1
|
Gleißner R, Beck EE, Chung S, Semione GDL, Mukharamova N, Gizer G, Pistidda C, Renner D, Noei H, Vonk V, Stierle A. Operando reaction cell for high energy surface sensitive x-ray diffraction and reflectometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:073902. [PMID: 35922329 DOI: 10.1063/5.0098893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A proof of concept is shown for the design of a high pressure heterogeneous catalysis reaction cell suitable for surface sensitive x-ray diffraction and x-ray reflectometry over planar samples using high energy synchrotron radiation in combination with mass spectrometry. This design enables measurements in a pressure range from several tens to hundreds of bars for surface investigations under realistic industrial conditions in heterogeneous catalysis or gaseous corrosion studies.
Collapse
Affiliation(s)
- R Gleißner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - E E Beck
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Simon Chung
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G D L Semione
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - N Mukharamova
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Gizer
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - C Pistidda
- Institute of Hydrogen Technology, Materials Technology, Helmholtz-Zentrum hereon GmbH, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - D Renner
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - H Noei
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Vonk
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A Stierle
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
2
|
Hejral U, Shipilin M, Gustafson J, Stierle A, Lundgren E. High energy surface x-ray diffraction applied to model catalyst surfaces at work. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:073001. [PMID: 33690191 DOI: 10.1088/1361-648x/abb17c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
Collapse
Affiliation(s)
- Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Vignaud G, Gibaud A. REFLEX: a program for the analysis of specular X-ray and neutron reflectivity data. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576718018186] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The use of X-ray and neutron reflectivity has been generalized worldwide for scientists who want to determine specific physical properties (such as electron-density profile, scattering-length density, roughness and thickness) of films less than 200 nm thick deposited on a substrate. This paper describes a freeware program named REFLEX, which is a standalone program dedicated to the simulation and analysis of X-ray and neutron reflectivity from multilayers. This program was first written two decades ago and has been constantly improved since, but never published until now. The latest version of REFLEX covers generalized types of calculation of reflectivity curves including both neutron and X-ray reflectivity. In the case of X-rays, the program can deal with both s and p polarization, which is quite important in the soft X-ray region where the two polarizations can yield different results. Neutron reflectivity is calculated within the framework of non-spin-polarized neutrons. REFLEX has also been designed to include any type of fluid (such as supercritical CO2) on top of the analysed film and includes corrections of the footprint effect for analysis on an absolute scale.
Collapse
|
4
|
Salgın B, Pontoni D, Vogel D, Schröder H, Keil P, Stratmann M, Reichert H, Rohwerder M. Chemistry-dependent X-ray-induced surface charging. Phys Chem Chem Phys 2014; 16:22255-61. [DOI: 10.1039/c4cp02295e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ work function measurements during irradiation of solid substrates reveal chemistry-specific surface charging which cannot be detected ex situ.
Collapse
Affiliation(s)
- Bekir Salgın
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Duesseldorf, Germany
| | - Diego Pontoni
- European Synchrotron Radiation Facility
- 38043 Grenoble, France
| | - Dirk Vogel
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Duesseldorf, Germany
| | - Heiko Schröder
- Max-Planck-Institut für Metallforschung
- 70569 Stuttgart, Germany
| | - Patrick Keil
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Duesseldorf, Germany
| | - Martin Stratmann
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Duesseldorf, Germany
| | - Harald Reichert
- European Synchrotron Radiation Facility
- 38043 Grenoble, France
- Max-Planck-Institut für Metallforschung
- 70569 Stuttgart, Germany
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Duesseldorf, Germany
| |
Collapse
|
5
|
Wirkert FJ, Paulus M, Nase J, Möller J, Kujawski S, Sternemann C, Tolan M. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:76-81. [PMID: 24365919 DOI: 10.1107/s1600577513021516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/01/2013] [Indexed: 06/03/2023]
Abstract
A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.
Collapse
Affiliation(s)
| | - Michael Paulus
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | | | - Simon Kujawski
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| | | | - Metin Tolan
- Fakultät Physik/DELTA, TU Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
6
|
Salgin B, Vogel D, Pontoni D, Schröder H, Schönberger B, Stratmann M, Reichert H, Rohwerder M. A scanning Kelvin probe for synchrotron investigations: the in situ detection of radiation-induced potential changes. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:48-53. [PMID: 22186643 DOI: 10.1107/s0909049511047066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/07/2011] [Indexed: 05/31/2023]
Abstract
A wide range of high-performance X-ray surface/interface characterization techniques are implemented nowadays at every synchrotron radiation source. However, these techniques are not always `non-destructive' because possible beam-induced electronic or structural changes may occur during X-ray irradiation. As these changes may be at least partially reversible, an in situ technique is required for assessing their extent. Here the integration of a scanning Kelvin probe (SKP) set-up with a synchrotron hard X-ray interface scattering instrument for the in situ detection of work function variations resulting from X-ray irradiation is reported. First results, obtained on bare sapphire and sapphire covered by a room-temperature ionic liquid, are presented. In both cases a potential change was detected, which decayed and vanished after switching off the X-ray beam. This demonstrates the usefulness of a SKP for in situ monitoring of surface/interface potentials during X-ray materials characterization experiments.
Collapse
Affiliation(s)
- Bekir Salgin
- Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|