1
|
Keerthana K, Ramakrishnan M, Ahmad Z, Amali P, Vijayakanth V, Wei Q. Root-derived small peptides: Key regulators of plant development, stress resilience, and nutrient acquisition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 354:112433. [PMID: 40020973 DOI: 10.1016/j.plantsci.2025.112433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 03/03/2025]
Abstract
Small peptides (SPs), emerging as crucial signaling molecules in plants, regulate diverse processes such as plant development, stress tolerance, and nutrient acquisition. Consisting of fewer than 100 amino acids, SPs are classified into two main groups: precursor-derived SPs and small open reading frame (sORF)-encoded SPs, including miRNA-encoded SPs. SPs are secreted from various plant parts, with root-derived SPs playing particularly significant roles in stress tolerance and nutrient uptake. Even at low concentrations, root-derived SPs are highly effective signaling molecules that influence the distribution and effects of phytohormones, particularly auxin. For instance, under low phosphorus conditions, CLAVATA3/Embryo-Surrounding Region-Related (CLE/CLV), a root-derived SP, enhances root apical meristem differentiation and root architecture to improve phosphate acquisition. By interacting with CLV2 and PEPR2 receptors, it modulates auxin-related pathways, directing root morphology changes to optimize nutrient uptake. During nitrogen (N) starvation, root-derived SPs are transported to the shoot, where they interact with leucine-rich repeat receptor kinases (LRR-RKs) to alleviate nitrogen deficiency. Similarly, C-terminally Encoded Peptides (CEPs) are involved in primary root growth and N-acquisition responses. Despite the identification of many SPs, countless others remain to be discovered, and the functions of those identified so far remain elusive. This review focuses on the functions of root-derived SPs, such as CLE, CEP, RALF, RGF, PSK, PSY, and DVL, and discusses the receptor-mediated signaling pathways involved. Additionally, it explores the roles of SPs in root architecture, plant development, and their metabolic functions in nutrient signaling.
Collapse
Affiliation(s)
- Krishnamurthi Keerthana
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - P Amali
- PG Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), Chennai, Tamil Nadu 600106, India
| | - Venkatesan Vijayakanth
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2025; 18:219-244. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
4
|
Wang X, Yu W, Yuan Q, Chen X, He Y, Zhou J, Xun Q, Wang G, Li J, Meng X. The pathogen-induced peptide CEP14 is perceived by the receptor-like kinase CEPR2 to promote systemic disease resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae549. [PMID: 39412292 DOI: 10.1093/plphys/kiae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/19/2024] [Indexed: 12/24/2024]
Abstract
Secreted plant peptides that trigger cellular signaling are crucial for plant growth, development, and adaptive responses to environmental stresses. In Arabidopsis (Arabidopsis thaliana), the C-TERMINALLY ENCODED PEPTIDE (CEP) family is a class of secreted signaling peptides that is phylogenetically divided into 2 groups: group I (CEP1-CEP12) and group II (CEP13-CEP15). Several group I CEP peptides regulate root architecture and nitrogen starvation responses, whereas the biological activity and roles of group II CEPs remain unknown. Here, we report that a group II CEP peptide, CEP14, functions as a pathogen-induced elicitor of Arabidopsis immunity. In response to infection by the bacterial pathogen Pseudomonas syringae, CEP14 expression was highly induced via the salicylic acid pathway in Arabidopsis leaves and roots. In the absence of a pathogen attack, treatment of Arabidopsis plants with synthetic CEP14 peptides was sufficient to trigger immune responses. Genetic and biochemical analyses demonstrated that the receptor-like kinase CEP RECEPTOR 2 (CEPR2) perceives CEP14 to trigger plant immunity. The SOMATIC EMBRYOGENESIS RECEPTOR KINASES (SERKs) BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SERK4 also participated in CEP14 perception by forming CEP14-induced complexes with CEPR2. Overexpression of CEP14 largely enhanced Arabidopsis resistance to P. syringae, while CEP14 or CEPR2 mutation significantly attenuated Arabidopsis systemic resistance to P. syringae. Taken together, our data reveal that the pathogen-induced CEP14 peptide, which is perceived by the CEPR2-BAK1/SERK4 receptor complexes, acts as an endogenous elicitor to promote systemic disease resistance in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wenlong Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qin Yuan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xinyu Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yunxia He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinggeng Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiangzong Meng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
5
|
Rzemieniewski J, Leicher H, Lee HK, Broyart C, Nayem S, Wiese C, Maroschek J, Camgöz Z, Olsson Lalun V, Djordjevic MA, Vlot AC, Hückelhoven R, Santiago J, Stegmann M. CEP signaling coordinates plant immunity with nitrogen status. Nat Commun 2024; 15:10686. [PMID: 39681561 DOI: 10.1038/s41467-024-55194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Plant endogenous signaling peptides shape growth, development and adaptations to biotic and abiotic stress. Here, we identify C-TERMINALLY ENCODED PEPTIDEs (CEPs) as immune-modulatory phytocytokines in Arabidopsis thaliana. Our data reveals that CEPs induce immune outputs and are required to mount resistance against the leaf-infecting bacterial pathogen Pseudomonas syringae pv. tomato. We show that effective immunity requires CEP perception by tissue-specific CEP RECEPTOR 1 (CEPR1) and CEPR2. Moreover, we identify the related RECEPTOR-LIKE KINASE 7 (RLK7) as a CEP4-specific CEP receptor contributing to CEP-mediated immunity, suggesting a complex interplay of multiple CEP ligands and receptors in different tissues during biotic stress. CEPs have a known role in the regulation of root growth and systemic nitrogen (N)-demand signaling. We provide evidence that CEPs and their receptors promote immunity in an N status-dependent manner, suggesting a previously unknown molecular crosstalk between plant nutrition and cell surface immunity. We propose that CEPs and their receptors are central regulators for the adaptation of biotic stress responses to plant-available resources.
Collapse
Affiliation(s)
- Jakub Rzemieniewski
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Henriette Leicher
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Shahran Nayem
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Christian Wiese
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Biotechnology of Natural Products, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julian Maroschek
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Zeynep Camgöz
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Vilde Olsson Lalun
- Department of Biosciences Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - A Corina Vlot
- Helmholtz Zentrum Munich, Institute of Biochemical Plant Pathology, Neuherberg, Germany
- Chair of Crop Plant Genetics, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Martin Stegmann
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- Institute of Botany, Molecular Botany, Ulm University, Ulm, Germany.
| |
Collapse
|
6
|
Pedinotti L, Teyssendier de la Serve J, Roudaire T, San Clemente H, Aguilar M, Kohlen W, Frugier F, Frei Dit Frey N. The CEP peptide-CRA2 receptor module promotes arbuscular mycorrhizal symbiosis. Curr Biol 2024; 34:5366-5373.e4. [PMID: 39437785 DOI: 10.1016/j.cub.2024.09.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
C-terminally encoded peptides (CEPs) are small secreted signaling peptides that promote nitrogen-fixing root nodulation symbiosis in legumes, depending on soil mineral nitrogen availability.1 In Medicago truncatula, their action is mediated by the leucine-rich repeat receptor-like protein kinase COMPACT ROOT ARCHITECTURE 2 (CRA2).2,3,4 Like most land plants, under inorganic phosphate limitation, M. truncatula establishes another root endosymbiotic interaction with arbuscular fungi, the arbuscular mycorrhizal symbiosis (AMS). Because this interaction is beneficial for the plant but has a high energetic cost, it is tightly controlled by host plants to limit fungal infections mainly depending on phosphate availability.5 We show in this study that the expression of a subset of CEP-encoding genes is enhanced in the low-phosphate conditions and that overexpression of the low-phosphate-induced MtCEP1 gene, previously shown to promote the nitrogen-fixing root nodulation symbiosis, enhances AMS from the initial entry point of the fungi. Conversely, a loss-of-function mutation of the CRA2 receptor required for mediating CEP peptide action2 decreases the endomycorrhizal interaction from the same initial fungal entry stage. Transcriptomic analyses revealed that the cra2 mutant is negatively affected in the regulation of key phosphate transport and response genes as well as in the biosynthesis of strigolactone hormones that are required for establishing AMS. Accordingly, strigolactone contents were drastically decreased in cra2 mutant roots. Overall, we showed that the CEP/CRA2 pathway promotes both root nodulation and AMS in legume plants, depending on soil mineral nutrient availability.
Collapse
Affiliation(s)
- Léa Pedinotti
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Juliette Teyssendier de la Serve
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France; Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Thibault Roudaire
- Laboratoire des Interactions Plantes Microbes-Environnement (LIPME), CNRS, INRAE, Université de Toulouse, 31320 Castanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Marielle Aguilar
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France
| | - Wouter Kohlen
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| | - Florian Frugier
- Institute of Plant Sciences Paris Saclay (IPS2), Paris-Saclay University, CNRS, Paris-Cité University, INRAE, Univ d'Evry, Bat. 630, Avenue des Sciences, 91190 Gif-sur-Yvette, France.
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, 31320 Castanet-Tolosan, France.
| |
Collapse
|
7
|
Luo L, Yu L, Yang J, Wang E. Peptide Signals Regulate Nitrogen Deficiency Adaptation of Dicotyledonous Model Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39420598 DOI: 10.1111/pce.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Nitrogen is a crucial macroelement essential for plant growth and development. In Arabidopsis Thaliana, classical phytohormones such as auxin and cytokinin orchestrate local and systemic signalling networks coordinate plant growth and development in response to nitrogen deficiency. Nowadays, emerging signalling pathways involving small peptides like CLAVATA3/EMBRYO SURROUNDINGR REGION (CLE) and C-TERMINALLY ENCODED PEPTIDE (CEP) and their corresponding kinase receptors, also regulate Arabidopsis' adaptation to nitrogen scarcity. Unlike Arabidopsis, which adapts to nitrogen deficiency by changing root development, legumes have the unique ability to form nitrogen-fixing root nodules through symbiotic interactions with soil rhizobia. During the symbiotic nodulation in Medicago, CLE and CEP peptides and their receptors consist of an autoregulatory network governing the number of nodules in accordance with the soil nitrogen level. Additionally, other plant peptides, such as phytosulfokine (PSK) and root meristem growth factors (RGF), have been identified as new regulators of leguminous root nodule development under nitrogen-limited condition. However, the precise mechanism by which these peptides coordinate nitrogen deficiency response and the development of nitrogen-fixing organs remains to be fully elucidated. This review summarises the adaptive strategies of dicotyledons to nitrogen deficiency, with a particular focus on the regulation of Medicago nitrogen-fixing nodule development by the peptides.
Collapse
Affiliation(s)
- Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, Center of Plant Science, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Liu J, Chen H, Liu L, Meng X, Liu Q, Ye Q, Wen J, Wang T, Dong J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. THE PLANT CELL 2024; 36:3770-3786. [PMID: 38963880 PMCID: PMC11371137 DOI: 10.1093/plcell/koae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzhao Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Guo D, Li J, Liu P, Wang Y, Cao N, Fang X, Wang T, Dong J. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. MOLECULAR PLANT 2024; 17:1183-1203. [PMID: 38859588 DOI: 10.1016/j.molp.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.
Collapse
Affiliation(s)
- Da Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrui Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Na Cao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Ye Q, Zheng L, Liu P, Liu Q, Ji T, Liu J, Gao Y, Liu L, Dong J, Wang T. The S-acylation cycle of transcription factor MtNAC80 influences cold stress responses in Medicago truncatula. THE PLANT CELL 2024; 36:2629-2651. [PMID: 38552172 PMCID: PMC11218828 DOI: 10.1093/plcell/koae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/07/2024] [Indexed: 07/04/2024]
Abstract
S-acylation is a reversible post-translational modification catalyzed by protein S-acyltransferases (PATs), and acyl protein thioesterases (APTs) mediate de-S-acylation. Although many proteins are S-acylated, how the S-acylation cycle modulates specific biological functions in plants is poorly understood. In this study, we report that the S-acylation cycle of transcription factor MtNAC80 is involved in the Medicago truncatula cold stress response. Under normal conditions, MtNAC80 localized to membranes through MtPAT9-induced S-acylation. In contrast, under cold stress conditions, MtNAC80 translocated to the nucleus through de-S-acylation mediated by thioesterases such as MtAPT1. MtNAC80 functions in the nucleus by directly binding the promoter of the glutathione S-transferase gene MtGSTU1 and promoting its expression, which enables plants to survive under cold stress by removing excess malondialdehyde and H2O2. Our findings reveal an important function of the S-acylation cycle in plants and provide insight into stress response and tolerance mechanisms.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajuan Gao
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Zhang Y, Duan X, Wang Z, Lv Y, Qi W, Li L, Luo L, Xuan W. CEPs suppress auxin signaling but promote cytokinin signaling to inhibit root growth in Arabidopsis. Biochem Biophys Res Commun 2024; 711:149934. [PMID: 38626621 DOI: 10.1016/j.bbrc.2024.149934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
C-terminally encoded peptides (CEPs) are peptide hormones that function as mobile signals coordinating crucial developmental programs in plants. Previous studies have revealed that CEPs exert negative regulation on root development through interaction with CEP receptors (CEPRs), CEP DOWNSTREAMs (CEPDs), the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE (AHKs) and the transcriptional repressor Auxin/Indole-3-Acetic Acid (AUX/IAA). However, the precise molecular mechanisms underlying CEPs-mediated regulation of root development via auxin and cytokinin signaling pathways still necessitate further detailed investigation. In this study, we examined prior research and elucidated the underlying molecular mechanisms. The results showed that both synthetic AtCEPs and overexpression of AtCEP5 markedly supressed primary root elongation and lateral root (LR) formation in Arabidopsis. Molecular biology and genetics elucidated how CEPs inhibit root growth by suppressing auxin signaling while promoting cytokinin signaling. In summary, this study elucidated the inhibitory effects of AtCEPs on Arabidopsis root growth and provided insights into their potential molecular mechanisms, thus enhancing our comprehension of CEP-mediated regulation of plant growth and development.
Collapse
Affiliation(s)
- Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China; Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China; Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lun Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
12
|
Roy S, Torres-Jerez I, Zhang S, Liu W, Schiessl K, Jain D, Boschiero C, Lee HK, Krom N, Zhao PX, Murray JD, Oldroyd GED, Scheible WR, Udvardi M. The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:607-625. [PMID: 38361340 DOI: 10.1111/tpj.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Ivone Torres-Jerez
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Shulan Zhang
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Wei Liu
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | | | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
| | | | - Hee-Kyung Lee
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Nicholas Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Patrick X Zhao
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Jeremy D Murray
- Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Michael Udvardi
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Su M, Hou S. Ethylene insensitive 2 (EIN2) destiny shaper: The post-translational modification. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154190. [PMID: 38460400 DOI: 10.1016/j.jplph.2024.154190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.
Collapse
Affiliation(s)
- Meifei Su
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
14
|
Ke X, Xiao H, Peng Y, Xia X, Wang X. Nitrogen deficiency modulates carbon allocation to promote nodule nitrogen fixation capacity in soybean. EXPLORATION (BEIJING, CHINA) 2024; 4:20230104. [PMID: 38855619 PMCID: PMC11022614 DOI: 10.1002/exp.20230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/02/2023] [Indexed: 06/11/2024]
Abstract
Previously, the effect of soil mineral N deficiency on nodule nitrogen fixation capacity (NFC) is unclear. In this study, we found that N deficiency would enhance sucrose allocation to nodules and PEP allocation to bacteroid to promote nodule NFC. Our findings provide new insights into the design of leguminous crops with improved adaptation to fluctuating N levels in the soil.
Collapse
Affiliation(s)
- Xiaolong Ke
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Han Xiao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| | - Xue Xia
- School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityZhengzhouChina
- The Academy for Advanced Interdisciplinary StudiesHenan UniversityZhengzhouHenanChina
- Sanya Institute of Henan UniversitySanyaHainanChina
| |
Collapse
|
15
|
Qiao L, Lin J, Suzaki T, Liang P. Staying hungry: a roadmap to harnessing central regulators of symbiotic nitrogen fixation under fluctuating nitrogen availability. ABIOTECH 2024; 5:107-113. [PMID: 38576431 PMCID: PMC10987428 DOI: 10.1007/s42994-023-00123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 04/06/2024]
Abstract
Legumes have evolved specific inventions to enhance nitrogen (N) acquisition by establishing symbiotic interactions with N-fixing rhizobial bacteria. Because symbiotic N fixation is energetically costly, legumes have developed sophisticated mechanisms to ensure carbon-nitrogen balance, in a variable environment, both locally and at the whole plant level, by monitoring nodule number, nodule development, and nodular nitrogenase activity, as well as controlling nodule senescence. Studies of the autoregulation of nodulation and regulation of nodulation by nodule inception (NIN) and NIN-LIKE PROTEINs (NLPs) have provided great insights into the genetic mechanisms underlying the nitrate-induced regulation of root nodulation for adapting to N availability in the rhizosphere. However, many aspects of N-induced pleiotropic regulation remain to be fully explained, such as N-triggered senescence in mature nodules. Wang et al. determined that this process is governed by a transcriptional network regulated by NAC-type transcription factors. Characterization and dissection of these soybean nitrogen-associated NAPs (SNAPs) transcription factor-mastered networks have yielded a roadmap for exploring how legumes rewire nodule functions across a range of N levels, laying the foundation for enhancing the growth of N-deprived crops in agricultural settings.
Collapse
Affiliation(s)
- Lijin Qiao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Pengbo Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Li D, Wang W, Peng Y, Qiu X, Yang J, Zhang C, Wang E, Wang X, Yuan H. Soluble humic acid suppresses plant immunity and ethylene to promote soybean nodulation. PLANT, CELL & ENVIRONMENT 2024; 47:871-884. [PMID: 38164043 DOI: 10.1111/pce.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.
Collapse
Affiliation(s)
- Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Wenqian Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaoqian Qiu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Chunting Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhang CX, Li RJ, Baude L, Reinhardt D, Xie ZP, Staehelin C. CRISPR/Cas9-Mediated Generation of Mutant Lines in Medicago truncatula Indicates a Symbiotic Role of MtLYK10 during Nodule Formation. BIOLOGY 2024; 13:53. [PMID: 38275729 PMCID: PMC10812973 DOI: 10.3390/biology13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
CRISPR/Cas9 systems are commonly used for plant genome editing; however, the generation of homozygous mutant lines in Medicago truncatula remains challenging. Here, we present a CRISPR/Cas9-based protocol that allows the efficient generation of M. truncatula mutants. Gene editing was performed for the LysM receptor kinase gene MtLYK10 and two major facilitator superfamily transporter genes. The functionality of CRISPR/Cas9 vectors was tested in Nicotiana benthamiana leaves by editing a co-transformed GUSPlus gene. Transformed M. truncatula leaf explants were regenerated to whole plants at high efficiency (80%). An editing efficiency (frequency of mutations at a given target site) of up to 70% was reached in the regenerated plants. Plants with MtLYK10 knockout mutations were propagated, and three independent homozygous mutant lines were further characterized. No off-target mutations were identified in these lyk10 mutants. Finally, the lyk10 mutants and wild-type plants were compared with respect to the formation of root nodules induced by nitrogen-fixing Sinorhizobium meliloti bacteria. Nodule formation was considerably delayed in the three lyk10 mutant lines. Surprisingly, the size of the rare nodules in mutant plants was higher than in wild-type plants. In conclusion, the symbiotic characterization of lyk10 mutants generated with the developed CRISPR/Cas9 protocol indicated a role of MtLYK10 in nodule formation.
Collapse
Affiliation(s)
- Chun-Xiao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Laura Baude
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Taleski M, Jin M, Chapman K, Taylor K, Winning C, Frank M, Imin N, Djordjevic MA. CEP hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:538-552. [PMID: 37946363 PMCID: PMC10773996 DOI: 10.1093/jxb/erad444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
A growing understanding is emerging of the roles of peptide hormones in local and long-distance signalling that coordinates plant growth and development as well as responses to the environment. C-TERMINALLY ENCODED PEPTIDE (CEP) signalling triggered by its interaction with CEP RECEPTOR 1 (CEPR1) is known to play roles in systemic nitrogen (N) demand signalling, legume nodulation, and root system architecture. Recent research provides further insight into how CEP signalling operates, which involves diverse downstream targets and interactions with other hormone pathways. Additionally, there is emerging evidence of CEP signalling playing roles in N allocation, root responses to carbon levels, the uptake of other soil nutrients such as phosphorus and sulfur, root responses to arbuscular mycorrhizal fungi, plant immunity, and reproductive development. These findings suggest that CEP signalling more broadly coordinates growth across the whole plant in response to diverse environmental cues. Moreover, CEP signalling and function appear to be conserved in angiosperms. We review recent advances in CEP biology with a focus on soil nutrient uptake, root system architecture and organogenesis, and roles in plant-microbe interactions. Furthermore, we address knowledge gaps and future directions in this research field.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Marvin Jin
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Kelly Chapman
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Katia Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Courtney Winning
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nijat Imin
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2601Australia
| |
Collapse
|
19
|
Guo D, Liu P, Liu Q, Zheng L, Liu S, Shen C, Liu L, Fan S, Li N, Dong J, Wang T. Legume-specific SnRK1 promotes malate supply to bacteroids for symbiotic nitrogen fixation. MOLECULAR PLANT 2023; 16:1396-1412. [PMID: 37598296 DOI: 10.1016/j.molp.2023.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Nodulation is an energy-expensive behavior driven by legumes by providing carbon sources to bacteroids and obtaining nitrogen sources in return. The energy sensor sucrose nonfermenting 1-related protein kinase 1 (SnRK1) is the hub of energy regulation in eukaryotes. However, the molecular mechanism by which SnRK1 coordinates the allocation of energy and substances during symbiotic nitrogen fixation (SNF) remains unknown. In this study, we identified the novel legume-specific SnRK1α4, a member of the SnRK1 family that positively regulates SNF. Phenotypic analysis showed that nodule size and nitrogenase activity increased in SnRK1α4-overexpressing plants and decreased significantly in snrk1α4 mutants. We demonstrated that a key upstream kinase involved in nodulation, Does Not Make Infection 2 (DMI2), can phosphorylate SnRK1α4 at Thr175 to cause its activation. Further evidence clarified that SnRK1α4 phosphorylates the malate dehydrogenases MDH1/2 to promote malate production in the cytoplasm, supplying carbon sources to bacteroids. Therefore, our findings reveal an essential role of the DMI2-SnRK1α4-MDH pathway in supplying carbon sources to bacteroids for SNF and provide a new module for constructing cereal crops with SNF.
Collapse
Affiliation(s)
- Da Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sikai Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Shen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shasha Fan
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Nan Li
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
Sasaki Y, González-Tobón J, Hino Y, Jin C, Li T, Nguyen TAN, Oakley B, Stevens D. 12th Japan-US Seminar in Plant Pathology Meeting Report. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:549-553. [PMID: 37102778 DOI: 10.1094/mpmi-04-23-0041-mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The 12th iteration of the Japan-US Seminar in Plant Pathology was held in Ithaca, New York at Cornell University in the fall of 2022. Presentations covered a range of topics under the theme "Remodeling of the Plant-Microbe Environment During Disease, Defense, and Mutualism," and the meeting included a panel discussion of best practices in science communication. This report presents highlights of the meeting, from the perspective of early career participants of the seminar. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yumino Sasaki
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chujia Jin
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Tan Anh Nhi Nguyen
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Blake Oakley
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Danielle Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
21
|
Abstract
Plants associate with nitrogen-fixing bacteria to secure nitrogen, which is generally the most limiting nutrient for plant growth. Endosymbiotic nitrogen-fixing associations are widespread among diverse plant lineages, ranging from microalgae to angiosperms, and are primarily one of three types: cyanobacterial, actinorhizal or rhizobial. The large overlap in the signaling pathways and infection components of arbuscular mycorrhizal, actinorhizal and rhizobial symbioses reflects their evolutionary relatedness. These beneficial associations are influenced by environmental factors and other microorganisms in the rhizosphere. In this review, we summarize the diversity of nitrogen-fixing symbioses, key signal transduction pathways and colonization mechanisms relevant to such interactions, and compare and contrast these interactions with arbuscular mycorrhizal associations from an evolutionary standpoint. Additionally, we highlight recent studies on environmental factors regulating nitrogen-fixing symbioses to provide insights into the adaptation of symbiotic plants to complex environments.
Collapse
Affiliation(s)
- Peng Xu
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen 518054, China.
| |
Collapse
|
22
|
Ivanovici A, Laffont C, Larrainzar E, Patel N, Winning CS, Lee HC, Imin N, Frugier F, Djordjevic MA. The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number. PLANT PHYSIOLOGY 2023; 191:2012-2026. [PMID: 36653329 PMCID: PMC10022606 DOI: 10.1093/plphys/kiad012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Legumes acquire soil nutrients through nitrogen-fixing root nodules and lateral roots. To balance the costs and benefits of nodulation, legumes negatively control root nodule number by autoregulatory and hormonal pathways. How legumes simultaneously coordinate root nodule and lateral root development to procure nutrients remains poorly understood. In Medicago (Medicago truncatula), a subset of mature C-TERMINALLY ENCODED PEPTIDE (CEP) hormones can systemically promote nodule number, but all CEP hormones tested to date negatively regulate lateral root number. Here we showed that Medicago CEP7 produces a mature peptide, SymCEP7, that promotes nodulation from the shoot without compromising lateral root number. Rhizobial inoculation induced CEP7 in the susceptible root nodulation zone in a Nod factor-dependent manner, and, in contrast to other CEP genes, its transcription level was elevated in the ethylene signaling mutant sickle. Using mass spectrometry, fluorescence microscopy and expression analysis, we demonstrated that SymCEP7 activity requires the COMPACT ROOT ARCHITECTURE 2 receptor and activates the shoot-to-root systemic effector, miR2111. Shoot-applied SymCEP7 rapidly promoted nodule number in the pM to nM range at concentrations up to five orders of magnitude lower than effects mediated by root-applied SymCEP7. Shoot-applied SymCEP7 also promoted nodule number in White Clover (Trifolium repens) and Lotus (Lotus japonicus), which suggests that this biological function may be evolutionarily conserved. We propose that SymCEP7 acts in the Medicago shoot to counter balance the autoregulation pathways induced rapidly by rhizobia to enable nodulation without compromising lateral root growth, thus promoting the acquisition of nutrients other than nitrogen to support their growth.
Collapse
Affiliation(s)
- Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Carole Laffont
- University of Paris-Saclay, CNRS, INRAE, University Paris-Cité, Univ. d’Evry, Gif-sur-Yvette, France
| | - Estíbaliz Larrainzar
- Sciences Department, Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona 31006, Spain
| | - Neha Patel
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Courtney S Winning
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Han-Chung Lee
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Florian Frugier
- University of Paris-Saclay, CNRS, INRAE, University Paris-Cité, Univ. d’Evry, Gif-sur-Yvette, France
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
23
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
24
|
Nandety RS, Wen J, Mysore KS. Medicago truncatula resources to study legume biology and symbiotic nitrogen fixation. FUNDAMENTAL RESEARCH 2023; 3:219-224. [PMID: 38932916 PMCID: PMC11197554 DOI: 10.1016/j.fmre.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022] Open
Abstract
Medicago truncatula is a chosen model for legumes towards deciphering fundamental legume biology, especially symbiotic nitrogen fixation. Current genomic resources for M. truncatula include a completed whole genome sequence information for R108 and Jemalong A17 accessions along with the sparse draft genome sequences for other 226 M. truncatula accessions. These genomic resources are complemented by the availability of mutant resources such as retrotransposon (Tnt1) insertion mutants in R108 and fast neutron bombardment (FNB) mutants in A17. In addition, several M. truncatula databases such as small secreted peptides (SSPs) database, transporter protein database, gene expression atlas, proteomic atlas, and metabolite atlas are available to the research community. This review describes these resources and provide information regarding how to access these resources.
Collapse
Affiliation(s)
- Raja Sekhar Nandety
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
| | - Kirankumar S. Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK 73401, United States
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|
25
|
Nakagami S, Aoyama T, Sato Y, Kajiwara T, Ishida T, Sawa S. CLE3 and its homologs share overlapping functions in the modulation of lateral root formation through CLV1 and BAM1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1176-1191. [PMID: 36628476 DOI: 10.1111/tpj.16103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Lateral roots are important for a wide range of processes, including uptake of water and nutrients. The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-RELATED (CLE) 1 ~ 7 peptide family and their cognate receptor CLV1 have been shown to negatively regulate lateral root formation under low-nitrate conditions. However, little is known about how CLE signaling regulates lateral root formation. A persistent obstacle in CLE peptide research is their functional redundancies, which makes functional analyses difficult. To address this problem, we generate the cle1 ~ 7 septuple mutant (cle1 ~ 7-cr1, cr stands for mutant allele generated with CRISPR/Cas9). cle1 ~ 7-cr1 exhibits longer lateral roots under normal conditions. Specifically, in cle1 ~ 7-cr1, the lateral root density is increased, and lateral root primordia initiation is found to be accelerated. Further analysis shows that cle3 single mutant exhibits slightly longer lateral roots. On the other hand, plants that overexpress CLE2 and CLE3 exhibit decreased lateral root lengths. To explore cognate receptor(s) of CLE2 and CLE3, we analyze lateral root lengths in clv1 barely any meristem 1(bam1) double mutant. Mutating both the CLV1 and BAM1 causes longer lateral roots, but not in each single mutant. In addition, genetic analysis reveals that CLV1 and BAM1 are epistatic to CLE2 and CLE3. Furthermore, gene expression analysis shows that the LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) genes, which promote lateral root formation, are upregulated in cle1 ~ 7-cr1 and clv1 bam1. We therefore propose that CLE2 and CLE3 peptides are perceived by CLV1 and BAM1 to mediate lateral root formation through LBDs regulation.
Collapse
Affiliation(s)
- Satoru Nakagami
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Tsuyoshi Aoyama
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
| | - Taiki Kajiwara
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
- International Research Center for Agriculture and Environmental Biology, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
26
|
Jain D, Jones L, Roy S. Gene editing to improve legume-rhizobia symbiosis in a changing climate. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102324. [PMID: 36535148 DOI: 10.1016/j.pbi.2022.102324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
In the last three years, several gene editing techniques have been developed for both model and crop legumes. CRISPR-Cas9-based tools, in particular, are outpacing other comparable gene editing technologies used in legume hosts and their microbial symbionts to understand the molecular basis of symbiotic nitrogen-fixation. Gene editing has helped identify new gene functions, validate genetic screens, resolve gene redundancy, examine the role of tandemly duplicated genes, and investigate symbiotic signaling networks in non-model plants. In this review, we discuss the advances made in understanding the legume-rhizobia symbiosis through the use of gene editing and highlight studies conducted under varying environmental conditions. We reason that future climate-hardy legumes must be able to better integrate environmental signals with nitrogen fixation by fine-tuning long distance signaling, continuing to select efficient rhizobial partners, and adjusting their molecular circuitry to function optimally under variable light and nutrient availability and rising atmospheric carbon dioxide.
Collapse
Affiliation(s)
- Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Lauren Jones
- Noble Research Institute, LLC, Ardmore, OK 73401, USA
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
27
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
28
|
Niu XL, Li HL, Li R, Liu GS, Peng ZZ, Jia W, Ji X, Zhu HL, Zhu BZ, Grierson D, Giuliano G, Luo YB, Fu DQ. Transcription factor SlBEL2 interferes with GOLDEN2-LIKE and influences green shoulder formation in tomato fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:982-997. [PMID: 36164829 DOI: 10.1111/tpj.15989] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Chloroplasts play a crucial role in plant growth and fruit quality. However, the molecular mechanisms of chloroplast development are still poorly understood in fruits. In this study, we investigated the role of the transcription factor SlBEL2 (BEL1-LIKE HOMEODOMAIN 2) in fruit of Solanum lycopersicum (tomato). Phenotypic analysis of SlBEL2 overexpression (OE-SlBEL2) and SlBEL2 knockout (KO-SlBEL2) plants revealed that SlBEL2 has the function of inhibiting green shoulder formation in tomato fruits by affecting the development of fruit chloroplasts. Transcriptome profiling revealed that the expression of chloroplast-related genes such as SlGLK2 and SlLHCB1 changed significantly in the fruit of OE-SlBEL2 and KO-SlBEL2 plants. Further analysis showed that SlBEL2 could not only bind to the promoter of SlGLK2 to inhibit its transcription, but also interacted with the SlGLK2 protein to inhibit the transcriptional activity of SlGLK2 and its downstream target genes. SlGLK2 knockout (KO-SlGLK2) plants exhibited a complete absence of the green shoulder, which was consistent with the fruit phenotype of OE-SlBEL2 plants. SlBEL2 showed an expression gradient in fruits, in contrast with that reported for SlGLK2. In conclusion, our study reveals that SlBEL2 affects the formation of green shoulder in tomato fruits by negatively regulating the gradient expression of SlGLK2, thus providing new insights into the molecular mechanism of fruit green shoulder formation.
Collapse
Affiliation(s)
- Xiao-Lin Niu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Li Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhen-Zhen Peng
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiang Ji
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hong-Liang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ben-Zhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Res. Ctr, Via Anguillarese 301, Rome, 00123, Italy
| | - Yun-Bo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
29
|
Liu D, Shen Z, Zhuang K, Qiu Z, Deng H, Ke Q, Liu H, Han H. Systematic Annotation Reveals CEP Function in Tomato Root Development and Abiotic Stress Response. Cells 2022; 11:2935. [PMID: 36230896 PMCID: PMC9562649 DOI: 10.3390/cells11192935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide; however, environmental stressors severely restrict tomato growth and yield. Therefore, it is of great interest to discover novel regulators to improve tomato growth and environmental stress adaptions. Here, we applied a comprehensive bioinformatics approach to identify putative tomato C-TERMINALLY ENCODED PEPTIDE (CEP) genes and to explore their potential physiological function in tomato root development and abiotic stress responses. A total of 17 tomato CEP genes were identified and grouped into two subgroups based on the similarity of CEP motifs. The public RNA-Seq data revealed that tomato CEP genes displayed a diverse expression pattern in tomato tissues. Additionally, CEP genes expression was differentially regulated by nitrate or ammonium status in roots and shoots, respectively. The differences in expression levels of CEP genes induced by nitrogen indicate a potential involvement of CEPs in tomato nitrogen acquisition. The synthetic CEP peptides promoted tomato primary root growth, which requires nitric oxide (NO) and calcium signaling. Furthermore, we also revealed that CEP peptides improved tomato root resistance to salinity. Overall, our work will contribute to provide novel genetic breeding strategies for tomato cultivation under adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
30
|
Roy S, Müller LM. A rulebook for peptide control of legume-microbe endosymbioses. TRENDS IN PLANT SCIENCE 2022; 27:870-889. [PMID: 35246381 DOI: 10.1016/j.tplants.2022.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Plants engage in mutually beneficial relationships with microbes, such as arbuscular mycorrhizal fungi or nitrogen-fixing rhizobia, for optimized nutrient acquisition. In return, the microbial symbionts receive photosynthetic carbon from the plant. Both symbioses are regulated by the plant nutrient status, indicating the existence of signaling pathways that allow the host to fine-tune its interactions with the beneficial microbes depending on its nutrient requirements. Peptide hormones coordinate a plethora of developmental and physiological processes and, recently, various peptide families have gained special attention as systemic and local regulators of plant-microbe interactions and nutrient homeostasis. In this review, we identify five 'rules' or guiding principles that govern peptide function during symbiotic plant-microbe interactions, and highlight possible points of integration with nutrient acquisition pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Lena Maria Müller
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
31
|
Berckx F, Nguyen TV, Bandong CM, Lin HH, Yamanaka T, Katayama S, Wibberg D, Blom J, Kalinowski J, Tateno M, Simbahan J, Liu CT, Brachmann A, Pawlowski K. A tale of two lineages: how the strains of the earliest divergent symbiotic Frankia clade spread over the world. BMC Genomics 2022; 23:602. [PMID: 35986253 PMCID: PMC9392346 DOI: 10.1186/s12864-022-08838-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 01/01/2023] Open
Abstract
It is currently assumed that around 100 million years ago, the common ancestor to the Fabales, Fagales, Rosales and Cucurbitales in Gondwana, developed a root nodule symbiosis with a nitrogen-fixing bacterium. The symbiotic trait evolved first in Frankia cluster-2; thus, strains belonging to this cluster are the best extant representatives of this original symbiont. Most cluster-2 strains could not be cultured to date, except for Frankia coriariae, and therefore many aspects of the symbiosis are still elusive. Based on phylogenetics of cluster-2 metagenome-assembled genomes (MAGs), it has been shown that the genomes of strains originating in Eurasia are highly conserved. These MAGs are more closely related to Frankia cluster-2 in North America than to the single genome available thus far from the southern hemisphere, i.e., from Papua New Guinea. To unravel more biodiversity within Frankia cluster-2 and predict routes of dispersal from Gondwana, we sequenced and analysed the MAGs of Frankia cluster-2 from Coriaria japonica and Coriaria intermedia growing in Japan, Taiwan and the Philippines. Phylogenetic analyses indicate there is a clear split within Frankia cluster-2, separating a continental from an island lineage. Presumably, these lineages already diverged in Gondwana. Based on fossil data on the host plants, we propose that these two lineages dispersed via at least two routes. While the continental lineage reached Eurasia together with their host plants via the Indian subcontinent, the island lineage spread towards Japan with an unknown host plant.
Collapse
|
32
|
Hsieh YH, Wei YH, Lo JC, Pan HY, Yang SY. Arbuscular mycorrhizal symbiosis enhances tomato lateral root formation by modulating CEP2 peptide expression. THE NEW PHYTOLOGIST 2022; 235:292-305. [PMID: 35358343 DOI: 10.1111/nph.18128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Plant lateral root (LR) growth usually is stimulated by arbuscular mycorrhizal (AM) symbiosis. However, the molecular mechanism is still unclear. We used gene expression analysis, peptide treatment and virus-induced gene alteration assays to demonstrate that C-terminally encoded peptide (CEP2) expression in tomato was downregulated during AM symbiosis to mitigate its negative effect on LR formation through an auxin-related pathway. We showed that enhanced LR density and downregulated CEP2 expression were observed during mycorrhizal symbiosis. Synthetic CEP2 peptide treatment reduced LR density and impaired the expression of genes involved in indole-3-butyric acid (IBA, the precursor of IAA) to IAA conversion, auxin polar transport and the LR-related signaling pathway; however, application of IBA or synthetic auxin 1-naphthaleneacetic acid (NAA) to the roots may rescue both defective LR formation and reduced gene expression. CEP receptor 1 (CEPR1) might be the receptor of CEP2 because its knockdown plants did not respond to CEP2 treatment. Most importantly, the LR density of CEP2 overexpression or knockdown plants could not be further increased by AM inoculation, suggesting that CEP2 was critical for AM-induced LR formation. These results indicated that AM symbiosis may regulate root development by modulating CEP2, which affects the auxin-related pathway.
Collapse
Affiliation(s)
- Yu-Heng Hsieh
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsien Wei
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jui-Chi Lo
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Yu Pan
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
33
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
34
|
Chen W, Chi Y, Zhang J, Bai B, Ji X, Shen Y. MtWRP1, a Novel Fabacean Specific Gene, Regulates Root Nodulation and Plant Growth in Medicago truncatula. Genes (Basel) 2022; 13:genes13020193. [PMID: 35205237 PMCID: PMC8871812 DOI: 10.3390/genes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Fabaceans symbiotically interact with nitrogen-fixing rhizobacteria to form root nodules. Some fabacean specific proteins play important roles in the symbiosis. WRKY-related Protein (WRP) is a novel fabacean specific protein, whose functions have not been well characterized. In this study, MtWRP1 was functionally characterized in Medicago truncatula. It contains a WRKY domain at C-terminal and a novel transmembrane (TM) domain at N-terminal, and its WRKY domain was highly similar to the N-terminal WRKY domain of the group I WRKY proteins. The TM domain was highly homologous to the eukaryotic cytochrome b561 (Cytb561) proteins from birds. Subcellular localization revealed that MtWRP1 was targeted to the Golgi apparatus through the novel TM domain. MtWRP1 was highly expressed in roots and nodules, suggesting its possible roles in the regulation of root growth and nodulation. Both MtWRP1-overexpression transgenic M. truncatula and MtWRP1 mutants showed altered root nodulation and plant growth performance. Specifically, the formation of root nodules was significantly reduced in the absence of MtWRP1. These results demonstrated that MtWRP1 plays critical roles in root nodulation and plant growth.
Collapse
|
35
|
Gu B, Chen Y, Xie F, Murray JD, Miller AJ. Inorganic Nitrogen Transport and Assimilation in Pea ( Pisum sativum). Genes (Basel) 2022; 13:158. [PMID: 35052498 PMCID: PMC8774688 DOI: 10.3390/genes13010158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
The genome sequences of several legume species are now available allowing the comparison of the nitrogen (N) transporter inventories with non-legume species. A survey of the genes encoding inorganic N transporters and the sensing and assimilatory families in pea, revealed similar numbers of genes encoding the primary N assimilatory enzymes to those in other types of plants. Interestingly, we find that pea and Medicago truncatula have fewer members of the NRT2 nitrate transporter family. We suggest that this difference may result from a decreased dependency on soil nitrate acquisition, as legumes have the capacity to derive N from a symbiotic relationship with diazotrophs. Comparison with M. truncatula, indicates that only one of three NRT2s in pea is likely to be functional, possibly indicating less N uptake before nodule formation and N-fixation starts. Pea seeds are large, containing generous amounts of N-rich storage proteins providing a reserve that helps seedling establishment and this may also explain why fewer high affinity nitrate transporters are required. The capacity for nitrate accumulation in the vacuole is another component of assimilation, as it can provide a storage reservoir that supplies the plant when soil N is depleted. Comparing published pea tissue nitrate concentrations with other plants, we find that there is less accumulation of nitrate, even in non-nodulated plants, and that suggests a lower capacity for vacuolar storage. The long-distance transported form of organic N in the phloem is known to be specialized in legumes, with increased amounts of organic N molecules transported, like ureides, allantoin, asparagine and amides in pea. We suggest that, in general, the lower tissue and phloem nitrate levels compared with non-legumes may also result in less requirement for high affinity nitrate transporters. The pattern of N transporter and assimilatory enzyme distribution in pea is discussed and compared with non-legumes with the aim of identifying future breeding targets.
Collapse
Affiliation(s)
- Benguo Gu
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Yi Chen
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Jeremy D. Murray
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| | - Anthony J. Miller
- Biochemistry & Metabolism Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (B.G.); (Y.C.)
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
36
|
Liu C, Xiang D, Wu Q, Ye X, Yan H, Zhao G, Zou L. Dynamic transcriptome and co-expression analysis suggest the potential roles of small secreted peptides from Tartary buckwheat (Fagopyrum tataricum) in low nitrogen stress response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111091. [PMID: 34763875 DOI: 10.1016/j.plantsci.2021.111091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Small secreted peptides (SSPs) regulate nitrogen (N) response and signaling in plants. Although much progress has been made in understanding the functions of SSPs in N response, very little information is available regarding non-model plants. Tartary buckwheat (Fagopyrum tataricum), a dicotyledonous crop, has a good adaptability to low N (LN) stress; however, little is known regarding the associated mechanisms underlying this adaptation. In this study, 932 putative SSPs were genome-wide characterized in TB genome. Of these SSPs, 233 SSPs were annotated as established SSPs, such as CLE, RALF, PSK, and CEP peptides. The gene expression of 675 putative SSPs was detected in five tissues and 258 SSPs were tissue-specific expressed genes. To analyze the responses of TB SSPs to LN, the dynamic expression analysis of TB roots under LN stress was conducted by RNA-seq. The expression of 378 putative TB SSP genes was detected with diverse expression patterns under LN stress, and some important LN-responsive SSPs were identified. Co-expression analysis suggested SSPs may regulate the adaptability of TB under LN conditions by modulating the expression of the genes involved in N transport and assimilation and IAA signaling. Furthermore, 53 LN stress-responsive RLKs encoding genes were identified and they were predicted as potential SSP receptors. This study expands the repertoire of SSPs in plants and provides useful information for further investigation of the functions of Tartary buckwheat SSPs in LN stress responses.
Collapse
Affiliation(s)
- Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Huiling Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, PR China.
| |
Collapse
|
37
|
Geng B, Wang Q, Huang R, Liu Y, Guo Z, Lu S. A novel LRR-RLK (CTLK) confers cold tolerance through regulation on the C-repeat-binding factor pathway, antioxidants, and proline accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1679-1689. [PMID: 34626033 DOI: 10.1111/tpj.15535] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Leucine-rich repeat-receptor-like kinase (LRR-RLK) is a large subfamily of plant RLKs; however, its role in cold tolerance is still unknown. A novel cold tolerance LRR-RLK gene (MtCTLK1) in Medicago truncatula was identified using the transgenic lines overexpressing MtCTLK1 (MtCTLK1-OE) and mtctlk1 lines with Tnt1 retrotransposon insertion. Compared with the wild-type, MtCTLK1-OE lines had increased cold tolerance and mtctlk1 showed decreased cold tolerance. The impaired cold tolerance in mtctlk1 could be complemented by the transgenic expression of MtCTLK1 or its homolog MfCTLK1 from Medicago falcata. Antioxidant enzyme activities and proline accumulation as well as transcript levels of the associated genes were increased in response to cold, with higher levels in MtCTLK1-OE or lower levels in mtctlk1 lines as compared with wild type. C-Repeat-Binding Factors (CBFs) and CBF-dependent cold-responsive genes were also induced in response to cold, and higher transcript levels of CBFs and CBF-dependent cold-responsive genes were observed in MtCTLK1-OE lines whereas lower levels in mtctlk1 mutants. The results validate the role of MtCTLK1 or MfCTLK1 in the regulation of cold tolerance through the CBF pathway, antioxidant defense system and proline accumulation. It also provides a valuable gene for the molecular breeding program to improve cold tolerance in crops.
Collapse
Affiliation(s)
- Bohao Geng
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yajie Liu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
38
|
Zhang L, Ren Y, Xu Q, Wan Y, Zhang S, Yang G, Huang J, Yan K, Zheng C, Wu C. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6260-6273. [PMID: 34097059 DOI: 10.1093/jxb/erab267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
C-terminally encoded peptides (CEPs) are small peptides, typically post-translationally modified, and highly conserved in many species. CEPs are known to inhibit plant growth and development, but the mechanisms are not well understood. In this study, 14 CEPs were identified in Setaria italica and divided into two groups. The transcripts of most SiCEPs were more abundant in roots than in other detected tissues. SiCEP3, SiCEP4, and SiCEP5 were also highly expressed in panicles. Moreover, expression of all SiCEPs was induced by abiotic stresses and phytohormones. SiCEP3 overexpression and application of synthetic SiCEP3 both inhibited seedling growth. In the presence of abscisic acid (ABA), growth inhibition and ABA content in seedlings increased with the concentration of SiCEP3. Transcripts encoding eight ABA transporters and six ABA receptors were induced or repressed by synthetic SiCEP3, ABA, and their combination. Further analysis using loss-of-function mutants of Arabidopsis genes functioning as ABA transporters, receptors, and in the biosynthesis and degradation of ABA revealed that SiCEP3 promoted ABA import at least via NRT1.2 (NITRATE TRANSPORTER 1.2) and ABCG40 (ATP-BINDING CASSETTE G40). In addition, SiCEP3, ABA, or their combination inhibited the kinase activities of CEP receptors AtCEPR1/2. Taken together, our results indicated that the CEP-CEPR module mediates ABA signaling by regulating ABA transporters and ABA receptors in planta.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Yue Ren
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Qian Xu
- Phytohormone Analysis Platform, Agronomy College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yiman Wan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Changai Wu
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| |
Collapse
|
39
|
Luo Z, Lin JS, Zhu Y, Fu M, Li X, Xie F. NLP1 reciprocally regulates nitrate inhibition of nodulation through SUNN-CRA2 signaling in Medicago truncatula. PLANT COMMUNICATIONS 2021; 2:100183. [PMID: 34027396 PMCID: PMC8132174 DOI: 10.1016/j.xplc.2021.100183] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 05/26/2023]
Abstract
Most legume plants can associate with diazotrophic soil bacteria called rhizobia, resulting in new root organs called nodules that enable N2 fixation. Nodulation is an energy-consuming process, and nodule number is tightly regulated by independent systemic signaling pathways controlled by CLE/SUNN and CEP/CRA2. Moreover, nitrate inhibits legume nodulation via local and systemic regulatory pathways. In Medicago truncatula, NLP1 plays important roles in nitrate-induced inhibition of nodulation, but the relationship between systemic and local pathways in mediating nodulation inhibition by nitrate is poorly understood. In this study, we found that nitrate induces CLE35 expression in an NLP1-dependent manner and that NLP1 binds directly to the CLE35 promoter to activate its expression. Grafting experiments revealed that the systemic control of nodule number involves negative regulation by SUNN and positive regulation by CRA2 in the shoot, and that NLP1's control of the inhibition of rhizobial infection, nodule development, and nitrogenase activity in response to nitrate is determined by the root. Unexpectedly, grafting experiments showed that loss of CRA2 in the root increases nodule number at inhibitory nitrate levels, probably because of CEP1/2 upregulation in the cra2 mutants, suggesting that CRA2 exerts active negative feedback regulation in the root.
Collapse
Affiliation(s)
- Zhenpeng Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jie-shun Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yali Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Mengdi Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
40
|
Zhu F, Ye Q, Chen H, Dong J, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3661-3676. [PMID: 33640986 PMCID: PMC8096600 DOI: 10.1093/jxb/erab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Gautrat P, Laffont C, Frugier F, Ruffel S. Nitrogen Systemic Signaling: From Symbiotic Nodulation to Root Acquisition. TRENDS IN PLANT SCIENCE 2021; 26:392-406. [PMID: 33358560 DOI: 10.1016/j.tplants.2020.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 05/27/2023]
Abstract
Plant nutrient acquisition is tightly regulated by resource availability and metabolic needs, implying the existence of communication between roots and shoots to ensure their integration at the whole-plant level. Here, we focus on systemic signaling pathways controlling nitrogen (N) nutrition, achieved both by the root import of mineral N and, in legume plants, through atmospheric N fixation by symbiotic bacteria inside dedicated root nodules. We explore features conserved between systemic pathways repressing or enhancing symbiotic N fixation and the regulation of mineral N acquisition by roots, as well as their integration with other environmental factors, such as phosphate, light, and CO2 availability.
Collapse
Affiliation(s)
- Pierre Gautrat
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Carole Laffont
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences - Paris Saclay), CNRS, INRAe, Université Paris-Diderot, Université d'Evry, Université Paris-Saclay, Bâtiment 630, Gif-sur-Yvette, France.
| | - Sandrine Ruffel
- BPMP, Univ Montpellier, CNRS, INRAe, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
42
|
Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. NATURE PLANTS 2021; 7:481-499. [PMID: 33833418 DOI: 10.1038/s41477-021-00897-y] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/09/2021] [Indexed: 05/06/2023]
Abstract
Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root architecture and microbial community structure remain elusive in maize. Here, we demonstrate that transcriptomic gradients along the longitudinal root axis associate with specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-derived flavones predominantly promote the enrichment of bacteria of the taxa Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the reciprocal interactions between root architecture and the composition and diversity of specific microbial taxa in the rhizosphere resulting in improved plant performance. These findings may open new avenues towards the breeding of high-yielding and nutrient-efficient crops by exploiting their interaction with beneficial soil microorganisms.
Collapse
Affiliation(s)
- Peng Yu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Xiaoming He
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marcel Baer
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Stien Beirinckx
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Plant Sciences Unit, Flanders Research Institute for Agriculture Fisheries and Food, Merelbeke, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tian Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yudelsy A T Moya
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Xuechen Zhang
- Department of Biogeochemistry of Agroecosystems, University of Göttingen, Göttingen, Germany
| | - Marion Deichmann
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Felix P Frey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Verena Bresgen
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Chunjian Li
- Department of Plant Nutrition, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Gabriel Schaaf
- Plant Nutrition, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Frank Hochholdinger
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, China.
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
| |
Collapse
|
43
|
Chaulagain D, Frugoli J. The Regulation of Nodule Number in Legumes Is a Balance of Three Signal Transduction Pathways. Int J Mol Sci 2021; 22:1117. [PMID: 33498783 PMCID: PMC7866212 DOI: 10.3390/ijms22031117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/02/2022] Open
Abstract
Nitrogen is a major determinant of plant growth and productivity and the ability of legumes to form a symbiotic relationship with nitrogen-fixing rhizobia bacteria allows legumes to exploit nitrogen-poor niches in the biosphere. But hosting nitrogen-fixing bacteria comes with a metabolic cost, and the process requires regulation. The symbiosis is regulated through three signal transduction pathways: in response to available nitrogen, at the initiation of contact between the organisms, and during the development of the nodules that will host the rhizobia. Here we provide an overview of our knowledge of how the three signaling pathways operate in space and time, and what we know about the cross-talk between symbiotic signaling for nodule initiation and organogenesis, nitrate dependent signaling, and autoregulation of nodulation. Identification of common components and points of intersection suggest directions for research on the fine-tuning of the plant's response to rhizobia.
Collapse
Affiliation(s)
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
44
|
Shoot Extracts from Two Low Nodulation Mutants Significantly Reduce Nodule Number in Pea. PLANTS 2020; 9:plants9111505. [PMID: 33172149 PMCID: PMC7694783 DOI: 10.3390/plants9111505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 01/25/2023]
Abstract
E107 and E132 are pea mutants that nodulate poorly. Because they have a shoot-controlled nodulation phenotype, we asked if their mutated genes were implicated in the autoregulation of nodulation (AON), a mechanism which consists of two systemic circuits, the positive CEP/CRA2 and the negative CLE/SUNN, coordinated via NIN and miR2111. We further characterized the mutants’ phenotype by studying nodule distribution and nodulation efficiency. E107 was similar to wild-type (WT) in its nodule distribution, but E132 had an extended nodulation zone with nodules forming distally on its lateral roots. Moreover, we tested whether their shoots produced a compound inhibitory to nodulation. We made ethyl-acetate extracts of roots and shoots of both mutants and WT, which we applied to rhizobia-inoculated WT seedlings and to pure rhizobial cultures. Whereas free-living bacteria were unaffected by any of the extracts, WT treated with shoot extracts from either inoculated mutant had fewer nodules than that of control. E107 and E132 shoot extracts led to a 50% and a 35% reduction in nodule number, respectively. We propose that E107 and E132 belong to a new sub-class of AON mutants, i.e., hypo-nodulators, and that their respective gene products are acting in the AON descending branch, upstream of TML signaling.
Collapse
|
45
|
Strable J. Peptide-Receptor Signaling Pumps the Brakes on Auxin Biosynthesis and Ethylene Signaling to Harmonize Root Growth and Nodulation. THE PLANT CELL 2020; 32:2675-2676. [PMID: 32641347 PMCID: PMC7474281 DOI: 10.1105/tpc.20.00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Josh Strable
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthica, New York
| |
Collapse
|