1
|
Vitor AB, Farias KS, Ribeiro GCA, Pirovani CP, Benevides RG, Pereira GAG, de Assis SA. Cloning, heterologous expression and characterization of β-glucosidase deriving from Moniliophthora perniciosa (Stahel) Aime and Phillips Mora. 3 Biotech 2024; 14:287. [PMID: 39493291 PMCID: PMC11530418 DOI: 10.1007/s13205-024-04128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Β-glucosidase (BGLs) act synergistically with endoglucanases and exoglucanases and then are of great interest for biomass conversion into bioethanol. Thus, the aim of the current study is to produce a recombinant β-glycosidase from Moniliophtora perniciosa expressed in Escherichia coli cells. Enzyme coding sequence expression was confirmed through Sanger sequencing after using wheat bran (WB) and carboxymethylcellulose (CMC) as fungal growth media. Synthetic gene betaglyc-GH1 with optimized codons for E. coli expression was cloned in pET-28a. β-glucosidase recombinant (GH1chimera) was purified using a nickel column and its identity was confirmed through mass spectrometry. The recombinant enzyme presented an apparent molecular mass of 53.23 kDa on SDS-PAGE. Recombinant β-glucosidase has shown hydrolytic activity using p-nitrophenyl-β-D-glycopyranoside (pNPG) as substrate and maximum activity at pH 4.6 and 65 °C. Thus, the results indicate that the application of the GH1chimera in the hydrolysis of lignocellulosic materials to obtain glucose monomers can be efficient. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04128-x.
Collapse
Affiliation(s)
- Alison Borges Vitor
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | - Keilane Silva Farias
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Geise Camila Araújo Ribeiro
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| | - Carlos Priminho Pirovani
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Raquel Guimarães Benevides
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | | | - Sandra Aparecida de Assis
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| |
Collapse
|
2
|
Indraratna AD, Everest-Dass A, Skropeta D, Sanderson-Smith M. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6519265. [PMID: 35104861 PMCID: PMC9075583 DOI: 10.1093/femsre/fuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
Host carbohydrates, or glycans, have been implicated in the pathogenesis of many bacterial infections. Group A Streptococcus (GAS) is a Gram-positive bacterium that readily colonises the skin and oropharynx, and is a significant cause of mortality in humans. While the glycointeractions orchestrated by many other pathogens are increasingly well-described, the understanding of the role of human glycans in GAS disease remains incomplete. Although basic investigation into the mechanisms of GAS disease is ongoing, several glycointeractions have been identified and are examined herein. The majority of research in this context has focussed on bacterial adherence, however, glycointeractions have also been implicated in carbohydrate metabolism; evasion of host immunity; biofilm adaptations; and toxin-mediated haemolysis. The involvement of human glycans in these diverse avenues of pathogenesis highlights the clinical value of understanding glycointeractions in combatting GAS disease.
Collapse
Affiliation(s)
- Anuk D Indraratna
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Arun Everest-Dass
- Institute for Glycomics, Griffith University, Gold Coast Campus, Parklands Drive, Southport, Queensland, 4215, Australia
| | - Danielle Skropeta
- Illawarra Health and Medical Research Institute, Northfields Ave, Keiraville New South Wales 2522, Australia
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia
| | - Martina Sanderson-Smith
- Corresponding author: Illawarra Health and Medical Research Institute, Bld 32, University of Wollongong, Northfields Avenue, Keiraville, New South Wales, 2522, Australia. Tel: +61 2 42981935; E-mail:
| |
Collapse
|
3
|
Sawicka-Smiarowska E, Bondarczuk K, Bauer W, Niemira M, Szalkowska A, Raczkowska J, Kwasniewski M, Tarasiuk E, Dubatowka M, Lapinska M, Szpakowicz M, Stachurska Z, Szpakowicz A, Sowa P, Raczkowski A, Kondraciuk M, Gierej M, Motyka J, Jamiolkowski J, Bondarczuk M, Chlabicz M, Bucko J, Kozuch M, Dobrzycki S, Bychowski J, Musial WJ, Godlewski A, Ciborowski M, Gyenesei A, Kretowski A, Kaminski KA. Gut Microbiome in Chronic Coronary Syndrome Patients. J Clin Med 2021; 10:jcm10215074. [PMID: 34768594 PMCID: PMC8584954 DOI: 10.3390/jcm10215074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Despite knowledge of classical coronary artery disease (CAD) risk factors, the morbidity and mortality associated with this disease remain high. Therefore, new factors that may affect the development of CAD, such as the gut microbiome, are extensively investigated. This study aimed to evaluate gut microbiome composition in CAD patients in relation to the control group. We examined 169 CAD patients and 166 people in the control group, without CAD, matched in terms of age and sex to the study group. Both populations underwent a detailed health assessment. The microbiome analysis was based on the V3-V4 region of the 16S rRNA gene (NGS method). Among 4074 identified taxonomic units in the whole population, 1070 differed between study groups. The most common bacterial types were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Furthermore, a higher Firmicutes/Bacteroidetes ratio in the CAD group compared with the control was demonstrated. Firmicutes/Bacteroidetes ratio, independent of age, sex, CAD status, LDL cholesterol concentration, and statins treatment, was related to altered phosphatidylcholine concentrations obtained in targeted metabolomics. Altered alpha-biodiversity (Kruskal-Wallis test, p = 0.001) and beta-biodiversity (Bray-Curtis metric, p < 0.001) in the CAD group were observed. Moreover, a predicted functional analysis revealed some taxonomic units, metabolic pathways, and proteins that might be characteristic of the CAD patients' microbiome, such as increased expressions of 6-phospho-β-glucosidase and protein-N(pi)-phosphohistidine-sugar phosphotransferase and decreased expressions of DNA topoisomerase, oxaloacetate decarboxylase, and 6-beta-glucosidase. In summary, CAD is associated with altered gut microbiome composition and function.
Collapse
Affiliation(s)
- Emilia Sawicka-Smiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Anna Szalkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Marlena Dubatowka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magda Lapinska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Malgorzata Szpakowicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Pawel Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Andrzej Raczkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magdalena Gierej
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Jacek Jamiolkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Mateusz Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Malgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jolanta Bucko
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Marcin Kozuch
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Wlodzimierz Jerzy Musial
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Karol Adam Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
4
|
Yin B, Gu H, Mo X, Xu Y, Yan B, Li Q, Ou Q, Wu B, Guo C, Jiang C. Identification and molecular characterization of a psychrophilic GH1 β-glucosidase from the subtropical soil microorganism Exiguobacterium sp. GXG2. AMB Express 2019; 9:159. [PMID: 31576505 PMCID: PMC6773797 DOI: 10.1186/s13568-019-0873-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
The products of bacterial β-glucosidases with favorable cold-adapted properties have industrial applications. A psychrophilic β-glucosidase gene named bglG from subtropical soil microorganism Exiguobacterium sp. GXG2 was isolated and characterized by function-based screening strategy. Results of multiple alignments showed that the derived protein BglG shared 45.7% identities with reviewed β-glucosidases in the UniProtKB/Swiss-Prot database. Functional characterization of the β-glucosidase BglG indicated that BglG was a 468 aa protein with a molecular weight of 53.2 kDa. The BglG showed the highest activity in pH 7.0 at 35 °C and exhibited consistently high levels of activity within low temperatures ranging from 5 to 35 °C. The BglG appeared to be a psychrophilic enzyme. The values of Km, Vmax, kcat, and kcat/Km of recombinant BglG toward ρNPG were 1.1 mM, 1.4 µg/mL/min, 12.7 s-1, and 11.5 mM/s, respectively. The specific enzyme activity of BglG was 12.14 U/mg. The metal ion of Ca2+ and Fe3+ could stimulate the activity of BglG, whereas Mn2+ inhibited the activity. The cold-adapted β-glucosidase BglG displayed remarkable biochemical properties, making it a potential candidate for future industrial applications.
Collapse
Affiliation(s)
- Bangqiao Yin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Hengsen Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Xueyan Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Yue Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Bing Yan
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Road, Beihai, 536000, Guangxi, People's Republic of China
| | - Quanwen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Bo Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China
| | - Chen Guo
- Scientific Research Academy of Guangxi Environmental Protection, 5 Education Road, Nanning, 530022, Guangxi, People's Republic of China.
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, 530004, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Road, Beihai, 536000, Guangxi, People's Republic of China.
| |
Collapse
|
5
|
Lansky S, Zehavi A, Belrhali H, Shoham Y, Shoham G. Structural basis for enzyme bifunctionality – the case of Gan1D fromGeobacillus stearothermophilus. FEBS J 2017; 284:3931-3953. [DOI: 10.1111/febs.14283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/31/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| | - Arie Zehavi
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | | | - Yuval Shoham
- Department of Biotechnology and Food Engineering Technion ‐ Israel Institute of Technology Haifa Israel
| | - Gil Shoham
- Institute of Chemistry The Laboratory for Structural Chemistry and Biology The Hebrew University of Jerusalem Israel
| |
Collapse
|
6
|
Kwan DH, Jin Y, Jiang J, Chen HM, Kötzler MP, Overkleeft HS, Davies GJ, Withers SG. Chemoenzymatic synthesis of 6-phospho-cyclophellitol as a novel probe of 6-phospho-β-glucosidases. FEBS Lett 2016; 590:461-8. [DOI: 10.1002/1873-3468.12059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 11/10/2022]
Affiliation(s)
- David H. Kwan
- Department of Chemistry; University of British Columbia; BC Canada
| | - Yi Jin
- York Structural Biology Laboratory; Department of Chemistry; University of York; UK
| | - Jianbing Jiang
- Department of Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; the Netherlands
| | - Hong-Ming Chen
- Department of Chemistry; University of British Columbia; BC Canada
| | | | - Herman S. Overkleeft
- Department of Bioorganic Synthesis; Leiden Institute of Chemistry; Leiden University; the Netherlands
| | - Gideon J. Davies
- York Structural Biology Laboratory; Department of Chemistry; University of York; UK
| | | |
Collapse
|
7
|
Heins RA, Cheng X, Nath S, Deng K, Bowen BP, Chivian DC, Datta S, Friedland GD, D’Haeseleer P, Wu D, Tran-Gyamfi M, Scullin CS, Singh S, Shi W, Hamilton MG, Bendall ML, Sczyrba A, Thompson J, Feldman T, Guenther JM, Gladden JM, Cheng JF, Adams PD, Rubin EM, Simmons BA, Sale KL, Northen TR, Deutsch S. Phylogenomically guided identification of industrially relevant GH1 β-glucosidases through DNA synthesis and nanostructure-initiator mass spectrometry. ACS Chem Biol 2014; 9:2082-91. [PMID: 24984213 PMCID: PMC4168791 DOI: 10.1021/cb500244v] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 β-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different β-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 °C and 20% (v/v) [C2mim][OAc] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems.
Collapse
Affiliation(s)
- Richard A. Heins
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Xiaoliang Cheng
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Sangeeta Nath
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Kai Deng
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Benjamin P. Bowen
- Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Dylan C. Chivian
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Supratim Datta
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Gregory D. Friedland
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Patrik D’Haeseleer
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Dongying Wu
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Mary Tran-Gyamfi
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Chessa S. Scullin
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Seema Singh
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Weibing Shi
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Matthew G. Hamilton
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Matthew L. Bendall
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Alexander Sczyrba
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - John Thompson
- NIDCR, NIH, Oral
Infection and Immunity Branch, 30 Convent
Drive, Bethesda, Maryland 20892, United States
| | - Taya Feldman
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Joel M. Guenther
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - John M. Gladden
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Jan-Fang Cheng
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| | - Paul D. Adams
- Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Edward M. Rubin
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
- Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Blake A. Simmons
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Kenneth L. Sale
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Sandia National
Laboratories, 7011 East Avenue, Livermore, California 94551, United States
| | - Trent R. Northen
- Joint Bioenergy
Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Samuel Deutsch
- Joint Genome Institute, 2800 Mitchell Drive, Walnut
Creek, California 94598, United States
| |
Collapse
|