1
|
Stępiński D. Decoding Plant Ribosomal Proteins: Multitasking Players in Cellular Games. Cells 2025; 14:473. [PMID: 40214427 PMCID: PMC11987935 DOI: 10.3390/cells14070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosomal proteins (RPs) were traditionally considered as ribosome building blocks, serving exclusively in ribosome assembly. However, contemporary research highlights their involvement in additional translational roles, as well as diverse non-ribosomal activities. The functional diversity of RPs is further enriched by the presence of 2-7 paralogs per RP family in plants, suggesting that these proteins may perform distinct, specialized functions. The spatiotemporal expression of RP paralogs allows for the assembly of unique ribosomes (ribosome heterogeneity), enabling the selective translation of specific mRNAs, and producing specialized proteins essential for plant functioning. Additionally, RPs that operate independently of ribosomes as free molecules may regulate a wide range of physiological processes. RPs involved in protein biosynthesis within the cytosol, mitochondria, or plastids are encoded by distinct genes, which account for their functional specialization. Notably, RPs associated with plastid or mitochondrial ribosomes, beyond their canonical roles in these organelles, also contribute to overall plant development and functionality, akin to their cytosolic counterparts. This review explores the roles of RPs in different cellular compartments, the presumed molecular mechanisms underlying their functions, and the involvement of other molecular factors that cooperate with RPs in these processes. In addition to the new RP nomenclature introduced in 2022/2023, the old names are also applied.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Wang C, Gao Y, Gong W, Laux T, Li S, Xiong F. A tripartite transcriptional module regulates protoderm specification during embryogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2025; 245:2038-2051. [PMID: 39731262 DOI: 10.1111/nph.20371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Protoderm formation is a crucial step in early embryo patterning in plants, separating the precursors of the epidermis and the inner tissues. Although key regulators such as ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) and PROTODERMAL FACTOR2 (PDF2) have been identified in the model plant Arabidopsis thaliana, the genetic pathways controlling protoderm specification remain largely unexplored. Here, we combined genetic, cytological, and molecular approaches to investigate the regulatory mechanisms of protoderm specification in Arabidopsis thaliana. We report a novel role of the β-importin KETCH1 in protoderm specification. KETCH1 loss-of-function leads to aberrant protoderm cell morphology and absent ATML1 transcription in embryos. We further demonstrate that KETCH1 directly interacts with an RNA Polymerase II (Pol-II) cofactor JANUS, mediating its nuclear accumulation. Furthermore, JANUS directly interacts with the WUS HOMEOBOX2 (WOX2) protein, which is critical for WOX2-activated ATML1 expression. Consequently, JANUS, KETCH1, and WOX2 loss-of-function results in similar protoderm defects. Our results identify the tripartite KETCH1/JANUS/WOX2 transcriptional module as a novel regulatory axis in Arabidopsis protoderm specification.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Gao
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Wen Gong
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| | - Thomas Laux
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Sha Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
| | - Feng Xiong
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an, 271018, China
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestrasse 1, Freiburg, 79104, Germany
| |
Collapse
|
3
|
Yin GM, Dun SS, Li E, Ge FR, Fang YR, Wang DD, Lu D, Wang NN, Zhang Y, Li S. Arabidopsis COP1 suppresses root hair development by targeting type I ACS proteins for ubiquitination and degradation. Dev Cell 2024; 59:2962-2973.e7. [PMID: 39053470 DOI: 10.1016/j.devcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Root hairs (RHs) are an innovation of vascular plants whose development is coordinated by endogenous and environmental cues, such as ethylene and light conditions. However, the potential crosstalk between ethylene and light conditions in RH development is unclear. We report that Arabidopsis constitutive photomorphogenic 1 (COP1) integrates ethylene and light signaling to mediate RH development. Darkness suppresses RH development largely through COP1. COP1 inhibits both cell fate determination of trichoblast and tip growth of RHs based on pharmacological, genetic, and physiological analyses. Indeed, COP1 interacts with and catalyzes the ubiquitination of ACS2 and ACS6. COP1- or darkness-promoted proteasome-dependent degradation of ACS2/6 leads to a low ethylene level in underground tissues. The negative role of COP1 in RH development by downregulating ethylene signaling may be coordinated with the positive role of COP1 in hypocotyl elongation by upregulating ethylene signaling, providing an evolutionary advantage for seedling fitness.
Collapse
Affiliation(s)
- Gui-Min Yin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fu-Rong Ge
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yi-Ru Fang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan-Dan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dongping Lu
- Center for Agricultural Resources Research Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ning Ning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
4
|
Gonzalo L, Giudicatti AJ, Manavella PA. HYL1's multiverse: A journey through miRNA biogenesis and beyond canonical and non-canonical functions of HYL1. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102546. [PMID: 38718678 DOI: 10.1016/j.pbi.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
A delicate balance in gene expression, a process highly controlled by post-transcriptional gene silencing mediated by miRNAs, is vital during plant growth and responses to stress. Within the miRNA biogenesis pathway, HYL1 is one of the most important proteins, initially recognized for its role as a cofactor of DCL1. Yet, HYL1's functions extend beyond miRNA processing, encompassing transcriptional regulation and protein translation between other recently discovered functions. This review comprehensively examines our current knowledge of HYL1 functions in plants, looking at its structure, the complex biochemistry behind it, and its involvement in a variety of cellular processes. We also explored the most compelling open questions regarding HYL1 biology and the further perspectives in its study. Unraveling HYL1 functional details could better understand how plants grow, face environmental stresses, and how the miRNA pathway adapts its outcome to the plant growing conditions.
Collapse
Affiliation(s)
- Lucia Gonzalo
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Axel J Giudicatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Pablo A Manavella
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina; Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010 Málaga, Spain.
| |
Collapse
|
5
|
Liu F, Qu PY, Li JP, Yang LN, Geng YJ, Lu JY, Zhang Y, Li S. Arabidopsis protein S-acyl transferases positively mediate BR signaling through S-acylation of BSK1. Proc Natl Acad Sci U S A 2024; 121:e2322375121. [PMID: 38315835 PMCID: PMC10873554 DOI: 10.1073/pnas.2322375121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Protein S-acyl transferases (PATs) catalyze S-acylation, a reversible post-translational modification critical for membrane association, trafficking, and stability of substrate proteins. Many plant proteins are potentially S-acylated but few have corresponding PATs identified. By using genomic editing, confocal imaging, pharmacological, genetic, and biochemical assays, we demonstrate that three Arabidopsis class C PATs positively regulate BR signaling through S-acylation of BRASSINOSTEROID-SIGNALING KINASE1 (BSK1). PAT19, PAT20, and PAT22 associate with the plasma membrane (PM) and the trans-Golgi network/early endosome (TGN/EE). Functional loss of all three genes results in a plethora of defects, indicative of reduced BR signaling and rescued by enhanced BR signaling. PAT19, PAT20, and PAT22 interact with BSK1 and are critical for the S-acylation of BSK1, and for BR signaling. The PM abundance of BSK1 was reduced by functional loss of PAT19, PAT20, and PAT22 whereas abolished by its S-acylation-deficient point mutations, suggesting a key role of S-acylation in its PM targeting. Finally, an active BR analog induces vacuolar trafficking and degradation of PAT19, PAT20, or PAT22, suggesting that the S-acylation of BSK1 by the three PATs serves as a negative feedback module in BR signaling.
Collapse
Affiliation(s)
- Fei Liu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Peng-Yu Qu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Ji-Peng Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Li-Na Yang
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Yuan-Jun Geng
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| | - Jin-Yu Lu
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai’an271018, China
| |
Collapse
|
6
|
Liang X, Li SW, Wang JL, Zhao HM, Li S, Zhang Y. Arabidopsis Sar1 isoforms play redundant roles in female gametophytic development. PLANT REPRODUCTION 2023; 36:349-354. [PMID: 37535249 DOI: 10.1007/s00497-023-00475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Functional loss of Arabidopsis Sar1b with that of either Sar1a or Sar1c inhibits mitosis of functional megaspores, leading to defective embryo sac formation and reduced fertility. Vesicular trafficking among diverse endomembrane compartments is critical for eukaryotic cells. Anterograde trafficking from endoplasmic reticulum (ER) to the Golgi apparatus is mediated by coat protein complex II (COPII) vesicles. Among five cytosolic components of COPII, secretion-associated Ras-related GTPase 1 (Sar1) mediates the assembly and disassembly of the COPII coat. Five genes in Arabidopsis encode Sar1 isoforms, whose different cargo specificities and redundancy were both reported. We show here that Arabidopsis Sar1a, Sar1b, and Sar1c mediate the development of female gametophytes (FGs), in which Sar1b plays a major role, whereas Sar1a and Sar1c play a minor role. We determined that female transmission of sar1a;sar1b or sar1c;sar1b was significantly reduced due to defective mitosis of functional megaspores. Half of ovules in sar1a;sar1b/+ or sar1c;sar1b/+ plants failed to attract pollen tubes, leading to fertilization failure. The homozygous sar1a;sar1b or sar1c;sar1b double mutant was obtained by introducing either UBQ10:GFP-Sar1b or UBQ10:GFP-Sar1c, supporting their redundant function in FG development.
Collapse
Affiliation(s)
- Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shan-Wei Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Li Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hui-Min Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Wei YM, Wang BH, Shao DJ, Yan RY, Wu JW, Zheng GM, Zhao YJ, Zhang XS, Zhao XY. Defective kernel 66 encodes a GTPase essential for kernel development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5694-5708. [PMID: 37490479 PMCID: PMC10540730 DOI: 10.1093/jxb/erad289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
The mitochondrion is a semi-autonomous organelle that provides energy for cell activities through oxidative phosphorylation. In this study, we identified a defective kernel 66 (dek66)-mutant maize with defective kernels. We characterized a candidate gene, DEK66, encoding a ribosomal assembly factor located in mitochondria and possessing GTPase activity (which belongs to the ribosome biogenesis GTPase A family). In the dek66 mutant, impairment of mitochondrial structure and function led to the accumulation of reactive oxygen species and promoted programmed cell death in endosperm cells. Furthermore, the transcript levels of most of the key genes associated with nutrient storage, mitochondrial respiratory chain complex, and mitochondrial ribosomes in the dek66 mutant were significantly altered. Collectively, the results suggest that DEK66 is essential for the development of maize kernels by affecting mitochondrial function. This study provides a reference for understanding the impact of a mitochondrial ribosomal assembly factor in maize kernel development.
Collapse
Affiliation(s)
- Yi Ming Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Bo Hui Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dong Jie Shao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
- College of Life Sciences, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Ru Yu Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jia Wen Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Guang Ming Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Jie Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
8
|
Yu SX, Hu LQ, Yang LH, Zhang T, Dai RB, Zhang YJ, Xie ZP, Lin WH. RLI2 regulates Arabidopsis female gametophyte and embryo development by facilitating the assembly of the translational machinery. Cell Rep 2023; 42:112741. [PMID: 37421624 DOI: 10.1016/j.celrep.2023.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
Eukaryotic protein translation is a complex process that requires the participation of different proteins. Defects in the translational machinery often result in embryonic lethality or severe growth defects. Here, we report that RNase L inhibitor 2/ATP-BINDING CASSETTE E2 (RLI2/ABCE2) regulates translation in Arabidopsis thaliana. Null mutation of rli2 is gametophytic and embryonic lethal, whereas knockdown of RLI2 causes pleiotropic developmental defects. RLI2 interacts with several translation-related factors. Knockdown of RLI2 affects the translational efficiency of a subset of proteins involved in translation regulation and embryo development, indicating that RLI2 has critical roles in these processes. In particular, RLI2 knockdown mutant exhibits decreased expression of genes involved in auxin signaling and female gametophyte and embryo development. Therefore, our results reveal that RLI2 facilitates assembly of the translational machinery and indirectly modulates auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Qin Hu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Han Yang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruo-Bing Dai
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Ping Xie
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Hu LQ, Yu SX, Xu WY, Zu SH, Jiang YT, Shi HT, Zhang YJ, Xue HW, Wang YX, Lin WH. Spatiotemporal formation of the large vacuole regulated by the BIN2-VLG module is required for female gametophyte development in Arabidopsis. THE PLANT CELL 2023; 35:1241-1258. [PMID: 36648110 PMCID: PMC10052386 DOI: 10.1093/plcell/koad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.
Collapse
Affiliation(s)
- Li-Qin Hu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Xia Yu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wan-Yue Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200240, China
| | - Song-Hao Zu
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Tong Jiang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Tian Shi
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Wei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture and Biology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Xiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200240, China
| | - Wen-Hui Lin
- School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Cao F, Wei R, Xie J, Hou L, Kang C, Zhao T, Sun C, Yang M, Zhao Y, Li C, Wang N, Wu X, Liu C, Jiang H, Chen Q. Fine mapping and candidate gene analysis of proportion of four-seed pods by soybean CSSLs. FRONTIERS IN PLANT SCIENCE 2023; 13:1104022. [PMID: 36743549 PMCID: PMC9890659 DOI: 10.3389/fpls.2022.1104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Soybean yield, as one of the most important and consistent breeding goals, can be greatly affected by the proportion of four-seed pods (PoFSP). In this study, QTL mapping was performed by PoFSP data and BLUE (Best Linear Unbiased Estimator) value of the chromosome segment substitution line population (CSSLs) constructed previously by the laboratory from 2016 to 2018, and phenotype-based bulked segregant analysis (BSA) was performed using the plant lines with PoFSP extreme phenotype. Totally, 5 ICIM QTLs were repeatedly detected, and 6 BSA QTLs were identified in CSSLs. For QTL (qPoFSP13-1) repeated in ICIM and BSA results, the secondary segregation populations were constructed for fine mapping and the interval was reduced to 100Kb. The mapping results showed that the QTL had an additive effect of gain from wild parents. A total of 14 genes were annotated in the delimited interval by fine mapping. Sequence analysis showed that all 14 genes had genetic variation in promoter region or CDS region. The qRT-PCR results showed that a total of 5 candidate genes were differentially expressed between the plant lines having antagonistic extreme phenotype (High PoFSP > 35.92%, low PoFSP< 17.56%). The results of haplotype analysis showed that all five genes had two or more major haplotypes in the resource population. Significant analysis of phenotypic differences between major haplotypes showed all five candidate genes had haplotype differences. And the genotypes of the major haplotypes with relatively high PoFSP of each gene were similar to those of wild soybean. The results of this study were of great significance to the study of candidate genes affecting soybean PoFSP, and provided a basis for the study of molecular marker-assisted selection (MAS) breeding and four-seed pods domestication.
Collapse
Affiliation(s)
- Fubin Cao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ruru Wei
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Lilong Hou
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chaorui Kang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Tianyu Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chengcheng Sun
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ying Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Candong Li
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Nannan Wang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Xiaoxia Wu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
12
|
Luo Y, Shi DQ, Jia PF, Bao Y, Li HJ, Yang WC. Nucleolar histone deacetylases HDT1, HDT2 and HDT3 regulate plant reproductive development. J Genet Genomics 2021; 49:30-39. [PMID: 34699991 DOI: 10.1016/j.jgg.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Nucleolus is a membrane-less organelle where ribosomes are assembled and rRNAs transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of rRNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of rRNAs and ribosomal proteins is also unknown. Here we report the critical role of three Arabidopsis nucleolar protein HDT1, HDT2 and HDT3 in fertility and transcription of rDNAs and rRNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesis-related genes for plant reproductive development.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Yao FQ, Li XH, Wang H, Song YN, Li ZQ, Li XG, Gao XQ, Zhang XS, Bie XM. Down-expression of TaPIN1s Increases the Tiller Number and Grain Yield in Wheat. BMC PLANT BIOLOGY 2021; 21:443. [PMID: 34592922 PMCID: PMC8482684 DOI: 10.1186/s12870-021-03217-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/20/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Tiller number is a factor determining panicle number and grain yield in wheat (Triticum aestivum). Auxin plays an important role in the regulation of branch production. PIN-FORMED 1 (PIN1), an auxin efflux carrier, plays a role in the regulation of tiller number in rice (Oryza sativa); however, little is known on the roles of PIN1 in wheat. RESULTS Nine homologs of TaPIN1 genes were identified in wheat, of which TaPIN1-6 genes showed higher expression in the stem apex and young leaf in wheat, and the TaPIN1-6a protein was localized in the plasma membrane. The down-expression of TaPIN1s increased the tiller number in TaPIN1-RNA interference (TaPIN1-RNAi) transgenic wheat plants, indicating that auxin might mediate the axillary bud production. By contrast, the spikelet number, grain number per panicle, and the 1000-grain weight were decreased in the TaPIN1-RNAi transgenic wheat plants compared with those in the wild type. In summary, a reduction of TaPIN1s expression increased the tiller number and grain yield per plant of wheat. CONCLUSIONS Phylogenetic analysis and protein structure of nine TaPIN1 proteins were analyzed, and subcellular localization of TaPIN1-6a was located in the plasma membrane. Knock-down expression of TaPIN1 genes increased the tiller number of transgenic wheat lines. Our study suggests that TaPIN1s is required for the regulation of grain yield in wheat.
Collapse
Affiliation(s)
- Fu Quan Yao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao Hui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - He Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yu Ning Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhong Qing Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xing Guo Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao Min Bie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
14
|
Xiong F, Groot EP, Zhang Y, Li S. Functions of plant importin β proteins beyond nucleocytoplasmic transport. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6140-6149. [PMID: 34089597 DOI: 10.1093/jxb/erab263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotic cells, nuclear activities are isolated from other cellular functions by the nuclear envelope. Because the nuclear envelope provides a diffusion barrier for macromolecules, a complex nuclear transport machinery has evolved that is highly conserved from yeast to plants and mammals. Among those components, the importin β family is the most important one. In this review, we summarize recent findings on the biological function of importin β family members, including development, reproduction, abiotic stress responses, and plant immunity. In addition to the traditional nuclear transport function, we highlight the new molecular functions of importin β, including protein turnover, miRNA regulation, and signaling. Taken together, our review will provide a systematic view of this versatile protein family in plants.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Edwin P Groot
- Sino-German Joint Research Center for Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
15
|
Xu F, Jia M, Li X, Tang Y, Jiang K, Bao J, Gu Y. Exportin-4 coordinates nuclear shuttling of TOPLESS family transcription corepressors to regulate plant immunity. THE PLANT CELL 2021; 33:697-713. [PMID: 33955481 PMCID: PMC8136914 DOI: 10.1093/plcell/koaa047] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 05/03/2023]
Abstract
The regulated nucleocytoplasmic exchange of macromolecules is essential for the eukaryotic cell. However, nuclear transport pathways defined by different nuclear transport receptors (NTRs), including importins and exportins, and their significance in activating distinct stress responses are poorly understood in plants. Here, we exploited a CRISPR/Cas9-based genetic screen to search for modifiers of CONSTITUTIVE EXPRESSION OF PATHOGENESIS-RELATED GENE 5 (cpr5), an Arabidopsis thaliana nucleoporin mutant that activates autoimmune responses that partially mimic effector-triggered immunity (ETI). We identified an NTR gene, Exportin-4 (XPO4), as a genetic interactor of CPR5. The xpo4 cpr5 double mutant activates catastrophic immune responses, which leads to seedling lethality. By leveraging the newly developed proximity-labeling proteomics, we profiled XPO4 substrates and identified TOPLESS (TPL) and TPL-related (TPR) transcription corepressors as XPO4-specific cargo. TPL/TPRs target negative regulators of immunity and are redundantly required for ETI induction. We found that loss-of-XPO4 promotes the nuclear accumulation of TPL/TPRs in the presence of elevated salicylic acid (SA), which contributes to the SA-mediated defense amplification and potentiates immune induction in the cpr5 mutant. We showed that TPL and TPRs are required for the enhanced immune activation observed in xpo4 cpr5 but not for the cpr5 single-mutant phenotype, underscoring the functional interplay between XPO4 and TPL/TPRs and its importance in cpr5-dependent immune induction. We propose that XPO4 coordinates the nuclear accumulation of TPL/TPRs, which plays a role in regulating SA-mediated defense feedback to modulate immune strength downstream of CPR5 during ETI induction.
Collapse
Affiliation(s)
- Feifei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Xin Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Keni Jiang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory for Nuclear Agricultural Sciences of Zhejiang Province and Ministry of Agriculture and Rural Affairs, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Liu F, Li JP, Li LS, Liu Q, Li SW, Song ML, Li S, Zhang Y. The canonical α-SNAP is essential for gametophytic development in Arabidopsis. PLoS Genet 2021; 17:e1009505. [PMID: 33886546 PMCID: PMC8096068 DOI: 10.1371/journal.pgen.1009505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ji-Peng Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Shen Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qi Liu
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shan-Wei Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ming-Lei Song
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| | - Yan Zhang
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| |
Collapse
|
17
|
Yu J, Kang L, Li Y, Wu C, Zheng C, Liu P, Huang J. RING finger protein RGLG1 and RGLG2 negatively modulate MAPKKK18 mediated drought stress tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:484-493. [PMID: 32970364 DOI: 10.1111/jipb.13019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/18/2020] [Indexed: 05/16/2023]
Abstract
Mitogen activated protein kinase kinase kinase 18 (MAPKKK18) mediated signaling cascade plays important roles in Arabidopsis drought stress tolerance. However, the post-translational modulation patterns of MAPKKK18 are not characterized. In this study, we found that the protein level of MAPKKK18 was tightly controlled by the 26S proteasome. Ubiquitin ligases RGLG1 and RGLG2 ubiquitinated MAPKKK18 at lysine residue K32 and K154, and promoted its degradation. Deletion of RGLG1 and RGLG2 stabilized MAPKKK18 and further enhanced the drought stress tolerance of MAPKKK18-overexpression plants. Our data demonstrate that RGLG1 and RGLG2 negatively regulate MAPKKK18-mediated drought stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Jiayi Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lu Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Pei Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
18
|
Xiong F, Li S. Spliceosome component JANUS fulfills a role of mediator in transcriptional regulation during Arabidopsis development. PLANT SIGNALING & BEHAVIOR 2021; 16:1841974. [PMID: 33126826 PMCID: PMC7781789 DOI: 10.1080/15592324.2020.1841974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Spliceosomes are large complexes regulating pre-mRNA processing in eukaryotes. Arabidopsis JANUS encodes a putative subunit of spliceosome`. We recently demonstrated that JANUS plays an essential role during early embryogenesis and root meristem development. Instead of mediating pre-mRNA splicing as a subunit of spliceosome, JANUS regulates the transcription of key genes by recruiting RNA Polymerase II (Pol II). Here, we summarize our latest findings and provide insights into the regulation of JANUS during Arabidopsis development.
Collapse
Affiliation(s)
- Feng Xiong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
19
|
Li X, Gu Y. Structural and functional insight into the nuclear pore complex and nuclear transport receptors in plant stress signaling. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:60-68. [PMID: 33217650 DOI: 10.1016/j.pbi.2020.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Nuclear pore complexes (NPC) are highly conserved mega protein complexes that penetrate the double-layered nuclear membrane and form channels to allow bi-directional transport of macromolecules between the nucleus and the cytosol. Non-passive nucleocytoplasmic transport also requires nuclear transport receptors (NTR), which bind cargo molecules and shuttle them across the NPC. The NPC and NTRs constitute two fundamental layers of regulatory mechanisms that together determine the selective nuclear translocation of signal molecules and play essential roles in activating the precise response of a cell to environmental stimuli. Here we discuss recent findings in the NPC made by advanced structural biology approaches, and dissect distinct functions of different NPC components and NTRs in plants' responses to various biotic and abiotic stresses.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, University of California, Berkeley, USA; Innovative Genomics Institute, University of California, Berkeley, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, USA; Innovative Genomics Institute, University of California, Berkeley, USA.
| |
Collapse
|
20
|
Scarpin MR, Leiboff S, Brunkard JO. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation. eLife 2020; 9:e58795. [PMID: 33054972 PMCID: PMC7584452 DOI: 10.7554/elife.58795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates eukaryotic metabolism. In mammals, TOR specifically promotes translation of ribosomal protein (RP) mRNAs when amino acids are available to support protein synthesis. The mechanisms controlling translation downstream from TOR remain contested, however, and are largely unexplored in plants. To define these mechanisms in plants, we globally profiled the plant TOR-regulated transcriptome, translatome, proteome, and phosphoproteome. We found that TOR regulates ribosome biogenesis in plants at multiple levels, but through mechanisms that do not directly depend on 5' oligopyrimidine tract motifs (5'TOPs) found in mammalian RP mRNAs. We then show that the TOR-LARP1-5'TOP signaling axis is conserved in plants and regulates expression of a core set of eukaryotic 5'TOP mRNAs, as well as new, plant-specific 5'TOP mRNAs. Our study illuminates ancestral roles of the TOR-LARP1-5'TOP metabolic regulatory network and provides evolutionary context for ongoing debates about the molecular function of LARP1.
Collapse
Affiliation(s)
- M Regina Scarpin
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
| | - Samuel Leiboff
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallisUnited States
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Laboratory of Genetics, University of Wisconsin—MadisonMadisonUnited States
| |
Collapse
|
21
|
Andreuzza S. KETCHing up with Gametogenesis: Nucleocytoplasmic Import and Cell Cycle. THE PLANT CELL 2020; 32:812-813. [PMID: 32111668 PMCID: PMC7145475 DOI: 10.1105/tpc.20.00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Sebastien Andreuzza
- Department of Plant SciencesUniversity of CambridgeUnited KingdomCenter for Cellular and Molecular BiologyHyderabad, India
| |
Collapse
|
22
|
Wei SJ, Chai S, Zhu RM, Duan CY, Zhang Y, Li S. HUA ENHANCER1 Mediates Ovule Development. FRONTIERS IN PLANT SCIENCE 2020; 11:397. [PMID: 32351522 PMCID: PMC7174553 DOI: 10.3389/fpls.2020.00397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/03/2023]
Abstract
Ovules are female reproductive organs of angiosperms, containing sporophytic integuments and gametophytic embryo sacs. After fertilization, embryo sacs develop into embryos and endosperm whereas integuments into seed coat. Ovule development is regulated by transcription factors (TF) whose expression is often controlled by microRNAs. Mutations of Arabidopsis DICER-LIKE 1 (DCL1), a microRNA processing protein, caused defective ovule development and reduced female fertility. However, it was not clear whether other microRNA processing proteins participate in this process and how defective ovule development influenced female fertility. We report that mutations of HUA ENHANCER1 (HEN1) and HYPONASTIC LEAVES 1 (HYL1) interfered with integument growth. The sporophytic defect caused abnormal embryo sac development and inability of mutant ovules to attract pollen tubes, leading to reduced female fertility. We show that the role of HEN1 in integument growth is cell-autonomous. Although AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 were ectopically expressed in mutant ovules, consistent with the reduction of microRNA167 in hen1, introducing arf6;arf8 did not suppress ovule defects of hen1, suggesting the involvement of more microRNAs in this process. Results presented indicate that the microRNA processing machinery is critical for ovule development and seed production through multiple microRNAs and their targets.
Collapse
|