DeLancey SS, Clendening RA, Zeller M, Ren T. Geometric isomers of dichloridoiron(III) complexes of CTMC (5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane).
Acta Crystallogr C Struct Chem 2022;
78:507-514. [PMID:
36063378 PMCID:
PMC9444021 DOI:
10.1107/s205322962200849x]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Both trans and cis iron-CTMC complexes, namely, trans-dichlorido[(5SR,7RS,12RS,14SR)-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) tetrachloridoferrate, [Fe(C14H32N4)Cl2][FeCl4] (1a), the analogous chloride methanol monosolvate, [Fe(C14H32N4)Cl2]Cl·CH3OH (1b), and cis-dichlorido[(5SR,7RS,12SR,14RS)-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) chloride, [Fe(C14H32N4)Cl2]Cl (2), were successfully synthesized and structurally characterized using X-ray diffraction. The coordination geometry of the macrocycle is dependent on the stereoisomerism of CTMC. The packing of these complexes appears to be strongly influenced by extensive hydrogen-bonding interactions, which are in turn determined by the nature of the counter-anions (1a versus 1b) and/or the coordination geometry of the macrocycle (1a/1b versus 2). These observations are extended to related ferric cis- and trans-dichloro macrocyclic complexes.
Collapse