (CET), state transitions and photosynthetic control. Many of the regulatory roles of cytb6f are facilitated by auxiliary proteins that differ depending upon the species, yet because of their weak and transient nature the structural details of these interactions remain unknown. An apparent key player in the regulatory balance between LET and CET in cyanobacteria is PetP, a ∼10 kDa protein that is also found in red algae but not in green algae and plants. Here, we used cryogenic electron microscopy to determine the structure of the Synechocystis sp. PCC 6803 cytb6f complex in the presence and absence of PetP. Our structures show that PetP interacts with the cytoplasmic side of cytb6f, displacing the C-terminus of the PetG subunit and shielding the C-terminus of cytochrome b6, which binds the heme cn cofactor that is suggested to mediate CET. The structures also highlight key differences in the mode of plastoquinone binding between cyanobacterial and plant cytb6f complexes, which we suggest may reflect the unique combination of photosynthetic and respiratory electron transfer in cyanobacterial thylakoid membranes. The structure of cytb6f from a model cyanobacterial species amenable to genetic engineering will enhance future site-directed mutagenesis studies of structure-function relationships in this crucial ET complex.
Collapse
|
11
|
Wang X, Ge H, Zhang Y, Wang Y, Zhang P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life (Basel) 2022; 12:life12050713. [PMID: 35629380 PMCID: PMC9143257 DOI: 10.3390/life12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
High salinity is a common environmental factor that limits productivity and growth for photosynthetic organisms. Here, we identified a mutant defected in gene sll1770, which encodes a Ser/Thr protein kinase SpkI, with a significantly low maximal quantum yield of PSII under high salt condition in Synechocystis sp. PCC 6803. Physiological characterization demonstrated that the ΔspkI mutant had normal growth and photosynthesis under control condition. And a significantly higher NPQ capacity was also observed in ΔspkI when grown under control condition. However, when grown under high salt condition, ΔspkI exhibited apparently slower growth as well as decreased net photosynthesis and PSII activity. Western blot analysis demonstrated that the amount of major photosynthetic proteins declined sharply in ΔspkI when cells grown under high salt condition. Redox kinetics measurement suggested that the activities of PSI and cytochrome b6f complex were modified in ΔspkI under high salt condition, which resulted in a more reduced PQ pool in ΔspkI. Chlorophyll fluorescence traces suggested that the OA− reoxidation and state transition was also impaired in ΔspkI under high salt condition. Above all, we propose that Ser/Thr protein kinase SpkI plays a role in maintaining high-effective photosynthesis during high-salt acclimation process in Synechocystis.
Collapse
Affiliation(s)
- Xiaoting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
- Correspondence:
| |
Collapse
|
12
|
Cyclophilin anaCyp40 regulates photosystem assembly and phycobilisome association in a cyanobacterium. Nat Commun 2022; 13:1690. [PMID: 35354803 PMCID: PMC8967839 DOI: 10.1038/s41467-022-29211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cyclophilins, or immunophilins, are proteins found in many organisms including bacteria, plants and humans. Most of them display peptidyl-prolyl cis-trans isomerase activity, and play roles as chaperones or in signal transduction. Here, we show that cyclophilin anaCyp40 from the cyanobacterium Anabaena sp. PCC 7120 is enzymatically active, and seems to be involved in general stress responses and in assembly of photosynthetic complexes. The protein is associated with the thylakoid membrane and interacts with phycobilisome and photosystem components. Knockdown of anacyp40 leads to growth defects under high-salt and high-light conditions, and reduced energy transfer from phycobilisomes to photosystems. Elucidation of the anaCyp40 crystal structure at 1.2-Å resolution reveals an N-terminal helical domain with similarity to PsbQ components of plant photosystem II, and a C-terminal cyclophilin domain with a substrate-binding site. The anaCyp40 structure is distinct from that of other multi-domain cyclophilins (such as Arabidopsis thaliana Cyp38), and presents features that are absent in single-domain cyclophilins.
Collapse
|
13
|
Chen H, Wang Q. Microalgae-Based Green Bio-Manufacturing—How Far From Us. Front Microbiol 2022; 13:832097. [PMID: 35250947 PMCID: PMC8891535 DOI: 10.3389/fmicb.2022.832097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Qiang Wang
| |
Collapse
|
14
|
Solymosi D, Shevela D, Allahverdiyeva Y. Nitric oxide represses photosystem II and NDH-1 in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148507. [PMID: 34728155 DOI: 10.1016/j.bbabio.2021.148507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Photosynthetic electron transfer comprises a series of light-induced redox reactions catalysed by multiprotein machinery in the thylakoid. These protein complexes possess cofactors susceptible to redox modifications by reactive small molecules. The gaseous radical nitric oxide (NO), a key signalling molecule in green algae and plants, has earlier been shown to bind to Photosystem (PS) II and obstruct electron transfer in plants. The effects of NO on cyanobacterial bioenergetics however, have long remained obscure. In this study, we exposed the model cyanobacterium Synechocystis sp. PCC 6803 to NO under anoxic conditions and followed changes in whole-cell fluorescence and oxidoreduction of P700 in vivo. Our results demonstrate that NO blocks photosynthetic electron transfer in cells by repressing PSII, PSI, and likely the NDH dehydrogenase-like complex 1 (NDH-1). We propose that iron‑sulfur clusters of NDH-1 complex may be affected by NO to such an extent that ferredoxin-derived electron injection to the plastoquinone pool, and thus cyclic electron transfer, may be inhibited. These findings reveal the profound effects of NO on Synechocystis cells and demonstrate the importance of controlled NO homeostasis in cyanobacteria.
Collapse
Affiliation(s)
- Daniel Solymosi
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland
| | - Dmitry Shevela
- Chemical Biological Centre, Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI 20014, Finland.
| |
Collapse
|
15
|
Mallén-Ponce MJ, Huertas MJ, Sánchez-Riego AM, Florencio FJ. Depletion of m-type thioredoxin impairs photosynthesis, carbon fixation, and oxidative stress in cyanobacteria. PLANT PHYSIOLOGY 2021; 187:1325-1340. [PMID: 34618018 PMCID: PMC8566235 DOI: 10.1093/plphys/kiab321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Thioredoxins (Trxs) are disulfide oxidoreductases that regulate many biological processes. The m-type thioredoxin (TrxA) is the only Trx present in all oxygenic photosynthetic organisms. Extensive biochemical and proteomic analyses have identified many TrxA target proteins in different photosynthetic organisms. However, the precise function of this essential protein in vivo is still poorly known. In this study, we generated a conditional Synechocystis sp. PCC 6803 mutant strain (STXA2) using an on-off promoter that is able to survive with only 2% of the TrxA level of the wild-type (WT) strain. STXA2 characterization revealed that TrxA depletion results in growth arrest and pronounced impairment of photosynthesis and the Calvin-Benson-Bassham (CBB) cycle. Analysis of the in vivo redox state of the bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase showed higher levels of oxidation that affected enzyme activity in STXA2. This result implies that TrxA-mediated redox regulation of the CBB cycle is conserved in both cyanobacteria and chloroplasts, although the targets have different evolutionary origins. The STXA2 strain also accumulated more reactive oxygen species and was more sensitive to oxidative stress than the WT. Analysis of the in vivo redox state of 2-Cys peroxiredoxin revealed full oxidation, corresponding with TrxA depletion. Overall, these results indicate that depletion of TrxA in STXA2 greatly alters the cellular redox state, interfering with essential processes such as photosynthetic machinery operativity, carbon assimilation, and oxidative stress response. The TrxA regulatory role appears to be conserved along the evolution of oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
16
|
Bolychevtseva YV, Tropin IV, Stadnichuk IN. State 1 and State 2 in Photosynthetic Apparatus of Red Microalgae and Cyanobacteria. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1181-1191. [PMID: 34903149 DOI: 10.1134/s0006297921100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 06/14/2023]
Abstract
Imbalanced light absorption by photosystem I (PSI) and photosystem II (PSII) in oxygenic phototrophs leads to changes in interaction of photosystems altering the linear electron flow. In plants and green algae, this imbalance is mitigated by a partial migration of the chlorophyll a/b containing light-harvesting antenna between the two photosystem core complexes. This migration is registered as fluorescence changes of the pigment apparatus and is termed the reverse transitions between States 1 and 2. By contrast, the molecular mechanism of State 1/2 transitions in phycobilisome (PBS)-containing photosynthetics, cyanobacteria and red algae, is still insufficiently understood. The suggested hypotheses - PBS movement along the surface of thylakoid membrane between PSI and PSII complexes, reversible PBS detachment from the dimeric PSII complex, and spillover - have some limitations as they do not fully explain the accumulated data. Here, we have recorded changes in the stationary fluorescence emission spectra of red algae and cyanobacteria in States 1/2 at room temperature, which allowed us to offer an explanation of the existing contradictions. The change of room temperature fluorescence of chlorophyll belonged to PSII was revealed, while the fluorescence of PBS associated with the PSII complexes remained during States 1/2 transitions at the stable level. Only the reversible dissociation of PBS from the monomeric PSI was revealed earlier which implied different degree of surface contact of PBS with the two photosystems. The detachment of PBS from the PSI corresponds to ferredoxin oxidation as electron carrier and the increase of cyclic electron transport in the pigment apparatus in State I.
Collapse
Affiliation(s)
- Yulia V Bolychevtseva
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Ivan V Tropin
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Igor N Stadnichuk
- Timiryasev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127726, Russia.
| |
Collapse
|
17
|
Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 2021; 96:2373-2391. [PMID: 34101323 DOI: 10.1111/brv.12759] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
18
|
Bhatti AF, Kirilovsky D, van Amerongen H, Wientjes E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. PLANT PHYSIOLOGY 2021; 186:569-580. [PMID: 33576804 PMCID: PMC8154081 DOI: 10.1093/plphys/kiab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 05/28/2023]
Abstract
State transitions are a low-light acclimation response through which the excitation of Photosystem I (PSI) and Photosystem II (PSII) is balanced; however, our understanding of this process in cyanobacteria remains poor. Here, picosecond fluorescence kinetics was recorded for the cyanobacterium Synechococcus elongatus using fluorescence lifetime imaging microscopy (FLIM), both upon chlorophyll a and phycobilisome (PBS) excitation. Fluorescence kinetics of single cells obtained using FLIM were compared with those of ensembles of cells obtained with time-resolved fluorescence spectroscopy. The global distribution of PSI and PSII and PBSs was mapped making use of their fluorescence kinetics. Both radial and lateral heterogeneity were found in the distribution of the photosystems. State transitions were studied at the level of single cells. FLIM results show that PSII quenching occurs in all cells, irrespective of their state (I or II). In S. elongatus cells, this quenching is enhanced in State II. Furthermore, the decrease of PSII fluorescence in State II was homogeneous throughout the cells, despite the inhomogeneous PSI/PSII ratio. Finally, some disconnected PBSs were resolved in most State II cells. Taken together our data show that PSI is enriched in the inner thylakoid, while state transitions occur homogeneously throughout the cell.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, Wageningen, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Deficiency in flavodiiron protein Flv3 promotes cyclic electron flow and state transition under high light in the cyanobacterium Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148318. [PMID: 32979345 DOI: 10.1016/j.bbabio.2020.148318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022]
Abstract
Photosynthetic organisms adjust their activity to changes in irradiance by different ways, including the operation of cyclic electron flow around photosystem I (PSI) and state transitions that redistribute amounts of light energy absorbed by PSI and PSII. In dark-acclimated wild type cells of Synechocystis PCC 6803, linear electron transport was activated after the first 500 ms of illumination, while cyclic electron flow around PSI was long predominant in the mutant deficient in flavodiiron protein Flv3. Chlorophyll P700 oxidation associated with activation of linear electron flow extended in the Flv3- mutant to several tens of seconds and included a P700+ re-reduction phase. Parallel monitoring of chlorophyll fluorescence and the redox state of P700 indicated that, at low light intensity both in wild type and in the Flv3- mutant, the transient re-reduction step coincided in time with S-M fluorescence rise, which reflected state 2-state 1 transition (Kaňa et al., 2012). Despite variations in the initial redox state of plastoquinone pool, the oxidases-deficient mutant, succinate dehydrogenase-deficient mutant, and wild type cells did not show the S-M rise under high-intensity light until additional Flv3- mutation was introduced in these strains. Thus, the lack of available electron acceptor for PSI was the main cause for the appearance of S-M fluorescence rise under high light. It is concluded that the lack of Flv3 protein promotes cyclic electron flow around PSI and facilitates the subsequent state 2-state 1 transition in the absence of strict relation to the dark-operated pathways of plastoquinone reduction or oxidation.
Collapse
|
20
|
Abstract
Photosynthetic membranes are typically densely packed with proteins, and this is crucial for their function in efficient trapping of light energy. Despite being crowded with protein, the membranes are fluid systems in which proteins and smaller molecules can diffuse. Fluidity is also crucial for photosynthetic function, as it is essential for biogenesis, electron transport, and protein redistribution for functional regulation. All photosynthetic membranes seem to maintain a delicate balance between crowding, order, and fluidity. How does this work in phototrophic bacteria? In this review, we focus on two types of intensively studied bacterial photosynthetic membranes: the chromatophore membranes of purple bacteria and the thylakoid membranes of cyanobacteria. Both systems are distinct from the plasma membrane, and both have a distinctive protein composition that reflects their specialized roles. Chromatophores are formed from plasma membrane invaginations, while thylakoid membranes appear to be an independent intracellular membrane system. We discuss the techniques that can be applied to study the organization and dynamics of these membrane systems, including electron microscopy techniques, atomic force microscopy, and many variants of fluorescence microscopy. We go on to discuss the insights that havebeen acquired from these techniques, and the role of membrane dynamics in the physiology of photosynthetic membranes. Membrane dynamics on multiple timescales are crucial for membrane function, from electron transport on timescales of microseconds to milliseconds to regulation and biogenesis on timescales of minutes to hours. We emphasize the open questions that remain in the field.
Collapse
Affiliation(s)
- Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
21
|
Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, van Amerongen H. State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148255. [PMID: 32619427 DOI: 10.1016/j.bbabio.2020.148255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/30/2022]
Abstract
Cyanobacteria can rapidly regulate the relative activity of their photosynthetic complexes photosystem I and II (PSI and PSII) in response to changes in the illumination conditions. This process is known as state transitions. If PSI is preferentially excited, they go to state I whereas state II is induced either after preferential excitation of PSII or after dark adaptation. Different underlying mechanisms have been proposed in literature, in particular i) reversible shuttling of the external antenna complexes, the phycobilisomes, between PSI and PSII, ii) reversible spillover of excitation energy from PSII to PSI, iii) a combination of both and, iv) increased excited-state quenching of the PSII core in state II. Here we investigated wild-type and mutant strains of Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 using time-resolved fluorescence spectroscopy at room temperature. Our observations support model iv, meaning that increased excited-state quenching of the PSII core occurs in state II thereby balancing the photochemistry of photosystems I and II.
Collapse
Affiliation(s)
- Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | | | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
22
|
Puzorjov A, McCormick AJ. Phycobiliproteins from extreme environments and their potential applications. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3827-3842. [PMID: 32188986 DOI: 10.1093/jxb/eraa139] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/13/2020] [Indexed: 05/18/2023]
Abstract
The light-harvesting phycobilisome complex is an important component of photosynthesis in cyanobacteria and red algae. Phycobilisomes are composed of phycobiliproteins, including the blue phycobiliprotein phycocyanin, that are considered high-value products with applications in several industries. Remarkably, several cyanobacteria and red algal species retain the capacity to harvest light and photosynthesise under highly selective environments such as hot springs, and flourish in extremes of pH and elevated temperatures. These thermophilic organisms produce thermostable phycobiliproteins, which have superior qualities much needed for wider adoption of these natural pigment-proteins in the food, textile, and other industries. Here we review the available literature on the thermostability of phycobilisome components from thermophilic species and discuss how a better appreciation of phycobiliproteins from extreme environments will benefit our fundamental understanding of photosynthetic adaptation and could provide a sustainable resource for several industrial processes.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
23
|
Shimakawa G, Sétif P, Krieger-Liszkay A. Near-infrared in vivo measurements of photosystem I and its lumenal electron donors with a recently developed spectrophotometer. PHOTOSYNTHESIS RESEARCH 2020; 144:63-72. [PMID: 32189186 DOI: 10.1007/s11120-020-00733-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
In photosynthesis research, non-invasive in vivo spectroscopic analyses have been used as a practical tool for studying photosynthetic electron transport. Klas-NIR spectrophotometer has been recently developed by Klughammer and Schreiber (Photosynth Res 128:195-214, 2016) for in vivo measurements of redox changes of P700, plastocyanin (Pcy) and ferredoxin (Fd). Here we show examples using the Klas-NIR spectrophotometer for the evaluation of the redox states and quantities of these components in plant leaves and cyanobacterial suspensions. The redox poise under light of the electron transport components is different in leaves from higher plants compared with cyanobacteria. During a short illumination with an actinic light, P700, Pcy, and Fd are kept reduced in barley leaves but are oxidized in cyanobacteria. During far-red light illumination, P700 and Pcy are mostly oxidized in the leaves but are partially kept reduced in cyanobacteria. In the cyanobacterium, Thermosynechococcus elongatus, which has no Pcy but uses cytochrome c6 (cyt c6) as the electron donor to photosystem I, a cyt c6 signal was detected in vivo. To show the potential of Klas-NIR spectrophotometer for studying different developmental stages of a leaf, we performed measurements on fully mature and early senescing barley leaves. Pcy content in leaves decreased during senescence at an early stage. The Pcy loss was quantitatively analyzed using Klas-NIR spectrophotometer, giving absolute ratios of Pcy to PSI of 2.5 and 1.6 in younger and older leaves, respectively. For quantification of the signals in vivo, in vitro data (Sétif et al. in Photosynth Res142:307-319, 2019) obtained with Klas-NIR spectrophotometer were used.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Pierre Sétif
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
24
|
Luimstra VM, Verspagen JMH, Xu T, Schuurmans JM, Huisman J. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies. Ecology 2020; 101:e02951. [PMID: 31840230 PMCID: PMC7079016 DOI: 10.1002/ecy.2951] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022]
Abstract
The color of many lakes and seas is changing, which is likely to affect the species composition of freshwater and marine phytoplankton communities. For example, cyanobacteria with phycobilisomes as light-harvesting antennae can effectively utilize green or orange-red light. However, recent studies show that they use blue light much less efficiently than phytoplankton species with chlorophyll-based light-harvesting complexes, even though both phytoplankton groups may absorb blue light to a similar extent. Can we advance ecological theory to predict how these differences in light-harvesting strategy affect competition between phytoplankton species? Here, we develop a new resource competition model in which the absorption and utilization efficiency of different colors of light are varied independently. The model was parameterized using monoculture experiments with a freshwater cyanobacterium and green alga, as representatives of phytoplankton with phycobilisome-based vs. chlorophyll-based light-harvesting antennae. The parameterized model was subsequently tested in a series of competition experiments. In agreement with the model predictions, the green alga won the competition in blue light whereas the cyanobacterium won in red light, irrespective of the initial relative abundances of the species. These results are in line with observed changes in phytoplankton community structure in response to lake brownification. Similarly, in marine waters, the model predicts dominance of Prochlorococcus with chlorophyll-based light-harvesting complexes in blue light but dominance of Synechococcus with phycobilisomes in green light, with a broad range of coexistence in between. These predictions agree well with the known biogeographical distributions of these two highly abundant marine taxa. Our results offer a novel trait-based approach to understand and predict competition between phytoplankton species with different photosynthetic pigments and light-harvesting strategies.
Collapse
Affiliation(s)
- Veerle M. Luimstra
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
- WetsusEuropean Centre of Excellence for Sustainable Water TechnologyOostergoweg 9Leeuwarden8911 MAThe Netherlands
| | - Jolanda M. H. Verspagen
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Tianshuo Xu
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - J. Merijn Schuurmans
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| | - Jef Huisman
- Department of Freshwater and Marine EcologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamPO Box 94240Amsterdam1090 GEThe Netherlands
| |
Collapse
|
25
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
26
|
Kirilovsky D. Modulating Energy Transfer from Phycobilisomes to Photosystems: State Transitions and OCP-Related Non-Photochemical Quenching. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Ritter SPA, Lewis AC, Vincent SL, Lo LL, Cunha APA, Chamot D, Ensminger I, Espie GS, Owttrim GW. Evidence for convergent sensing of multiple abiotic stresses in cyanobacteria. Biochim Biophys Acta Gen Subj 2019; 1864:129462. [PMID: 31669584 DOI: 10.1016/j.bbagen.2019.129462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bacteria routinely utilize two-component signal transduction pathways to sense and alter gene expression in response to environmental cues. While cyanobacteria express numerous two-component systems, these pathways do not regulate all of the genes within many of the identified abiotic stress-induced regulons. METHODS Electron transport inhibitors combined with western analysis and measurement of chlorophyll a fluorescent yield, using pulse amplitude modulation fluorometry, were used to detect the effect of a diverse range of abiotic stresses on the redox status of the photosynthetic electron transport chain and the accumulation and degradation of the Synechocystis sp. PCC 6803 DEAD box RNA helicase, CrhR. RESULTS Alterations in CrhR abundance were tightly correlated with the redox poise of the electron transport chain between QA and cytochrome b6f, with reduction favoring CrhR accumulation. CONCLUSIONS The results provide evidence for an alternative, convergent sensing mechanism mediated through the redox poise of QB/PQH2 that senses multiple, divergent forms of abiotic stress and regulates accumulation of CrhR. The RNA helicase activity of CrhR could then function as a post-translational effector to regulate downstream gene expression. GENERAL SIGNIFICANCE The potential for a related system in Staphylococcus aureus and higher plant chloroplasts suggest convergent sensing mechanisms may be evolutionarily conserved and occur more widely than anticipated.
Collapse
Affiliation(s)
- Sean P A Ritter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Allison C Lewis
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany.
| | - Shelby L Vincent
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Li Ling Lo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | | | - Danuta Chamot
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Ingo Ensminger
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - George S Espie
- Department of Cell and Systems Biology, University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
28
|
Khorobrykh S, Tsurumaki T, Tanaka K, Tyystjärvi T, Tyystjärvi E. Measurement of the redox state of the plastoquinone pool in cyanobacteria. FEBS Lett 2019; 594:367-375. [PMID: 31529488 DOI: 10.1002/1873-3468.13605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/30/2022]
Abstract
Here, we developed a method for measuring the in vivo redox state of the plastoquinone (PQ) pool in the cyanobacteria Synechocystis sp. PCC 6803. Cells were illuminated on a glass fiber filter, PQ was extracted with ethyl acetate and determined with HPLC. Control samples with fully oxidized and reduced photoactive PQ pool were prepared by far-red and high light treatments, respectively, or by blocking the photosynthetic electron transfer chemically before or after PQ in moderate light. The photoactive pool comprised 50% of total PQ. We find that the PQ pool of cyanobacteria behaves under light treatments qualitatively similarly as in plant chloroplasts, is less reduced during growth under high than under ambient CO2 and remains partly reduced in darkness.
Collapse
Affiliation(s)
- Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Finland
| | - Tatsuhiro Tsurumaki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Finland
| |
Collapse
|
29
|
A novel Ca 2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:519-532. [PMID: 31034800 DOI: 10.1016/j.bbabio.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes.
Collapse
|
30
|
Lockhart J. Shedding New Light on the Ancient Process of Photosynthesis in Cyanobacteria. THE PLANT CELL 2019; 31:755-756. [PMID: 30862614 PMCID: PMC6501605 DOI: 10.1105/tpc.19.00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
31
|
Liu J, Lu Y, Hua W, Last RL. A New Light on Photosystem II Maintenance in Oxygenic Photosynthesis. FRONTIERS IN PLANT SCIENCE 2019; 10:975. [PMID: 31417592 PMCID: PMC6685048 DOI: 10.3389/fpls.2019.00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/11/2019] [Indexed: 05/19/2023]
Abstract
Life on earth is sustained by oxygenic photosynthesis, a process that converts solar energy, carbon dioxide, and water into chemical energy and biomass. Sunlight is essential for growth and productivity of photosynthetic organisms. However, exposure to an excessive amount of light adversely affects fitness due to photooxidative damage to the photosynthetic machinery, primarily to the reaction center of the oxygen-evolving photosystem II (PSII). Photosynthetic organisms have evolved diverse photoprotective and adaptive strategies to avoid, alleviate, and repair PSII damage caused by high-irradiance or fluctuating light. Rapid and harmless dissipation of excess absorbed light within antenna as heat, which is measured by chlorophyll fluorescence as non-photochemical quenching (NPQ), constitutes one of the most efficient protective strategies. In parallel, an elaborate repair system represents another efficient strategy to maintain PSII reaction centers in active states. This article reviews both the reaction center-based strategy for robust repair of photodamaged PSII and the antenna-based strategy for swift control of PSII light-harvesting (NPQ). We discuss evolutionarily and mechanistically diverse strategies used by photosynthetic organisms to maintain PSII function for growth and productivity under static high-irradiance light or fluctuating light environments. Knowledge of mechanisms underlying PSII maintenance would facilitate bioengineering photosynthesis to enhance agricultural productivity and sustainability to feed a growing world population amidst climate change.
Collapse
Affiliation(s)
- Jun Liu
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Jun Liu,
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Wei Hua
- Department of Functional Genomics and Molecular Biology, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Wei Hua
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|