1
|
Spínola-Amilibia M, Illanes-Vicioso R, Ruiz-López E, Colomer-Vidal P, Rodriguez-Ventura F, Peces Pérez R, Arias CF, Torroba T, Solà M, Arias-Palomo E, Bertocchini F. Plastic degradation by insect hexamerins: Near-atomic resolution structures of the polyethylene-degrading proteins from the wax worm saliva. SCIENCE ADVANCES 2023; 9:eadi6813. [PMID: 37729416 PMCID: PMC10511194 DOI: 10.1126/sciadv.adi6813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Plastic waste management is a pressing ecological, social, and economic challenge. The saliva of the lepidopteran Galleria mellonella larvae is capable of oxidizing and depolymerizing polyethylene in hours at room temperature. Here, we analyze by cryo-electron microscopy (cryo-EM) G. mellonella's saliva directly from the native source. The three-dimensional reconstructions reveal that the buccal secretion is mainly composed of four hexamerins belonging to the hemocyanin/phenoloxidase family, renamed Demetra, Cibeles, Ceres, and a previously unidentified factor termed Cora. Functional assays show that this factor, as its counterparts Demetra and Ceres, is also able to oxidize and degrade polyethylene. The cryo-EM data and the x-ray analysis from purified fractions show that they self-assemble primarily into three macromolecular complexes with striking structural differences that likely modulate their activity. Overall, these results establish the ground to further explore the hexamerins' functionalities, their role in vivo, and their eventual biotechnological application.
Collapse
Affiliation(s)
- Mercedes Spínola-Amilibia
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Ramiro Illanes-Vicioso
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Elena Ruiz-López
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Pere Colomer-Vidal
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Francisco Rodriguez-Ventura
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Rosa Peces Pérez
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Clemente F. Arias
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos, GISC, Madrid, Spain
| | - Tomas Torroba
- Department of Chemistry, Faculty of Science and PCT, University of Burgos, Burgos, Spain
| | - Maria Solà
- Department of Structural Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, 08028 Barcelona, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | - Federica Bertocchini
- Department of Plant and Microbial Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
2
|
Techno-functional properties of edible insect proteins and effects of processing. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Barre A, Pichereaux C, Simplicien M, Burlet-Schiltz O, Benoist H, Rougé P. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients. Foods 2021; 10:foods10020280. [PMID: 33573235 PMCID: PMC7911787 DOI: 10.3390/foods10020280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing development of edible insect flours as alternative sources of proteins added to food and feed products for improving their nutritional value, necessitates an accurate evaluation of their possible adverse side-effects, especially for individuals suffering from food allergies. Using a proteomic- and bioinformatic-based approach, the diversity of proteins occurring in currently consumed edible insects such as silkworm (Bombyx mori), cricket (Acheta domesticus), African migratory locust (Locusta migratoria), yellow mealworm (Tenebrio molitor), red palm weevil (Rhynchophorus ferrugineus), and giant milworm beetle (Zophobas atratus), was investigated. Most of them consist of phylogenetically-related protein allergens widely distributed in the different groups of arthropods (mites, insects, crustaceans) and mollusks. However, a few proteins belonging to discrete protein families including the chemosensory protein, hexamerin, and the odorant-binding protein, emerged as proteins highly specific for edible insects. To a lesser extent, other proteins such as apolipophorin III, the larval cuticle protein, and the receptor for activated protein kinase, also exhibited a rather good specificity for edible insects. These proteins, that are apparently missing or much less represented in other groups of arthropods, mollusks and nematods, share well conserved amino acid sequences and very similar three-dimensional structures. Owing to their ability to trigger allergic responses in sensitized people, they should be used as probes for the specific detection of insect proteins as food ingredients in various food products and thus, to assess their food safety, especially for people allergic to edible insects.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, 31326 Toulouse, France;
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-6955-20851
| |
Collapse
|
4
|
Fuzita FJ, Chandler KB, Haserick JR, Terra WR, Ferreira C, Costello CE. N-glycosylation in Spodoptera frugiperda (Lepidoptera: Noctuidae) midgut membrane-bound glycoproteins. Comp Biochem Physiol B Biochem Mol Biol 2020; 246-247:110464. [PMID: 32553552 DOI: 10.1016/j.cbpb.2020.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Spodoptera frugiperda is a widely distributed agricultural pest. It has previously been established that glycoproteins in the midgut microvillar membrane of insects are targets for toxins produced by different organisms as well as plant lectins. However, there is still little information about the N-glycome of membrane-bound midgut glycoproteins in Lepidoptera and other insect groups. The present study used mass spectrometry-based approaches to characterize the N-glycoproteins present in the midgut cell microvilli of Spodoptera frugiperda. We subjected midgut cell microvilli proteins to proteolytic digestion and enriched the resulting glycopeptides prior to analysis. We also performed endoglycosidase release of N-glycans in the presence of H218O determining the compositions of released N-glycans by MALDI-TOF MS analysis and established the occupancy of the potential N-glycosylation sites. We report here a total of 160 glycopeptides, representing 25 N-glycan compositions associated with 70 sites on 35 glycoproteins. Glycan compositions consistent with oligomannose, paucimannose and complex/hybrid N-glycans represent 35, 30 and 35% of the observed glycans, respectively. The two most common N-glycan compositions were the complex/hybrid Hex3HexNAc4dHex4 and the paucimannose structure that contains only the doubly-fucosylated trimannosylchitobiose core Hex3HexNAc2dHex2, each appearing in 22 occupied sites (13.8%). These findings enlighten aspects of the glycobiology of lepidopteran midgut microvilli.
Collapse
Affiliation(s)
- Felipe Jun Fuzita
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| | - Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - John R Haserick
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Walter R Terra
- Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Laboratory of Insect Biochemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Pietrzyk-Brzezinska AJ, Bujacz A. H-type lectins - Structural characteristics and their applications in diagnostics, analytics and drug delivery. Int J Biol Macromol 2020; 152:735-747. [PMID: 32119947 DOI: 10.1016/j.ijbiomac.2020.02.320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Lectins are ubiquitous carbohydrate-binding proteins that interact with sugar moieties in a highly specific manner. H-type lectins represent a new group of lectins that were identified in invertebrates. These lectins share structural homology and bind mainly to N-acetylgalactosamine (GalNAc). Recent structural studies on the H-type lectins provided a detailed description of the GalNAc-lectin interaction that is already exploited in a number of biomedical applications. Two members of the H-type lectin family, Helix pomatia agglutinin (HPA) and Helix aspersa agglutinin (HAA), have already been extensively used in many diagnostic tests due their ability to specifically recognize GalNAc. This ability is especially important because aberrant glycosylation patterns of proteins expressed by cancer cells contain GalNAc. In addition, H-type lectins were utilized in diagnostics of other non-cancer diseases and represent great potential as components of drug delivery systems. Here, we present an overview of the H-type lectins and their applications in diagnostics, analytics and drug delivery.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Anna Bujacz
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| |
Collapse
|
6
|
Abstract
Insects possess powerful immune systems that have evolved to defend against wounding and environmental pathogens such as bacteria, fungi, protozoans, and parasitoids. This surprising sophistication is accomplished through the activation of multiple immune pathways comprised of a large array of components, many of which have been identified and studied in detail using both genetic manipulations and traditional biochemical techniques. Recent advances indicate that certain pathways activate arrays of proteins that interact to form large functional complexes. Here we discuss three examples from multiple insects that exemplify such processes, including pathogen recognition, melanization, and coagulation. The functionality of each depends on integrating recognition with the recruitment of immune effectors capable of healing wounds and destroying pathogens. In both melanization and coagulation, protein interactions also appear to be essential for enzymatic activities tied to the formation of melanin and for the recruitment of hemocytes. The importance of these immune complexes is highlighted by the evolution of mechanisms in pathogens to disrupt their formation, an example of which is provided. While technically difficult to study, and not always readily amenable to dissection through genetics, modern mass spectrometry has become an indispensable tool in the study of these higher-order protein interactions. The formation of immune complexes should be viewed as an essential and emerging frontier in the study of insect immunity.
Collapse
|
7
|
Wlodawer A, Dauter Z, Porebski PJ, Minor W, Stanfield R, Jaskolski M, Pozharski E, Weichenberger CX, Rupp B. Detect, correct, retract: How to manage incorrect structural models. FEBS J 2018; 285:444-466. [PMID: 29113027 PMCID: PMC5799025 DOI: 10.1111/febs.14320] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
The massive technical and computational progress of biomolecular crystallography has generated some adverse side effects. Most crystal structure models, produced by crystallographers or well-trained structural biologists, constitute useful sources of information, but occasional extreme outliers remind us that the process of structure determination is not fail-safe. The occurrence of severe errors or gross misinterpretations raises fundamental questions: Why do such aberrations emerge in the first place? How did they evade the sophisticated validation procedures which often produce clear and dire warnings, and why were severe errors not noticed by the depositors themselves, their supervisors, referees and editors? Once detected, what can be done to either correct, improve or eliminate such models? How do incorrect models affect the underlying claims or biomedical hypotheses they were intended, but failed, to support? What is the long-range effect of the propagation of such errors? And finally, what mechanisms can be envisioned to restore the validity of the scientific record and, if necessary, retract publications that are clearly invalidated by the lack of experimental evidence? We suggest that cognitive bias and flawed epistemology are likely at the root of the problem. By using examples from the published literature and from public repositories such as the Protein Data Bank, we provide case summaries to guide correction or improvement of structural models. When strong claims are unsustainable because of a deficient crystallographic model, removal of such a model and even retraction of the affected publication are necessary to restore the integrity of the scientific record.
Collapse
Affiliation(s)
- Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Przemyslaw J. Porebski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Robyn Stanfield
- Department of Structural and Computational Biology, BCC206, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, Poznan, 61-614, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Bernhard Rupp
- CVMO, k.-k.Hofkristallamt, 991 Audrey Place, Vista, CA, 92084, USA
- Department of Genetic Epidemiology, Medical University Innsbruck, Schöpfstr. 41, Innsbruck, 6020, Austria
| |
Collapse
|
8
|
Gill TA, Chu C, Pelz-Stelinski KS. Comparative proteomic analysis of hemolymph from uninfected and Candidatus Liberibacter asiaticus-infected Diaphorina citri. Amino Acids 2016; 49:389-406. [DOI: 10.1007/s00726-016-2373-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
|
9
|
Lieb B, Ebner B, Kayser H. cDNA sequences of two arylphorin subunits of an insect biliprotein: phylogenetic differences and gene duplications during evolution of hexamerins-implications for hexamer formation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:136-48. [DOI: 10.1002/jez.b.22672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Bernhard Lieb
- Institut für Zoologie; Johannes Gutenberg-Universität; Mainz Germany
| | - Bettina Ebner
- Institut für Zoologie; Johannes Gutenberg-Universität; Mainz Germany
| | - Hartmut Kayser
- Institute of General Zoology and Endocrinology; Ulm University; Ulm Germany
| |
Collapse
|
10
|
Pietrzyk AJ, Bujacz A, Mak P, Potempa B, Niedziela T. Structural studies of Helix aspersa agglutinin complexed with GalNAc: A lectin that serves as a diagnostic tool. Int J Biol Macromol 2015; 81:1059-68. [PMID: 26416237 DOI: 10.1016/j.ijbiomac.2015.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Lectins belong to a differentiated group of proteins known to possess sugar-binding properties. Due to this fact, they are interesting research targets in medical diagnostics. Helix aspersa agglutinin (HAA) is a lectin that recognizes the epitopes containing α-d-N-acetylgalactosamine (GalNAc), which is present at the surface of metastatic cancer cells. Although several reports have already described the use of HAA as a diagnostic tool, this protein was not characterized on the molecular level. Here, we present for the first time the structural information about lectin isolated from mucus of Helix aspersa (garden snail). The amino acid sequence of this agglutinin was determined by Edman degradation and tertiary as well as quaternary structure by X-ray crystallography. The high resolution crystal structure (1.38Å) and MALDI-TOF mass spectrometry analysis provide the detailed information about a large part of the HAA natural glycan chain. The topology of the GalNAc binding cleft and interaction with lectin are very well defined in the structure and fully confirmed by STD HSQC NMR spectroscopy. Together, this provides structural clues regarding HAA specificity and opens possibilities to rational modifications of this important diagnostic tool.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, Lodz 90-924, Poland.
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Barbara Potempa
- University of Louisville School of Dentistry, Department of Oral Immunology and Infectious Diseases, 501 South Preston Street, Louisville, KY 40202, USA
| | - Tomasz Niedziela
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, Wrocław 53-114, Poland
| |
Collapse
|
11
|
Pietrzyk AJ, Bujacz A, Łochynska M, Jaskolski M, Bujacz G. Crystal structure of Bombyx mori lipoprotein 6: comparative structural analysis of the 30-kDa lipoprotein family. PLoS One 2014; 9:e108761. [PMID: 25379889 PMCID: PMC4224370 DOI: 10.1371/journal.pone.0108761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/04/2014] [Indexed: 01/22/2023] Open
Abstract
The 30-kDa lipoprotein (LP) family of mulberry silkworm comprises major hemolymph proteins specific to the fifth instar larvae. The family consists of 46 members, 24 of which are referred to as typical 30-kDa LPs. To date, two crystal structures of 30-kDa LPs from Bombyx mori have been described (Bmlp3 and Bmlp7). Here, we present the crystal structure of Bmlp6, another 30-kDa LP member. Bmlp6 is comprised of two domains characteristic of this family, the VHS-type N-terminal domain and β-trefoil C-terminal domain. The structures of the three 30-kDa LPs have been compared and a number of differences are noted, including loop conformation, the surface electrostatic potential, and the potential binding cavities. We discuss the observed structural differences in the light of the potential different roles of the particular 30-kDa LP members in silkworm physiology.
Collapse
Affiliation(s)
- Agnieszka J. Pietrzyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Anna Bujacz
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
| | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Grzegorz Bujacz
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
- * E-mail:
| |
Collapse
|
12
|
Hou Y, Li J, Li Y, Dong Z, Xia Q, Yuan YA. Crystal structure of Bombyx mori arylphorins reveals a 3:3 heterohexamer with multiple papain cleavage sites. Protein Sci 2014; 23:735-46. [PMID: 24639361 PMCID: PMC4093950 DOI: 10.1002/pro.2457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/11/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023]
Abstract
In holometabolous insects, the accumulation and utilization of storage proteins (SPs), including arylphorins and methionine-rich proteins, are critical for the insect metamorphosis. SPs function as amino acids reserves, which are synthesized in fat body, secreted into the larval hemolymph and taken up by fat body shortly before pupation. However, the detailed molecular mechanisms of digestion and utilization of SPs during development are largely unknown. Here, we report the crystal structure of Bombyx mori arylphorins at 2.8 Å, which displays a heterohexameric structural arrangement formed by trimerization of dimers comprising two structural similar arylphorins. Our limited proteolysis assay and microarray data strongly suggest that papain-like proteases are the major players for B. mori arylphorins digestion in vitro and in vivo. Consistent with the biochemical data, dozens of papain cleavage sites are mapped on the surface of the heterohexameric structure of B. mori arylphorins. Hence, our results provide the insightful information to understand the metamorphosis of holometabolous insects at molecular level.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Jianwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest UniversityBeibei, Chongqing, 400715, China,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China
| | - Y Adam Yuan
- Department of Biological Sciences and Center for Bioimaging Sciences, National University of SingaporeSingapore, 117543, Singapore,SWU-NUS Joint Laboratory in Structural Genomics, Southwest UniversityBeibei, Chongqing, 400715, China,National University of Singapore (Suzhou) Research InstituteJiangsu, 215123, China,*Correspondence to: Y. Adam Yuan, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore. E-mail:
| |
Collapse
|