1
|
Arnaiz A, Romero-Puertas MC, Santamaria ME, Rosa-Diaz I, Arbona V, Muñoz A, Grbic V, González-Melendi P, Mar Castellano M, Sandalio LM, Martinez M, Diaz I. The Arabidopsis thioredoxin TRXh5regulates the S-nitrosylation pattern of the TIRK receptor being both proteins essential in the modulation of defences to Tetranychus urticae. Redox Biol 2023; 67:102902. [PMID: 37797370 PMCID: PMC10622877 DOI: 10.1016/j.redox.2023.102902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The interaction between plants and phytophagous arthropods encompasses a complex network of molecules, signals, and pathways to overcome defences generated by each interacting organism. Although most of the elements and modulators involved in this interplay are still unidentified, plant redox homeostasis and signalling are essential for the establishment of defence responses. Here, focusing on the response of Arabidopsis thaliana to the spider mite Tetranychus urticae, we demonstrate the involvement in plant defence of the thioredoxin TRXh5, a small redox protein whose expression is induced by mite infestation. TRXh5 is localized in the cell membrane system and cytoplasm and is associated with alterations in the content of reactive oxygen and nitrogen species. Protein S-nitrosylation signal in TRXh5 over-expression lines is decreased and alteration in TRXh5 level produces changes in the JA/SA hormonal crosstalk of infested plants. Moreover, TRXh5 interacts and likely regulates the redox state of an uncharacterized receptor-like kinase, named THIOREDOXIN INTERACTING RECEPTOR KINASE (TIRK), also induced by mite herbivory. Feeding bioassays performed withTRXh5 over-expression plants result in lower leaf damage and reduced egg accumulation after T. urticae infestation than in wild-type (WT) plants. In contrast, mites cause a more severe injury in trxh5 mutant lines where a greater number of eggs accumulates. Likewise, analysis of TIRK-gain and -loss-of-function lines demonstrate the defence role of this receptor in Arabidopsis against T. urticae. Altogether, our findings demonstrate the interaction between TRXh5 and TIRK and highlight the importance of TRXh5 and TIRK in the establishment of effective Arabidopsis defences against spider mite herbivory.
Collapse
Affiliation(s)
- Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Maria C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, E-12071, Castelló de la Plana, Spain.
| | - Alfonso Muñoz
- Departamento de Sistemas y Recursos Naturales. Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, UPM, Madrid, Spain.
| | - Vojislava Grbic
- Department of Biology, University of Western Ontario, N6A 5BT, London, Ontario, Canada.
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| | - M Mar Castellano
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain.
| | - Luisa Maria Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/CSIC, Campus de Montegancedo, 20223, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain.
| |
Collapse
|
2
|
Yasuda M, Fujita M, Soudthedlath K, Kusajima M, Takahashi H, Tanaka T, Narita F, Asami T, Maruyama-Nakashita A, Nakashita H. Characterization of Disease Resistance Induced by a Pyrazolecarboxylic Acid Derivative in Arabidopsis thaliana. Int J Mol Sci 2023; 24:9037. [PMID: 37240381 PMCID: PMC10219097 DOI: 10.3390/ijms24109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid (SA)-mediated signaling pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in Arabidopsis. The soil drench application of CMPA enhanced a broad range of disease resistance against the bacterial pathogen Pseudomonas syringae and fungal pathogens Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis, whereas CMPA did not show antibacterial activity. Foliar spraying with CMPA induced the expression of SA-responsible genes such as PR1, PR2 and PR5. The effects of CMPA on resistance against the bacterial pathogen and the expression of PR genes were observed in the SA biosynthesis mutant, however, while they were not observed in the SA-receptor-deficient npr1 mutant. Thus, these findings indicate that CMPA induces SAR by triggering the downstream signaling of SA biosynthesis in the SA-mediated signaling pathway.
Collapse
Affiliation(s)
- Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Moeka Fujita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Khamsalath Soudthedlath
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Tomoya Tanaka
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Futo Narita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN Advanced Science Institute, Wako 351-0198, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
3
|
Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J. The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. PLANT PHYSIOLOGY 2021; 186:1679-1705. [PMID: 33871649 PMCID: PMC8260123 DOI: 10.1093/plphys/kiab166] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
N-hydroxypipecolic acid (NHP) accumulates in the plant foliage in response to a localized microbial attack and induces systemic acquired resistance (SAR) in distant leaf tissue. Previous studies indicated that pathogen inoculation of Arabidopsis (Arabidopsis thaliana) systemically activates SAR-related transcriptional reprogramming and a primed immune status in strict dependence of FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1), which mediates the endogenous biosynthesis of NHP. Here, we show that elevations of NHP by exogenous treatment are sufficient to induce a SAR-reminiscent transcriptional response that mobilizes key components of immune surveillance and signal transduction. Exogenous NHP primes Arabidopsis wild-type and NHP-deficient fmo1 plants for a boosted induction of pathogen-triggered defenses, such as the biosynthesis of the stress hormone salicylic acid (SA), accumulation of the phytoalexin camalexin and branched-chain amino acids, as well as expression of defense-related genes. NHP also sensitizes the foliage systemically for enhanced SA-inducible gene expression. NHP-triggered SAR, transcriptional reprogramming, and defense priming are fortified by SA accumulation, and require the function of the transcriptional coregulator NON-EXPRESSOR OF PR GENES1 (NPR1). Our results suggest that NPR1 transduces NHP-activated immune signaling modes with predominantly SA-dependent and minor SA-independent features. They further support the notion that NHP functions as a mobile immune regulator capable of moving independently of active SA signaling between leaves to systemically activate immune responses.
Collapse
Affiliation(s)
- Ipek Yildiz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Melissa Mantz
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Michael Hartmann
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Tatyana Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jana Kessel
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Corinna Thurow
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Christiane Gatz
- Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen D-37077, Germany
| | - Patrick Petzsch
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Karl Köhrer
- Medical Faculty, Biological and Medical Research Center (BMFZ), Heinrich Heine University, Düsseldorf D-40225, Germany
| | - Jürgen Zeier
- Department of Biology, Institute for Molecular Ecophysiology of Plants, Heinrich Heine University, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf D-40225, Germany
- Author for communication:
| |
Collapse
|