Lübben J, Wandtke CM, Hübschle CB, Ruf M, Sheldrick GM, Dittrich B. Aspherical scattering factors for SHELXL - model, implementation and application.
Acta Crystallogr A Found Adv 2019;
75:50-62. [PMID:
30575583 PMCID:
PMC6302932 DOI:
10.1107/s2053273318013840]
[Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/29/2018] [Indexed: 11/23/2022] Open
Abstract
A new aspherical scattering factor formalism has been implemented in the crystallographic least-squares refinement program SHELXL. The formalism relies on Gaussian functions and can optionally complement the independent atom model to take into account the deformation of electron-density distribution due to chemical bonding and lone pairs. Asphericity contributions were derived from the electron density obtained from quantum-chemical density functional theory computations of suitable model compounds that contain particular chemical environments, as defined by the invariom formalism. Thanks to a new algorithm, invariom assignment for refinement in SHELXL is automated. A suitable parameterization for each chemical environment within the new model was achieved by metaheuristics. Figures of merit, precision and accuracy of crystallographic least-squares refinements improve significantly upon using the new model.
Collapse